snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import LightGBMWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class LGBMRegressor(BaseTransformer):
|
56
57
|
r"""LightGBM regressor
|
57
58
|
For more details on this class, see [lightgbm.LGBMRegressor]
|
@@ -64,34 +65,42 @@ class LGBMRegressor(BaseTransformer):
|
|
64
65
|
A string or list of strings representing column names that contain features.
|
65
66
|
If this parameter is not specified, all columns in the input DataFrame except
|
66
67
|
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
67
|
-
parameters are considered input columns.
|
68
|
-
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
69
71
|
label_cols: Optional[Union[str, List[str]]]
|
70
72
|
A string or list of strings representing column names that contain labels.
|
71
|
-
|
72
|
-
|
73
|
-
labels (like a transformer).
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
74
75
|
|
75
76
|
output_cols: Optional[Union[str, List[str]]]
|
76
77
|
A string or list of strings representing column names that will store the
|
77
78
|
output of predict and transform operations. The length of output_cols must
|
78
|
-
match the expected number of output columns from the specific
|
79
|
+
match the expected number of output columns from the specific predictor or
|
79
80
|
transformer class used.
|
80
|
-
If this parameter
|
81
|
-
|
82
|
-
|
83
|
-
be set explicitly for transformers.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
84
90
|
|
85
91
|
sample_weight_col: Optional[str]
|
86
92
|
A string representing the column name containing the sample weights.
|
87
|
-
This argument is only required when working with weighted datasets.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
88
96
|
|
89
97
|
passthrough_cols: Optional[Union[str, List[str]]]
|
90
98
|
A string or a list of strings indicating column names to be excluded from any
|
91
99
|
operations (such as train, transform, or inference). These specified column(s)
|
92
100
|
will remain untouched throughout the process. This option is helpful in scenarios
|
93
101
|
requiring automatic input_cols inference, but need to avoid using specific
|
94
|
-
columns, like index columns, during training or inference.
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
95
104
|
|
96
105
|
drop_input_cols: Optional[bool], default=False
|
97
106
|
If set, the response of predict(), transform() methods will not contain input columns.
|
@@ -136,7 +145,7 @@ class LGBMRegressor(BaseTransformer):
|
|
136
145
|
self.set_passthrough_cols(passthrough_cols)
|
137
146
|
self.set_drop_input_cols(drop_input_cols)
|
138
147
|
self.set_sample_weight_col(sample_weight_col)
|
139
|
-
deps = set(
|
148
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
|
140
149
|
|
141
150
|
self._deps = list(deps)
|
142
151
|
|
@@ -164,14 +173,15 @@ class LGBMRegressor(BaseTransformer):
|
|
164
173
|
args=init_args,
|
165
174
|
klass=lightgbm.LGBMRegressor
|
166
175
|
)
|
167
|
-
self._sklearn_object = lightgbm.LGBMRegressor(
|
176
|
+
self._sklearn_object: Any = lightgbm.LGBMRegressor(
|
168
177
|
**cleaned_up_init_args,
|
169
178
|
**kwargs,
|
170
179
|
)
|
171
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
172
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
173
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
174
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
175
185
|
|
176
186
|
def _get_rand_id(self) -> str:
|
177
187
|
"""
|
@@ -227,54 +237,48 @@ class LGBMRegressor(BaseTransformer):
|
|
227
237
|
self
|
228
238
|
"""
|
229
239
|
self._infer_input_output_cols(dataset)
|
230
|
-
if isinstance(dataset,
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
self.
