snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SpectralCoclustering(BaseTransformer):
|
57
58
|
r"""Spectral Co-Clustering algorithm (Dhillon, 2001)
|
58
59
|
For more details on this class, see [sklearn.cluster.SpectralCoclustering]
|
@@ -60,6 +61,49 @@ class SpectralCoclustering(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_clusters: int, default=3
|
64
108
|
The number of biclusters to find.
|
65
109
|
|
@@ -96,42 +140,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
96
140
|
Used for randomizing the singular value decomposition and the k-means
|
97
141
|
initialization. Use an int to make the randomness deterministic.
|
98
142
|
See :term:`Glossary <random_state>`.
|
99
|
-
|
100
|
-
input_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain features.
|
102
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
103
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
104
|
-
parameters are considered input columns.
|
105
|
-
|
106
|
-
label_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain labels.
|
108
|
-
This is a required param for estimators, as there is no way to infer these
|
109
|
-
columns. If this parameter is not specified, then object is fitted without
|
110
|
-
labels (like a transformer).
|
111
|
-
|
112
|
-
output_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that will store the
|
114
|
-
output of predict and transform operations. The length of output_cols must
|
115
|
-
match the expected number of output columns from the specific estimator or
|
116
|
-
transformer class used.
|
117
|
-
If this parameter is not specified, output column names are derived by
|
118
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
119
|
-
column names work for estimator's predict() method, but output_cols must
|
120
|
-
be set explicitly for transformers.
|
121
|
-
|
122
|
-
sample_weight_col: Optional[str]
|
123
|
-
A string representing the column name containing the sample weights.
|
124
|
-
This argument is only required when working with weighted datasets.
|
125
|
-
|
126
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
127
|
-
A string or a list of strings indicating column names to be excluded from any
|
128
|
-
operations (such as train, transform, or inference). These specified column(s)
|
129
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
130
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
131
|
-
columns, like index columns, during training or inference.
|
132
|
-
|
133
|
-
drop_input_cols: Optional[bool], default=False
|
134
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
135
143
|
"""
|
136
144
|
|
137
145
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -159,7 +167,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
159
167
|
self.set_passthrough_cols(passthrough_cols)
|
160
168
|
self.set_drop_input_cols(drop_input_cols)
|
161
169
|
self.set_sample_weight_col(sample_weight_col)
|
162
|
-
deps = set(
|
170
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
163
171
|
|
164
172
|
self._deps = list(deps)
|
165
173
|
|
@@ -174,13 +182,14 @@ class SpectralCoclustering(BaseTransformer):
|
|
174
182
|
args=init_args,
|
175
183
|
klass=sklearn.cluster.SpectralCoclustering
|
176
184
|
)
|
177
|
-
self._sklearn_object = sklearn.cluster.SpectralCoclustering(
|
185
|
+
self._sklearn_object: Any = sklearn.cluster.SpectralCoclustering(
|
178
186
|
**cleaned_up_init_args,
|
179
187
|
)
|
180
188
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
181
189
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
182
190
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
183
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralCoclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
191
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SpectralCoclustering.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
192
|
+
self._autogenerated = True
|
184
193
|
|
185
194
|
def _get_rand_id(self) -> str:
|
186
195
|
"""
|
@@ -236,54 +245,48 @@ class SpectralCoclustering(BaseTransformer):
|
|
236
245
|
self
|
237
246
|
"""
|
238
247
|
self._infer_input_output_cols(dataset)
|
239
|
-
if isinstance(dataset,
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
self.
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
248
|
+
if isinstance(dataset, DataFrame):
|
249
|
+
session = dataset._session
|
250
|
+
assert session is not None # keep mypy happy
|
251
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
252
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
253
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
254
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
255
|
+
|
256
|
+
# Specify input columns so column pruning will be enforced
|
257
|
+
selected_cols = self._get_active_columns()
|
258
|
+
if len(selected_cols) > 0:
|
259
|
+
dataset = dataset.select(selected_cols)
|
260
|
+
|
261
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
+
|
263
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
264
|
+
if SNOWML_SPROC_ENV in os.environ:
|
265
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
266
|
+
project=_PROJECT,
|
267
|
+
subproject=_SUBPROJECT,
|
268
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralCoclustering.__class__.__name__),
|
269
|
+
api_calls=[Session.call],
|
270
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
271
|
+
)
|
272
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
273
|
+
pd_df.columns = dataset.columns
|
274
|
+
dataset = pd_df
|
275
|
+
|
276
|
+
model_trainer = ModelTrainerBuilder.build(
|
277
|
+
estimator=self._sklearn_object,
|
278
|
+
dataset=dataset,
|
279
|
+
input_cols=self.input_cols,
|
280
|
+
label_cols=self.label_cols,
|
281
|
+
sample_weight_col=self.sample_weight_col,
|
282
|
+
autogenerated=self._autogenerated,
|
283
|
+
subproject=_SUBPROJECT
|
284
|
+
)
|
285
|
+
self._sklearn_object = model_trainer.train()
|
255
286
|
self._is_fitted = True
|
256
287
|
self._get_model_signatures(dataset)
|
257
288
|
return self
|
258
289
|
|
259
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
260
|
-
session = dataset._session
|
261
|
-
assert session is not None # keep mypy happy
|
262
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
263
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
264
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
265
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
266
|
-
|
267
|
-
# Specify input columns so column pruning will be enforced
|
268
|
-
selected_cols = self._get_active_columns()
|
269
|
-
if len(selected_cols) > 0:
|
270
|
-
dataset = dataset.select(selected_cols)
|
271
|
-
|
272
|
-
estimator = self._sklearn_object
|
273
|
-
assert estimator is not None # Keep mypy happy
|
274
|
-
|
275
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
276
|
-
|
277
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
278
|
-
dataset,
|
279
|
-
session,
|
280
|
-
estimator,
|
281
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
282
|
-
self.input_cols,
|
283
|
-
self.label_cols,
|
284
|
-
self.sample_weight_col,
|
285
|
-
)
|
286
|
-
|
287
290
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
288
291
|
if self._drop_input_cols:
|
289
292
|
return []
|
@@ -471,11 +474,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
471
474
|
subproject=_SUBPROJECT,
|
472
475
|
custom_tags=dict([("autogen", True)]),
|
473
476
|
)
|
474
|
-
@telemetry.add_stmt_params_to_df(
|
475
|
-
project=_PROJECT,
|
476
|
-
subproject=_SUBPROJECT,
|
477
|
-
custom_tags=dict([("autogen", True)]),
|
478
|
-
)
|
479
477
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
480
478
|
"""Method not supported for this class.
