snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ExtraTreesClassifier(BaseTransformer):
57
58
  r"""An extra-trees classifier
58
59
  For more details on this class, see [sklearn.ensemble.ExtraTreesClassifier]
@@ -60,6 +61,51 @@ class ExtraTreesClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -211,42 +257,6 @@ class ExtraTreesClassifier(BaseTransformer):
211
257
  - If int, then draw `max_samples` samples.
212
258
  - If float, then draw `max_samples * X.shape[0]` samples. Thus,
213
259
  `max_samples` should be in the interval `(0.0, 1.0]`.
214
-
215
- input_cols: Optional[Union[str, List[str]]]
216
- A string or list of strings representing column names that contain features.
217
- If this parameter is not specified, all columns in the input DataFrame except
218
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
219
- parameters are considered input columns.
220
-
221
- label_cols: Optional[Union[str, List[str]]]
222
- A string or list of strings representing column names that contain labels.
223
- This is a required param for estimators, as there is no way to infer these
224
- columns. If this parameter is not specified, then object is fitted without
225
- labels (like a transformer).
226
-
227
- output_cols: Optional[Union[str, List[str]]]
228
- A string or list of strings representing column names that will store the
229
- output of predict and transform operations. The length of output_cols must
230
- match the expected number of output columns from the specific estimator or
231
- transformer class used.
232
- If this parameter is not specified, output column names are derived by
233
- adding an OUTPUT_ prefix to the label column names. These inferred output
234
- column names work for estimator's predict() method, but output_cols must
235
- be set explicitly for transformers.
236
-
237
- sample_weight_col: Optional[str]
238
- A string representing the column name containing the sample weights.
239
- This argument is only required when working with weighted datasets.
240
-
241
- passthrough_cols: Optional[Union[str, List[str]]]
242
- A string or a list of strings indicating column names to be excluded from any
243
- operations (such as train, transform, or inference). These specified column(s)
244
- will remain untouched throughout the process. This option is helpful in scenarios
245
- requiring automatic input_cols inference, but need to avoid using specific
246
- columns, like index columns, during training or inference.
247
-
248
- drop_input_cols: Optional[bool], default=False
249
- If set, the response of predict(), transform() methods will not contain input columns.
250
260
  """
251
261
 
252
262
  def __init__( # type: ignore[no-untyped-def]
@@ -285,7 +295,7 @@ class ExtraTreesClassifier(BaseTransformer):
285
295
  self.set_passthrough_cols(passthrough_cols)
286
296
  self.set_drop_input_cols(drop_input_cols)
287
297
  self.set_sample_weight_col(sample_weight_col)
288
- deps = set(SklearnWrapperProvider().dependencies)
298
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
289
299
 
290
300
  self._deps = list(deps)
291
301
 
@@ -311,13 +321,14 @@ class ExtraTreesClassifier(BaseTransformer):
311
321
  args=init_args,
312
322
  klass=sklearn.ensemble.ExtraTreesClassifier
313
323
  )
314
- self._sklearn_object = sklearn.ensemble.ExtraTreesClassifier(
324
+ self._sklearn_object: Any = sklearn.ensemble.ExtraTreesClassifier(
315
325
  **cleaned_up_init_args,
316
326
  )
317
327
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
318
328
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
319
329
  self._snowpark_cols: Optional[List[str]] = self.input_cols
320
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
330
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
331
+ self._autogenerated = True
321
332
 
322
333
  def _get_rand_id(self) -> str:
323
334
  """
@@ -373,54 +384,48 @@ class ExtraTreesClassifier(BaseTransformer):
373
384
  self
374
385
  """
375
386
  self._infer_input_output_cols(dataset)
376
- if isinstance(dataset, pd.DataFrame):
377
- assert self._sklearn_object is not None # keep mypy happy
378
- self._sklearn_object = self._handlers.fit_pandas(
379
- dataset,
380
- self._sklearn_object,
381
- self.input_cols,
382
- self.label_cols,
383
- self.sample_weight_col
384
- )
385
- elif isinstance(dataset, DataFrame):
386
- self._fit_snowpark(dataset)
387
- else:
388
- raise TypeError(
389
- f"Unexpected dataset type: {type(dataset)}."
390
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
391
- )
387
+ if isinstance(dataset, DataFrame):
388
+ session = dataset._session
389
+ assert session is not None # keep mypy happy
390
+ # Validate that key package version in user workspace are supported in snowflake conda channel
391
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
392
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
393
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
394
+
395
+ # Specify input columns so column pruning will be enforced
396
+ selected_cols = self._get_active_columns()
397
+ if len(selected_cols) > 0:
398
+ dataset = dataset.select(selected_cols)
399
+
400
+ self._snowpark_cols = dataset.select(self.input_cols).columns
401
+
402
+ # If we are already in a stored procedure, no need to kick off another one.
403
+ if SNOWML_SPROC_ENV in os.environ:
404
+ statement_params = telemetry.get_function_usage_statement_params(
405
+ project=_PROJECT,
406
+ subproject=_SUBPROJECT,
407
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesClassifier.__class__.__name__),
408
+ api_calls=[Session.call],
409
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
410
+ )
411
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
412
+ pd_df.columns = dataset.columns
413
+ dataset = pd_df
414
+
415
+ model_trainer = ModelTrainerBuilder.build(
416
+ estimator=self._sklearn_object,
417
+ dataset=dataset,
418
+ input_cols=self.input_cols,
419
+ label_cols=self.label_cols,
420
+ sample_weight_col=self.sample_weight_col,
421
+ autogenerated=self._autogenerated,
422
+ subproject=_SUBPROJECT
423
+ )
424
+ self._sklearn_object = model_trainer.train()
392
425
  self._is_fitted = True
393
426
  self._get_model_signatures(dataset)
394
427
  return self
395
428
 