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
246
278
|
self._is_fitted = True
|
247
279
|
self._get_model_signatures(dataset)
|
248
280
|
return self
|
249
281
|
|
250
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
251
|
-
session = dataset._session
|
252
|
-
assert session is not None # keep mypy happy
|
253
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
254
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
255
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
256
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
257
|
-
|
258
|
-
# Specify input columns so column pruning will be enforced
|
259
|
-
selected_cols = self._get_active_columns()
|
260
|
-
if len(selected_cols) > 0:
|
261
|
-
dataset = dataset.select(selected_cols)
|
262
|
-
|
263
|
-
estimator = self._sklearn_object
|
264
|
-
assert estimator is not None # Keep mypy happy
|
265
|
-
|
266
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
267
|
-
|
268
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
269
|
-
dataset,
|
270
|
-
session,
|
271
|
-
estimator,
|
272
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
273
|
-
self.input_cols,
|
274
|
-
self.label_cols,
|
275
|
-
self.sample_weight_col,
|
276
|
-
)
|
277
|
-
|
278
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
279
283
|
if self._drop_input_cols:
|
280
284
|
return []
|
@@ -462,11 +466,6 @@ class LGBMRegressor(BaseTransformer):
|
|
462
466
|
subproject=_SUBPROJECT,
|
463
467
|
custom_tags=dict([("autogen", True)]),
|
464
468
|
)
|
465
|
-
@telemetry.add_stmt_params_to_df(
|
466
|
-
project=_PROJECT,
|
467
|
-
subproject=_SUBPROJECT,
|
468
|
-
custom_tags=dict([("autogen", True)]),
|
469
|
-
)
|
470
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
471
470
|
"""Return the predicted value for each sample
|
472
471
|
For more details on this function, see [lightgbm.LGBMRegressor.predict]
|
@@ -520,11 +519,6 @@ class LGBMRegressor(BaseTransformer):
|
|
520
519
|
subproject=_SUBPROJECT,
|
521
520
|
custom_tags=dict([("autogen", True)]),
|
522
521
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
522
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
523
|
"""Method not supported for this class.
|
530
524
|
|
@@ -581,7 +575,8 @@ class LGBMRegressor(BaseTransformer):
|
|
581
575
|
if False:
|
582
576
|
self.fit(dataset)
|
583
577
|
assert self._sklearn_object is not None
|
584
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
585
580
|
else:
|
586
581
|
raise NotImplementedError
|
587
582
|
|
@@ -617,6 +612,7 @@ class LGBMRegressor(BaseTransformer):
|
|
617
612
|
output_cols = []
|
618
613
|
|
619
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
620
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
621
617
|
|
622
618
|
return rv
|
@@ -627,11 +623,6 @@ class LGBMRegressor(BaseTransformer):
|
|
627
623
|
subproject=_SUBPROJECT,
|
628
624
|
custom_tags=dict([("autogen", True)]),
|
629
625
|
)
|
630
|
-
@telemetry.add_stmt_params_to_df(
|
631
|
-
project=_PROJECT,
|
632
|
-
subproject=_SUBPROJECT,
|
633
|
-
custom_tags=dict([("autogen", True)]),
|
634
|
-
)
|
635
626
|
def predict_proba(
|
636
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
637
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -672,11 +663,6 @@ class LGBMRegressor(BaseTransformer):
|
|
672
663
|
subproject=_SUBPROJECT,
|
673
664
|
custom_tags=dict([("autogen", True)]),
|
674
665
|
)
|
675
|
-
@telemetry.add_stmt_params_to_df(
|
676
|
-
project=_PROJECT,
|
677
|
-
subproject=_SUBPROJECT,
|
678
|
-
custom_tags=dict([("autogen", True)]),
|
679
|
-
)
|
680
666
|
def predict_log_proba(
|
681
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
682
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -713,16 +699,6 @@ class LGBMRegressor(BaseTransformer):
|
|
713
699
|
return output_df
|
714
700
|
|
715
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
716
|
-
@telemetry.send_api_usage_telemetry(
