snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreesClassifier(BaseTransformer):
|
57
58
|
r"""An extra-trees classifier
|
58
59
|
For more details on this class, see [sklearn.ensemble.ExtraTreesClassifier]
|
@@ -60,6 +61,51 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -211,42 +257,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
211
257
|
- If int, then draw `max_samples` samples.
|
212
258
|
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
|
213
259
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
214
|
-
|
215
|
-
input_cols: Optional[Union[str, List[str]]]
|
216
|
-
A string or list of strings representing column names that contain features.
|
217
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
218
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
219
|
-
parameters are considered input columns.
|
220
|
-
|
221
|
-
label_cols: Optional[Union[str, List[str]]]
|
222
|
-
A string or list of strings representing column names that contain labels.
|
223
|
-
This is a required param for estimators, as there is no way to infer these
|
224
|
-
columns. If this parameter is not specified, then object is fitted without
|
225
|
-
labels (like a transformer).
|
226
|
-
|
227
|
-
output_cols: Optional[Union[str, List[str]]]
|
228
|
-
A string or list of strings representing column names that will store the
|
229
|
-
output of predict and transform operations. The length of output_cols must
|
230
|
-
match the expected number of output columns from the specific estimator or
|
231
|
-
transformer class used.
|
232
|
-
If this parameter is not specified, output column names are derived by
|
233
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
234
|
-
column names work for estimator's predict() method, but output_cols must
|
235
|
-
be set explicitly for transformers.
|
236
|
-
|
237
|
-
sample_weight_col: Optional[str]
|
238
|
-
A string representing the column name containing the sample weights.
|
239
|
-
This argument is only required when working with weighted datasets.
|
240
|
-
|
241
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
242
|
-
A string or a list of strings indicating column names to be excluded from any
|
243
|
-
operations (such as train, transform, or inference). These specified column(s)
|
244
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
245
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
246
|
-
columns, like index columns, during training or inference.
|
247
|
-
|
248
|
-
drop_input_cols: Optional[bool], default=False
|
249
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
250
260
|
"""
|
251
261
|
|
252
262
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -285,7 +295,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
285
295
|
self.set_passthrough_cols(passthrough_cols)
|
286
296
|
self.set_drop_input_cols(drop_input_cols)
|
287
297
|
self.set_sample_weight_col(sample_weight_col)
|
288
|
-
deps = set(
|
298
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
289
299
|
|
290
300
|
self._deps = list(deps)
|
291
301
|
|
@@ -311,13 +321,14 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
311
321
|
args=init_args,
|
312
322
|
klass=sklearn.ensemble.ExtraTreesClassifier
|
313
323
|
)
|
314
|
-
self._sklearn_object = sklearn.ensemble.ExtraTreesClassifier(
|
324
|
+
self._sklearn_object: Any = sklearn.ensemble.ExtraTreesClassifier(
|
315
325
|
**cleaned_up_init_args,
|
316
326
|
)
|
317
327
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
318
328
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
319
329
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
320
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
330
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
331
|
+
self._autogenerated = True
|
321
332
|
|
322
333
|
def _get_rand_id(self) -> str:
|
323
334
|
"""
|
@@ -373,54 +384,48 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
373
384
|
self
|
374
385
|
"""
|
375
386
|
self._infer_input_output_cols(dataset)
|
376
|
-
if isinstance(dataset,
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
self.
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
387
|
+
if isinstance(dataset, DataFrame):
|
388
|
+
session = dataset._session
|
389
|
+
assert session is not None # keep mypy happy
|
390
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
391
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
392
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
393
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
394
|
+
|
395
|
+
# Specify input columns so column pruning will be enforced
|
396
|
+
selected_cols = self._get_active_columns()
|
397
|
+
if len(selected_cols) > 0:
|
398
|
+
dataset = dataset.select(selected_cols)
|
399
|
+
|
400
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
401
|
+
|
402
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
403
|
+
if SNOWML_SPROC_ENV in os.environ:
|
404
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
405
|
+
project=_PROJECT,
|
406
|
+
subproject=_SUBPROJECT,
|
407
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesClassifier.__class__.__name__),
|
408
|
+
api_calls=[Session.call],
|
409
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
410
|
+
)
|
411
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
412
|
+
pd_df.columns = dataset.columns
|
413
|
+
dataset = pd_df
|
414
|
+
|
415
|
+
model_trainer = ModelTrainerBuilder.build(
|
416
|
+
estimator=self._sklearn_object,
|
417
|
+
dataset=dataset,
|
418
|
+
input_cols=self.input_cols,
|
419
|
+
label_cols=self.label_cols,
|
420
|
+
sample_weight_col=self.sample_weight_col,
|
421
|
+
autogenerated=self._autogenerated,
|
422
|
