snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HuberRegressor(BaseTransformer):
57
58
  r"""L2-regularized linear regression model that is robust to outliers
58
59
  For more details on this class, see [sklearn.linear_model.HuberRegressor]
@@ -60,6 +61,51 @@ class HuberRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  epsilon: float, default=1.35
64
110
  The parameter epsilon controls the number of samples that should be
65
111
  classified as outliers. The smaller the epsilon, the more robust it is
@@ -88,42 +134,6 @@ class HuberRegressor(BaseTransformer):
88
134
  The iteration will stop when
89
135
  ``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
90
136
  where pg_i is the i-th component of the projected gradient.
91
-
92
- input_cols: Optional[Union[str, List[str]]]
93
- A string or list of strings representing column names that contain features.
94
- If this parameter is not specified, all columns in the input DataFrame except
95
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
96
- parameters are considered input columns.
97
-
98
- label_cols: Optional[Union[str, List[str]]]
99
- A string or list of strings representing column names that contain labels.
100
- This is a required param for estimators, as there is no way to infer these
101
- columns. If this parameter is not specified, then object is fitted without
102
- labels (like a transformer).
103
-
104
- output_cols: Optional[Union[str, List[str]]]
105
- A string or list of strings representing column names that will store the
106
- output of predict and transform operations. The length of output_cols must
107
- match the expected number of output columns from the specific estimator or
108
- transformer class used.
109
- If this parameter is not specified, output column names are derived by
110
- adding an OUTPUT_ prefix to the label column names. These inferred output
111
- column names work for estimator's predict() method, but output_cols must
112
- be set explicitly for transformers.
113
-
114
- sample_weight_col: Optional[str]
115
- A string representing the column name containing the sample weights.
116
- This argument is only required when working with weighted datasets.
117
-
118
- passthrough_cols: Optional[Union[str, List[str]]]
119
- A string or a list of strings indicating column names to be excluded from any
120
- operations (such as train, transform, or inference). These specified column(s)
121
- will remain untouched throughout the process. This option is helpful in scenarios
122
- requiring automatic input_cols inference, but need to avoid using specific
123
- columns, like index columns, during training or inference.
124
-
125
- drop_input_cols: Optional[bool], default=False
126
- If set, the response of predict(), transform() methods will not contain input columns.
127
137
  """
128
138
 
129
139
  def __init__( # type: ignore[no-untyped-def]
@@ -150,7 +160,7 @@ class HuberRegressor(BaseTransformer):
150
160
  self.set_passthrough_cols(passthrough_cols)
151
161
  self.set_drop_input_cols(drop_input_cols)
152
162
  self.set_sample_weight_col(sample_weight_col)
153
- deps = set(SklearnWrapperProvider().dependencies)
163
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
154
164
 
155
165
  self._deps = list(deps)
156
166
 
@@ -164,13 +174,14 @@ class HuberRegressor(BaseTransformer):
164
174
  args=init_args,
165
175
  klass=sklearn.linear_model.HuberRegressor
166
176
  )
167
- self._sklearn_object = sklearn.linear_model.HuberRegressor(
177
+ self._sklearn_object: Any = sklearn.linear_model.HuberRegressor(
168
178
  **cleaned_up_init_args,
169
179
  )
170
180
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
171
181
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
172
182
  self._snowpark_cols: Optional[List[str]] = self.input_cols
173
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
183
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._autogenerated = True
174
185
 
175
186
  def _get_rand_id(self) -> str:
176
187
  """
@@ -226,54 +237,48 @@ class HuberRegressor(BaseTransformer):
226
237
  self
227
238
  """
228
239
  self._infer_input_output_cols(dataset)
229
- if isinstance(dataset, pd.DataFrame):
230
- assert self._sklearn_object is not None # keep mypy happy
231
- self._sklearn_object = self._handlers.fit_pandas(
232
- dataset,
233
- self._sklearn_object,
234
- self.input_cols,
235
- self.label_cols,
236
- self.sample_weight_col
237
- )
238
- elif isinstance(dataset, DataFrame):
239
- self._fit_snowpark(dataset)
240
- else:
241
- raise TypeError(
242
- f"Unexpected dataset type: {type(dataset)}."
243
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
244
- )
240
+ if isinstance(dataset, DataFrame):
241
+ session = dataset._session
242
+ assert session is not None # keep mypy happy
243
+ # Validate that key package version in user workspace are supported in snowflake conda channel
244
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
245
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
246
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
247
+
248
+ # Specify input columns so column pruning will be enforced
249
+ selected_cols = self._get_active_columns()
250
+ if len(selected_cols) > 0:
251
+ dataset = dataset.select(selected_cols)
252
+
253
+ self._snowpark_cols = dataset.select(self.input_cols).columns
254
+
255
+ # If we are already in a stored procedure, no need to kick off another one.
256
+ if SNOWML_SPROC_ENV in os.environ:
257
+ statement_params = telemetry.get_function_usage_statement_params(
258
+ project=_PROJECT,
259
+ subproject=_SUBPROJECT,
260
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HuberRegressor.__class__.__name__),
261
+ api_calls=[Session.call],
262
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
263
+ )
264
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
265
+ pd_df.columns = dataset.columns
266
+ dataset = pd_df
267
+
268
+ model_trainer = ModelTrainerBuilder.build(
269
+ estimator=self._sklearn_object,
270
+ dataset=dataset,
271
+ input_cols=self.input_cols,
272
+ label_cols=self.label_cols,
273
+ sample_weight_col=self.sample_weight_col,
274
+ autogenerated=self._autogenerated,
275
+ subproject=_SUBPROJECT
276
+ )
277
+ self._sklearn_object = model_trainer.train()
245
278
  self._is_fitted = True
246
279
  self._get_model_signatures(dataset)
247
280
  return self
248
281
 