|
717
|
-
project=_PROJECT,
|
718
|
-
subproject=_SUBPROJECT,
|
719
|
-
custom_tags=dict([("autogen", True)]),
|
720
|
-
)
|
721
|
-
@telemetry.add_stmt_params_to_df(
|
722
|
-
project=_PROJECT,
|
723
|
-
subproject=_SUBPROJECT,
|
724
|
-
custom_tags=dict([("autogen", True)]),
|
725
|
-
)
|
726
702
|
def decision_function(
|
727
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
728
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -823,11 +799,6 @@ class LGBMRegressor(BaseTransformer):
|
|
823
799
|
subproject=_SUBPROJECT,
|
824
800
|
custom_tags=dict([("autogen", True)]),
|
825
801
|
)
|
826
|
-
@telemetry.add_stmt_params_to_df(
|
827
|
-
project=_PROJECT,
|
828
|
-
subproject=_SUBPROJECT,
|
829
|
-
custom_tags=dict([("autogen", True)]),
|
830
|
-
)
|
831
802
|
def kneighbors(
|
832
803
|
self,
|
833
804
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -887,9 +858,9 @@ class LGBMRegressor(BaseTransformer):
|
|
887
858
|
# For classifier, the type of predict is the same as the type of label
|
888
859
|
if self._sklearn_object._estimator_type == 'classifier':
|
889
860
|
# label columns is the desired type for output
|
890
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
861
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
891
862
|
# rename the output columns
|
892
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
863
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
893
864
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
894
865
|
([] if self._drop_input_cols else inputs)
|
895
866
|
+ outputs)
|
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ARDRegression(BaseTransformer):
|
57
58
|
r"""Bayesian ARD regression
|
58
59
|
For more details on this class, see [sklearn.linear_model.ARDRegression]
|
@@ -60,6 +61,51 @@ class ARDRegression(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
max_iter: int, default=None
|
64
110
|
Maximum number of iterations. If `None`, it corresponds to `max_iter=300`.
|
65
111
|
|
@@ -102,42 +148,6 @@ class ARDRegression(BaseTransformer):
|
|
102
148
|
|
103
149
|
n_iter: int
|
104
150
|
Maximum number of iterations.
|
105
|
-
|
106
|
-
input_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain features.
|
108
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
109
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
110
|
-
parameters are considered input columns.
|
111
|
-
|
112
|
-
label_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that contain labels.
|
114
|
-
This is a required param for estimators, as there is no way to infer these
|
115
|
-
columns. If this parameter is not specified, then object is fitted without
|
116
|
-
labels (like a transformer).
|
117
|
-
|
118
|
-
output_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that will store the
|
120
|
-
output of predict and transform operations. The length of output_cols must
|
121
|
-
match the expected number of output columns from the specific estimator or
|
122
|
-
transformer class used.
|
123
|
-
If this parameter is not specified, output column names are derived by
|
124
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
125
|
-
column names work for estimator's predict() method, but output_cols must
|
126
|
-
be set explicitly for transformers.
|
127
|
-
|
128
|
-
sample_weight_col: Optional[str]
|
129
|
-
A string representing the column name containing the sample weights.
|
130
|
-
This argument is only required when working with weighted datasets.
|
131
|
-
|
132
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
133
|
-
A string or a list of strings indicating column names to be excluded from any
|
134
|
-
operations (such as train, transform, or inference). These specified column(s)
|
135
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
136
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
137
|
-
columns, like index columns, during training or inference.