+
subproject=_SUBPROJECT
|
423
|
+
)
|
424
|
+
self._sklearn_object = model_trainer.train()
|
392
425
|
self._is_fitted = True
|
393
426
|
self._get_model_signatures(dataset)
|
394
427
|
return self
|
395
428
|
|
396
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
397
|
-
session = dataset._session
|
398
|
-
assert session is not None # keep mypy happy
|
399
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
400
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
401
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
402
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
403
|
-
|
404
|
-
# Specify input columns so column pruning will be enforced
|
405
|
-
selected_cols = self._get_active_columns()
|
406
|
-
if len(selected_cols) > 0:
|
407
|
-
dataset = dataset.select(selected_cols)
|
408
|
-
|
409
|
-
estimator = self._sklearn_object
|
410
|
-
assert estimator is not None # Keep mypy happy
|
411
|
-
|
412
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
413
|
-
|
414
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
415
|
-
dataset,
|
416
|
-
session,
|
417
|
-
estimator,
|
418
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
419
|
-
self.input_cols,
|
420
|
-
self.label_cols,
|
421
|
-
self.sample_weight_col,
|
422
|
-
)
|
423
|
-
|
424
429
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
425
430
|
if self._drop_input_cols:
|
426
431
|
return []
|
@@ -608,11 +613,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
608
613
|
subproject=_SUBPROJECT,
|
609
614
|
custom_tags=dict([("autogen", True)]),
|
610
615
|
)
|
611
|
-
@telemetry.add_stmt_params_to_df(
|
612
|
-
project=_PROJECT,
|
613
|
-
subproject=_SUBPROJECT,
|
614
|
-
custom_tags=dict([("autogen", True)]),
|
615
|
-
)
|
616
616
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
617
617
|
"""Predict class for X
|
618
618
|
For more details on this function, see [sklearn.ensemble.ExtraTreesClassifier.predict]
|
@@ -666,11 +666,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
666
666
|
subproject=_SUBPROJECT,
|
667
667
|
custom_tags=dict([("autogen", True)]),
|
668
668
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
669
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
675
670
|
"""Method not supported for this class.
|
676
671
|
|
@@ -727,7 +722,8 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
727
722
|
if False:
|
728
723
|
self.fit(dataset)
|
729
724
|
assert self._sklearn_object is not None
|
730
|
-
|
725
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
726
|
+
return labels
|
731
727
|
else:
|
732
728
|
raise NotImplementedError
|
733
729
|
|
@@ -763,6 +759,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
763
759
|
output_cols = []
|
764
760
|
|
765
761
|
# Make sure column names are valid snowflake identifiers.
|
762
|
+
assert output_cols is not None # Make MyPy happy
|
766
763
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
767
764
|
|
768
765
|
return rv
|
@@ -773,11 +770,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
773
770
|
subproject=_SUBPROJECT,
|
774
771
|
custom_tags=dict([("autogen", True)]),
|
775
772
|
)
|
776
|
-
@telemetry.add_stmt_params_to_df(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
773
|
def predict_proba(
|
782
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
783
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -820,11 +812,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
820
812
|
subproject=_SUBPROJECT,
|
821
813
|
custom_tags=dict([("autogen", True)]),
|
822
814
|
)
|
823
|
-
@telemetry.add_stmt_params_to_df(
|
824
|
-
project=_PROJECT,
|
825
|
-
subproject=_SUBPROJECT,
|
826
|
-
custom_tags=dict([("autogen", True)]),
|
827
|
-
)
|
828
815
|
def predict_log_proba(
|
829
816
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
830
817
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -863,16 +850,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
863
850
|
return output_df
|
864
851
|
|
865
852
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
866
|
-
@telemetry.send_api_usage_telemetry(
|
867
|
-
project=_PROJECT,
|
868
|
-
subproject=_SUBPROJECT,
|
869
|
-
custom_tags=dict([("autogen", True)]),
|
870
|
-
)
|
871
|
-
@telemetry.add_stmt_params_to_df(
|
872
|
-
project=_PROJECT,
|
873
|
-
subproject=_SUBPROJECT,
|
874
|
-
custom_tags=dict([("autogen", True)]),
|
875
|
-
)
|
876
853
|
def decision_function(
|
877
854
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
878
855
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -973,11 +950,6 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
973
950
|
subproject=_SUBPROJECT,
|
974
951
|
custom_tags=dict([("autogen", True)]),
|
975
952
|
)
|
976
|
-
@telemetry.add_stmt_params_to_df(
|
977
|
-
project=_PROJECT,
|
978
|
-
subproject=_SUBPROJECT,
|
979
|
-
custom_tags=dict([("autogen", True)]),
|
980
|
-
)
|
981
953
|
def kneighbors(
|
982
954
|
self,
|
983
955
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1037,9 +1009,9 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
1037
1009
|
# For classifier, the type of predict is the same as the type of label
|
1038
1010
|
if self._sklearn_object._estimator_type == 'classifier':
|
1039
1011
|
# label columns is the desired type for output
|
1040
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1012
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1041
1013
|
# rename the output columns
|
1042
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1014
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1043
1015
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1044
1016
|
([] if self._drop_input_cols else inputs)
|
1045
1017
|
+ outputs)
|