396
- def _fit_snowpark(self, dataset: DataFrame) -> None:
397
- session = dataset._session
398
- assert session is not None # keep mypy happy
399
- # Validate that key package version in user workspace are supported in snowflake conda channel
400
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
401
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
402
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
403
-
404
- # Specify input columns so column pruning will be enforced
405
- selected_cols = self._get_active_columns()
406
- if len(selected_cols) > 0:
407
- dataset = dataset.select(selected_cols)
408
-
409
- estimator = self._sklearn_object
410
- assert estimator is not None # Keep mypy happy
411
-
412
- self._snowpark_cols = dataset.select(self.input_cols).columns
413
-
414
- self._sklearn_object = self._handlers.fit_snowpark(
415
- dataset,
416
- session,
417
- estimator,
418
- ["snowflake-snowpark-python"] + self._get_dependencies(),
419
- self.input_cols,
420
- self.label_cols,
421
- self.sample_weight_col,
422
- )
423
-
424
429
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
425
430
  if self._drop_input_cols:
426
431
  return []
@@ -608,11 +613,6 @@ class ExtraTreesClassifier(BaseTransformer):
608
613
  subproject=_SUBPROJECT,
609
614
  custom_tags=dict([("autogen", True)]),
610
615
  )
611
- @telemetry.add_stmt_params_to_df(
612
- project=_PROJECT,
613
- subproject=_SUBPROJECT,
614
- custom_tags=dict([("autogen", True)]),
615
- )
616
616
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
617
617
  """Predict class for X
618
618
  For more details on this function, see [sklearn.ensemble.ExtraTreesClassifier.predict]
@@ -666,11 +666,6 @@ class ExtraTreesClassifier(BaseTransformer):
666
666
  subproject=_SUBPROJECT,
667
667
  custom_tags=dict([("autogen", True)]),
668
668
  )
669
- @telemetry.add_stmt_params_to_df(
670
- project=_PROJECT,
671
- subproject=_SUBPROJECT,
672
- custom_tags=dict([("autogen", True)]),
673
- )
674
669
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
675
670
  """Method not supported for this class.
676
671
 
@@ -727,7 +722,8 @@ class ExtraTreesClassifier(BaseTransformer):
727
722
  if False:
728
723
  self.fit(dataset)
729
724
  assert self._sklearn_object is not None
730
- return self._sklearn_object.labels_
725
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
726
+ return labels
731
727
  else:
732
728
  raise NotImplementedError
733
729
 
@@ -763,6 +759,7 @@ class ExtraTreesClassifier(BaseTransformer):
763
759
  output_cols = []
764
760
 
765
761
  # Make sure column names are valid snowflake identifiers.
762
+ assert output_cols is not None # Make MyPy happy
766
763
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
767
764
 
768
765
  return rv
@@ -773,11 +770,6 @@ class ExtraTreesClassifier(BaseTransformer):
773
770
  subproject=_SUBPROJECT,
774
771
  custom_tags=dict([("autogen", True)]),
775
772
  )
776
- @telemetry.add_stmt_params_to_df(
777
- project=_PROJECT,
778
- subproject=_SUBPROJECT,
779
- custom_tags=dict([("autogen", True)]),
780
- )
781
773
  def predict_proba(
782
774
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
783
775
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -820,11 +812,6 @@ class ExtraTreesClassifier(BaseTransformer):
820
812
  subproject=_SUBPROJECT,
821
813
  custom_tags=dict([("autogen", True)]),
822
814
  )
823
- @telemetry.add_stmt_params_to_df(
824
- project=_PROJECT,
825
- subproject=_SUBPROJECT,
826
- custom_tags=dict([("autogen", True)]),
827
- )
828
815
  def predict_log_proba(
829
816
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
830
817
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -863,16 +850,6 @@ class ExtraTreesClassifier(BaseTransformer):
863
850
  return output_df
864
851
 
865
852
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
866
- @telemetry.send_api_usage_telemetry(
867
- project=_PROJECT,
868
- subproject=_SUBPROJECT,
869
- custom_tags=dict([("autogen", True)]),
870
- )
871
- @telemetry.add_stmt_params_to_df(
872
- project=_PROJECT,
873
- subproject=_SUBPROJECT,
874
- custom_tags=dict([("autogen", True)]),
875
- )
876
853
  def decision_function(
877
854
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
878
855
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -973,11 +950,6 @@ class ExtraTreesClassifier(BaseTransformer):
973
950
  subproject=_SUBPROJECT,
974
951
  custom_tags=dict([("autogen", True)]),
975
952
  )
976
- @telemetry.add_stmt_params_to_df(
977
- project=_PROJECT,
978
- subproject=_SUBPROJECT,
979
- custom_tags=dict([("autogen", True)]),
980
- )
981
953
  def kneighbors(
982
954
  self,
983
955
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1037,9 +1009,9 @@ class ExtraTreesClassifier(BaseTransformer):
1037
1009
  # For classifier, the type of predict is the same as the type of label
1038
1010
  if self._sklearn_object._estimator_type == 'classifier':
1039
1011
  # label columns is the desired type for output
1040
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1012
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1041
1013
  # rename the output columns
1042
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1014
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1043
1015
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1044
1016
  ([] if self._drop_input_cols else inputs)
1045
1017
  + outputs)