|
138
|
-
|
139
|
-
drop_input_cols: Optional[bool], default=False
|
140
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
141
151
|
"""
|
142
152
|
|
143
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -170,7 +180,7 @@ class ARDRegression(BaseTransformer):
|
|
170
180
|
self.set_passthrough_cols(passthrough_cols)
|
171
181
|
self.set_drop_input_cols(drop_input_cols)
|
172
182
|
self.set_sample_weight_col(sample_weight_col)
|
173
|
-
deps = set(
|
183
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
174
184
|
|
175
185
|
self._deps = list(deps)
|
176
186
|
|
@@ -190,13 +200,14 @@ class ARDRegression(BaseTransformer):
|
|
190
200
|
args=init_args,
|
191
201
|
klass=sklearn.linear_model.ARDRegression
|
192
202
|
)
|
193
|
-
self._sklearn_object = sklearn.linear_model.ARDRegression(
|
203
|
+
self._sklearn_object: Any = sklearn.linear_model.ARDRegression(
|
194
204
|
**cleaned_up_init_args,
|
195
205
|
)
|
196
206
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
197
207
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
198
208
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
199
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
209
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ARDRegression.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
210
|
+
self._autogenerated = True
|
200
211
|
|
201
212
|
def _get_rand_id(self) -> str:
|
202
213
|
"""
|
@@ -252,54 +263,48 @@ class ARDRegression(BaseTransformer):
|
|
252
263
|
self
|
253
264
|
"""
|
254
265
|
self._infer_input_output_cols(dataset)
|
255
|
-
if isinstance(dataset,
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
self.
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
266
|
+
if isinstance(dataset, DataFrame):
|
267
|
+
session = dataset._session
|
268
|
+
assert session is not None # keep mypy happy
|
269
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
270
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
271
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
272
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
273
|
+
|
274
|
+
# Specify input columns so column pruning will be enforced
|
275
|
+
selected_cols = self._get_active_columns()
|
276
|
+
if len(selected_cols) > 0:
|
277
|
+
dataset = dataset.select(selected_cols)
|
278
|
+
|
279
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
280
|
+
|
281
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
282
|
+
if SNOWML_SPROC_ENV in os.environ:
|
283
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
284
|
+
project=_PROJECT,
|
285
|
+
subproject=_SUBPROJECT,
|
286
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ARDRegression.__class__.__name__),
|
287
|
+
api_calls=[Session.call],
|
288
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
289
|
+
)
|
290
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
291
|
+
pd_df.columns = dataset.columns
|
292
|
+
dataset = pd_df
|
293
|
+
|
294
|
+
model_trainer = ModelTrainerBuilder.build(
|
295
|
+
estimator=self._sklearn_object,
|
296
|
+
dataset=dataset,
|
297
|
+
input_cols=self.input_cols,
|
298
|
+
label_cols=self.label_cols,
|
299
|
+
sample_weight_col=self.sample_weight_col,
|
300
|
+
autogenerated=self._autogenerated,
|
301
|
+
subproject=_SUBPROJECT
|
302
|
+
)
|
303
|
+
self._sklearn_object = model_trainer.train()
|
271
304
|
self._is_fitted = True
|
272
305
|
self._get_model_signatures(dataset)
|
273
306
|
return self
|
274
307
|
|
275
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
276
|
-
session = dataset._session
|
277
|
-
assert session is not None # keep mypy happy
|
278
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
279
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
280
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
281
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
282
|
-
|
283
|
-
# Specify input columns so column pruning will be enforced
|
284
|
-
selected_cols = self._get_active_columns()
|
285
|
-
if len(selected_cols) > 0:
|
286
|
-
dataset = dataset.select(selected_cols)
|
287
|
-
|
288
|
-
estimator = self._sklearn_object
|
289
|
-
assert estimator is not None # Keep mypy happy
|
290
|
-
|
291
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
|
-
|
293
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
294
|
-
dataset,
|
295
|
-
session,
|
296
|
-
estimator,
|
297
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
298
|
-
self.input_cols,
|
299
|
-
self.label_cols,
|
300
|
-
self.sample_weight_col,
|
301
|
-
)
|
302
|
-
|
303
308
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
304
309
|
if self._drop_input_cols:
|
305
310
|
return []
|
@@ -487,11 +492,6 @@ class ARDRegression(BaseTransformer):
|
|
487
492
|
subproject=_SUBPROJECT,
|
488
493
|
custom_tags=dict([("autogen", True)]),
|
489
494
|
)
|
490
|
-
@telemetry.add_stmt_params_to_df(
|
491
|
-
project=_PROJECT,
|
492
|
-
subproject=_SUBPROJECT,
|
493
|
-
custom_tags=dict([("autogen", True)]),
|
494
|
-
)
|
495
495
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
496
496
|
"""Predict using the linear model
|
497
497
|
For more details on this function, see [sklearn.linear_model.ARDRegression.predict]
|
@@ -545,11 +545,6 @@ class ARDRegression(BaseTransformer):
|
|
545
545
|
subproject=_SUBPROJECT,
|
546
546
|
custom_tags=dict([("autogen", True)]),
|
547
547
|
)
|
548
|
-
@telemetry.add_stmt_params_to_df(
|
549
|
-
project=_PROJECT,
|
550
|
-
subproject=_SUBPROJECT,
|
551
|
-
custom_tags=dict([("autogen", True)]),
|
552
|
-
)
|
553
548
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
554
549
|
"""Method not supported for this class.
