snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class HuberRegressor(BaseTransformer):
|
57
58
|
r"""L2-regularized linear regression model that is robust to outliers
|
58
59
|
For more details on this class, see [sklearn.linear_model.HuberRegressor]
|
@@ -60,6 +61,51 @@ class HuberRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
epsilon: float, default=1.35
|
64
110
|
The parameter epsilon controls the number of samples that should be
|
65
111
|
classified as outliers. The smaller the epsilon, the more robust it is
|
@@ -88,42 +134,6 @@ class HuberRegressor(BaseTransformer):
|
|
88
134
|
The iteration will stop when
|
89
135
|
``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
|
90
136
|
where pg_i is the i-th component of the projected gradient.
|
91
|
-
|
92
|
-
input_cols: Optional[Union[str, List[str]]]
|
93
|
-
A string or list of strings representing column names that contain features.
|
94
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
95
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
96
|
-
parameters are considered input columns.
|
97
|
-
|
98
|
-
label_cols: Optional[Union[str, List[str]]]
|
99
|
-
A string or list of strings representing column names that contain labels.
|
100
|
-
This is a required param for estimators, as there is no way to infer these
|
101
|
-
columns. If this parameter is not specified, then object is fitted without
|
102
|
-
labels (like a transformer).
|
103
|
-
|
104
|
-
output_cols: Optional[Union[str, List[str]]]
|
105
|
-
A string or list of strings representing column names that will store the
|
106
|
-
output of predict and transform operations. The length of output_cols must
|
107
|
-
match the expected number of output columns from the specific estimator or
|
108
|
-
transformer class used.
|
109
|
-
If this parameter is not specified, output column names are derived by
|
110
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
111
|
-
column names work for estimator's predict() method, but output_cols must
|
112
|
-
be set explicitly for transformers.
|
113
|
-
|
114
|
-
sample_weight_col: Optional[str]
|
115
|
-
A string representing the column name containing the sample weights.
|
116
|
-
This argument is only required when working with weighted datasets.
|
117
|
-
|
118
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or a list of strings indicating column names to be excluded from any
|
120
|
-
operations (such as train, transform, or inference). These specified column(s)
|
121
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
122
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
123
|
-
columns, like index columns, during training or inference.
|
124
|
-
|
125
|
-
drop_input_cols: Optional[bool], default=False
|
126
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
127
137
|
"""
|
128
138
|
|
129
139
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -150,7 +160,7 @@ class HuberRegressor(BaseTransformer):
|
|
150
160
|
self.set_passthrough_cols(passthrough_cols)
|
151
161
|
self.set_drop_input_cols(drop_input_cols)
|
152
162
|
self.set_sample_weight_col(sample_weight_col)
|
153
|
-
deps = set(
|
163
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
154
164
|
|
155
165
|
self._deps = list(deps)
|
156
166
|
|
@@ -164,13 +174,14 @@ class HuberRegressor(BaseTransformer):
|
|
164
174
|
args=init_args,
|
165
175
|
klass=sklearn.linear_model.HuberRegressor
|
166
176
|
)
|
167
|
-
self._sklearn_object = sklearn.linear_model.HuberRegressor(
|
177
|
+
self._sklearn_object: Any = sklearn.linear_model.HuberRegressor(
|
168
178
|
**cleaned_up_init_args,
|
169
179
|
)
|
170
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
171
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
172
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
173
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
174
185
|
|
175
186
|
def _get_rand_id(self) -> str:
|
176
187
|
"""
|
@@ -226,54 +237,48 @@ class HuberRegressor(BaseTransformer):
|
|
226
237
|
self
|
227
238
|
"""
|
228
239
|
self._infer_input_output_cols(dataset)
|
229
|
-
if isinstance(dataset,
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
self.