249
- def _fit_snowpark(self, dataset: DataFrame) -> None:
250
- session = dataset._session
251
- assert session is not None # keep mypy happy
252
- # Validate that key package version in user workspace are supported in snowflake conda channel
253
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
254
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
255
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
256
-
257
- # Specify input columns so column pruning will be enforced
258
- selected_cols = self._get_active_columns()
259
- if len(selected_cols) > 0:
260
- dataset = dataset.select(selected_cols)
261
-
262
- estimator = self._sklearn_object
263
- assert estimator is not None # Keep mypy happy
264
-
265
- self._snowpark_cols = dataset.select(self.input_cols).columns
266
-
267
- self._sklearn_object = self._handlers.fit_snowpark(
268
- dataset,
269
- session,
270
- estimator,
271
- ["snowflake-snowpark-python"] + self._get_dependencies(),
272
- self.input_cols,
273
- self.label_cols,
274
- self.sample_weight_col,
275
- )
276
-
277
282
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
278
283
  if self._drop_input_cols:
279
284
  return []
@@ -461,11 +466,6 @@ class HuberRegressor(BaseTransformer):
461
466
  subproject=_SUBPROJECT,
462
467
  custom_tags=dict([("autogen", True)]),
463
468
  )
464
- @telemetry.add_stmt_params_to_df(
465
- project=_PROJECT,
466
- subproject=_SUBPROJECT,
467
- custom_tags=dict([("autogen", True)]),
468
- )
469
469
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
470
470
  """Predict using the linear model
471
471
  For more details on this function, see [sklearn.linear_model.HuberRegressor.predict]
@@ -519,11 +519,6 @@ class HuberRegressor(BaseTransformer):
519
519
  subproject=_SUBPROJECT,
520
520
  custom_tags=dict([("autogen", True)]),
521
521
  )
522
- @telemetry.add_stmt_params_to_df(
523
- project=_PROJECT,
524
- subproject=_SUBPROJECT,
525
- custom_tags=dict([("autogen", True)]),
526
- )
527
522
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
528
523
  """Method not supported for this class.
529
524
 
@@ -580,7 +575,8 @@ class HuberRegressor(BaseTransformer):
580
575
  if False:
581
576
  self.fit(dataset)
582
577
  assert self._sklearn_object is not None
583
- return self._sklearn_object.labels_
578
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
579
+ return labels
584
580
  else:
585
581
  raise NotImplementedError
586
582
 
@@ -616,6 +612,7 @@ class HuberRegressor(BaseTransformer):
616
612
  output_cols = []
617
613
 
618
614
  # Make sure column names are valid snowflake identifiers.
615
+ assert output_cols is not None # Make MyPy happy
619
616
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
620
617
 
621
618
  return rv
@@ -626,11 +623,6 @@ class HuberRegressor(BaseTransformer):
626
623
  subproject=_SUBPROJECT,
627
624
  custom_tags=dict([("autogen", True)]),
628
625
  )
629
- @telemetry.add_stmt_params_to_df(
630
- project=_PROJECT,
631
- subproject=_SUBPROJECT,
632
- custom_tags=dict([("autogen", True)]),
633
- )
634
626
  def predict_proba(
635
627
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
636
628
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -671,11 +663,6 @@ class HuberRegressor(BaseTransformer):
671
663
  subproject=_SUBPROJECT,
672
664
  custom_tags=dict([("autogen", True)]),
673
665
  )
674
- @telemetry.add_stmt_params_to_df(
675
- project=_PROJECT,
676
- subproject=_SUBPROJECT,
677
- custom_tags=dict([("autogen", True)]),
678
- )
679
666
  def predict_log_proba(
680
667
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
681
668
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -712,16 +699,6 @@ class HuberRegressor(BaseTransformer):
712
699
  return output_df
713
700
 
714
701
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
715
- @telemetry.send_api_usage_telemetry(
716
- project=_PROJECT,
717
- subproject=_SUBPROJECT,
718
- custom_tags=dict([("autogen", True)]),
719
- )
720
- @telemetry.add_stmt_params_to_df(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
702
  def decision_function(
726
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
727
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,11 +799,6 @@ class HuberRegressor(BaseTransformer):
822
799
  subproject=_SUBPROJECT,
823
800
  custom_tags=dict([("autogen", True)]),
824
801
  )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
802
  def kneighbors(
831
803
  self,
832
804
  dataset: Union[DataFrame, pd.DataFrame],
@@ -886,9 +858,9 @@ class HuberRegressor(BaseTransformer):
886
858
  # For classifier, the type of predict is the same as the type of label
887
859
  if self._sklearn_object._estimator_type == 'classifier':
888
860
  # label columns is the desired type for output
889
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
861
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
890
862
  # rename the output columns
891
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
863
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
892
864
  self._model_signature_dict["predict"] = ModelSignature(inputs,
893
865
  ([] if self._drop_input_cols else inputs)
894
866
  + outputs)