|
555
550
|
|
@@ -606,7 +601,8 @@ class ARDRegression(BaseTransformer):
|
|
606
601
|
if False:
|
607
602
|
self.fit(dataset)
|
608
603
|
assert self._sklearn_object is not None
|
609
|
-
|
604
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
605
|
+
return labels
|
610
606
|
else:
|
611
607
|
raise NotImplementedError
|
612
608
|
|
@@ -642,6 +638,7 @@ class ARDRegression(BaseTransformer):
|
|
642
638
|
output_cols = []
|
643
639
|
|
644
640
|
# Make sure column names are valid snowflake identifiers.
|
641
|
+
assert output_cols is not None # Make MyPy happy
|
645
642
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
646
643
|
|
647
644
|
return rv
|
@@ -652,11 +649,6 @@ class ARDRegression(BaseTransformer):
|
|
652
649
|
subproject=_SUBPROJECT,
|
653
650
|
custom_tags=dict([("autogen", True)]),
|
654
651
|
)
|
655
|
-
@telemetry.add_stmt_params_to_df(
|
656
|
-
project=_PROJECT,
|
657
|
-
subproject=_SUBPROJECT,
|
658
|
-
custom_tags=dict([("autogen", True)]),
|
659
|
-
)
|
660
652
|
def predict_proba(
|
661
653
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
662
654
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -697,11 +689,6 @@ class ARDRegression(BaseTransformer):
|
|
697
689
|
subproject=_SUBPROJECT,
|
698
690
|
custom_tags=dict([("autogen", True)]),
|
699
691
|
)
|
700
|
-
@telemetry.add_stmt_params_to_df(
|
701
|
-
project=_PROJECT,
|
702
|
-
subproject=_SUBPROJECT,
|
703
|
-
custom_tags=dict([("autogen", True)]),
|
704
|
-
)
|
705
692
|
def predict_log_proba(
|
706
693
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
707
694
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -738,16 +725,6 @@ class ARDRegression(BaseTransformer):
|
|
738
725
|
return output_df
|
739
726
|
|
740
727
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
741
|
-
@telemetry.send_api_usage_telemetry(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
|
-
@telemetry.add_stmt_params_to_df(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
728
|
def decision_function(
|
752
729
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
753
730
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -848,11 +825,6 @@ class ARDRegression(BaseTransformer):
|
|
848
825
|
subproject=_SUBPROJECT,
|
849
826
|
custom_tags=dict([("autogen", True)]),
|
850
827
|
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
828
|
def kneighbors(
|
857
829
|
self,
|
858
830
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -912,9 +884,9 @@ class ARDRegression(BaseTransformer):
|
|
912
884
|
# For classifier, the type of predict is the same as the type of label
|
913
885
|
if self._sklearn_object._estimator_type == 'classifier':
|
914
886
|
# label columns is the desired type for output
|
915
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
887
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
916
888
|
# rename the output columns
|
917
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
889
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
918
890
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
919
891
|
([] if self._drop_input_cols else inputs)
|
920
892
|
+ outputs)
|