|
481
479
|
|
@@ -527,11 +525,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
527
525
|
subproject=_SUBPROJECT,
|
528
526
|
custom_tags=dict([("autogen", True)]),
|
529
527
|
)
|
530
|
-
@telemetry.add_stmt_params_to_df(
|
531
|
-
project=_PROJECT,
|
532
|
-
subproject=_SUBPROJECT,
|
533
|
-
custom_tags=dict([("autogen", True)]),
|
534
|
-
)
|
535
528
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
536
529
|
"""Method not supported for this class.
|
537
530
|
|
@@ -588,7 +581,8 @@ class SpectralCoclustering(BaseTransformer):
|
|
588
581
|
if False:
|
589
582
|
self.fit(dataset)
|
590
583
|
assert self._sklearn_object is not None
|
591
|
-
|
584
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
585
|
+
return labels
|
592
586
|
else:
|
593
587
|
raise NotImplementedError
|
594
588
|
|
@@ -624,6 +618,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
624
618
|
output_cols = []
|
625
619
|
|
626
620
|
# Make sure column names are valid snowflake identifiers.
|
621
|
+
assert output_cols is not None # Make MyPy happy
|
627
622
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
628
623
|
|
629
624
|
return rv
|
@@ -634,11 +629,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
634
629
|
subproject=_SUBPROJECT,
|
635
630
|
custom_tags=dict([("autogen", True)]),
|
636
631
|
)
|
637
|
-
@telemetry.add_stmt_params_to_df(
|
638
|
-
project=_PROJECT,
|
639
|
-
subproject=_SUBPROJECT,
|
640
|
-
custom_tags=dict([("autogen", True)]),
|
641
|
-
)
|
642
632
|
def predict_proba(
|
643
633
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
644
634
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -679,11 +669,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
679
669
|
subproject=_SUBPROJECT,
|
680
670
|
custom_tags=dict([("autogen", True)]),
|
681
671
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
672
|
def predict_log_proba(
|
688
673
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
689
674
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -720,16 +705,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
720
705
|
return output_df
|
721
706
|
|
722
707
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
723
|
-
@telemetry.send_api_usage_telemetry(
|
724
|
-
project=_PROJECT,
|
725
|
-
subproject=_SUBPROJECT,
|
726
|
-
custom_tags=dict([("autogen", True)]),
|
727
|
-
)
|
728
|
-
@telemetry.add_stmt_params_to_df(
|
729
|
-
project=_PROJECT,
|
730
|
-
subproject=_SUBPROJECT,
|
731
|
-
custom_tags=dict([("autogen", True)]),
|
732
|
-
)
|
733
708
|
def decision_function(
|
734
709
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
735
710
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -828,11 +803,6 @@ class SpectralCoclustering(BaseTransformer):
|
|
828
803
|
subproject=_SUBPROJECT,
|
829
804
|
custom_tags=dict([("autogen", True)]),
|
830
805
|
)
|
831
|
-
@telemetry.add_stmt_params_to_df(
|
832
|
-
project=_PROJECT,
|
833
|
-
subproject=_SUBPROJECT,
|
834
|
-
custom_tags=dict([("autogen", True)]),
|
835
|
-
)
|
836
806
|
def kneighbors(
|
837
807
|
self,
|
838
808
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -892,9 +862,9 @@ class SpectralCoclustering(BaseTransformer):
|
|
892
862
|
# For classifier, the type of predict is the same as the type of label
|
893
863
|
if self._sklearn_object._estimator_type == 'classifier':
|
894
864
|
# label columns is the desired type for output
|
895
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
865
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
896
866
|
# rename the output columns
|
897
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
867
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
898
868
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
899
869
|
([] if self._drop_input_cols else inputs)
|
900
870
|
+ outputs)
|