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HuberRegressor.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
245
278
|
self._is_fitted = True
|
246
279
|
self._get_model_signatures(dataset)
|
247
280
|
return self
|
248
281
|
|
249
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
250
|
-
session = dataset._session
|
251
|
-
assert session is not None # keep mypy happy
|
252
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
253
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
254
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
255
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
256
|
-
|
257
|
-
# Specify input columns so column pruning will be enforced
|
258
|
-
selected_cols = self._get_active_columns()
|
259
|
-
if len(selected_cols) > 0:
|
260
|
-
dataset = dataset.select(selected_cols)
|
261
|
-
|
262
|
-
estimator = self._sklearn_object
|
263
|
-
assert estimator is not None # Keep mypy happy
|
264
|
-
|
265
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
-
|
267
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
268
|
-
dataset,
|
269
|
-
session,
|
270
|
-
estimator,
|
271
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
272
|
-
self.input_cols,
|
273
|
-
self.label_cols,
|
274
|
-
self.sample_weight_col,
|
275
|
-
)
|
276
|
-
|
277
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
278
283
|
if self._drop_input_cols:
|
279
284
|
return []
|
@@ -461,11 +466,6 @@ class HuberRegressor(BaseTransformer):
|
|
461
466
|
subproject=_SUBPROJECT,
|
462
467
|
custom_tags=dict([("autogen", True)]),
|
463
468
|
)
|
464
|
-
@telemetry.add_stmt_params_to_df(
|
465
|
-
project=_PROJECT,
|
466
|
-
subproject=_SUBPROJECT,
|
467
|
-
custom_tags=dict([("autogen", True)]),
|
468
|
-
)
|
469
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
470
470
|
"""Predict using the linear model
|
471
471
|
For more details on this function, see [sklearn.linear_model.HuberRegressor.predict]
|
@@ -519,11 +519,6 @@ class HuberRegressor(BaseTransformer):
|
|
519
519
|
subproject=_SUBPROJECT,
|
520
520
|
custom_tags=dict([("autogen", True)]),
|
521
521
|
)
|
522
|
-
@telemetry.add_stmt_params_to_df(
|
523
|
-
project=_PROJECT,
|
524
|
-
subproject=_SUBPROJECT,
|
525
|
-
custom_tags=dict([("autogen", True)]),
|
526
|
-
)
|
527
522
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
528
523
|
"""Method not supported for this class.
|
529
524
|
|
@@ -580,7 +575,8 @@ class HuberRegressor(BaseTransformer):
|
|
580
575
|
if False:
|
581
576
|
self.fit(dataset)
|
582
577
|
assert self._sklearn_object is not None
|
583
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
584
580
|
else:
|
585
581
|
raise NotImplementedError
|
586
582
|
|
@@ -616,6 +612,7 @@ class HuberRegressor(BaseTransformer):
|
|
616
612
|
output_cols = []
|
617
613
|
|
618
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
619
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
620
617
|
|
621
618
|
return rv
|
@@ -626,11 +623,6 @@ class HuberRegressor(BaseTransformer):
|
|
626
623
|
subproject=_SUBPROJECT,
|
627
624
|
custom_tags=dict([("autogen", True)]),
|
628
625
|
)
|
629
|
-
@telemetry.add_stmt_params_to_df(
|
630
|
-
project=_PROJECT,
|
631
|
-
subproject=_SUBPROJECT,
|
632
|
-
custom_tags=dict([("autogen", True)]),
|
633
|
-
)
|
634
626
|
def predict_proba(
|
635
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
636
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -671,11 +663,6 @@ class HuberRegressor(BaseTransformer):
|
|
671
663
|
subproject=_SUBPROJECT,
|
672
664
|
custom_tags=dict([("autogen", True)]),
|
673
665
|
)
|
674
|
-
@telemetry.add_stmt_params_to_df(
|
675
|
-
project=_PROJECT,
|
676
|
-
subproject=_SUBPROJECT,
|
677
|
-
custom_tags=dict([("autogen", True)]),
|
678
|
-
)
|
679
666
|
def predict_log_proba(
|
680
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
681
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -712,16 +699,6 @@ class HuberRegressor(BaseTransformer):
|
|
712
699
|
return output_df
|
713
700
|
|
714
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
715
|
-
@telemetry.send_api_usage_telemetry(
|
716
|
-
project=_PROJECT,
|
717
|
-
subproject=_SUBPROJECT,
|
718
|
-
custom_tags=dict([("autogen", True)]),
|
719
|
-
)
|
720
|
-
@telemetry.add_stmt_params_to_df(
|
721
|
-
project=_PROJECT,
|
722
|
-
subproject=_SUBPROJECT,
|
723
|
-
custom_tags=dict([("autogen", True)]),
|
724
|
-
)
|
725
702
|
def decision_function(
|
726
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
727
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -822,11 +799,6 @@ class HuberRegressor(BaseTransformer):
|
|
822
799
|
subproject=_SUBPROJECT,
|
823
800
|
custom_tags=dict([("autogen", True)]),
|
824
801
|
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
802
|
def kneighbors(
|
831
803
|
self,
|
832
804
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -886,9 +858,9 @@ class HuberRegressor(BaseTransformer):
|
|
886
858
|
# For classifier, the type of predict is the same as the type of label
|
887
859
|
if self._sklearn_object._estimator_type == 'classifier':
|
888
860
|
# label columns is the desired type for output
|
889
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
861
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
890
862
|
# rename the output columns
|
891
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
863
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
892
864
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
893
865
|
([] if self._drop_input_cols else inputs)
|
894
866
|
+ outputs)
|