snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class BernoulliRBM(BaseTransformer):
|
57
58
|
r"""Bernoulli Restricted Boltzmann Machine (RBM)
|
58
59
|
For more details on this class, see [sklearn.neural_network.BernoulliRBM]
|
@@ -60,6 +61,49 @@ class BernoulliRBM(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=256
|
64
108
|
Number of binary hidden units.
|
65
109
|
|
@@ -90,42 +134,6 @@ class BernoulliRBM(BaseTransformer):
|
|
90
134
|
|
91
135
|
Pass an int for reproducible results across multiple function calls.
|
92
136
|
See :term:`Glossary <random_state>`.
|
93
|
-
|
94
|
-
input_cols: Optional[Union[str, List[str]]]
|
95
|
-
A string or list of strings representing column names that contain features.
|
96
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
97
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
98
|
-
parameters are considered input columns.
|
99
|
-
|
100
|
-
label_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain labels.
|
102
|
-
This is a required param for estimators, as there is no way to infer these
|
103
|
-
columns. If this parameter is not specified, then object is fitted without
|
104
|
-
labels (like a transformer).
|
105
|
-
|
106
|
-
output_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that will store the
|
108
|
-
output of predict and transform operations. The length of output_cols must
|
109
|
-
match the expected number of output columns from the specific estimator or
|
110
|
-
transformer class used.
|
111
|
-
If this parameter is not specified, output column names are derived by
|
112
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
113
|
-
column names work for estimator's predict() method, but output_cols must
|
114
|
-
be set explicitly for transformers.
|
115
|
-
|
116
|
-
sample_weight_col: Optional[str]
|
117
|
-
A string representing the column name containing the sample weights.
|
118
|
-
This argument is only required when working with weighted datasets.
|
119
|
-
|
120
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or a list of strings indicating column names to be excluded from any
|
122
|
-
operations (such as train, transform, or inference). These specified column(s)
|
123
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
124
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
125
|
-
columns, like index columns, during training or inference.
|
126
|
-
|
127
|
-
drop_input_cols: Optional[bool], default=False
|
128
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
129
137
|
"""
|
130
138
|
|
131
139
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -152,7 +160,7 @@ class BernoulliRBM(BaseTransformer):
|
|
152
160
|
self.set_passthrough_cols(passthrough_cols)
|
153
161
|
self.set_drop_input_cols(drop_input_cols)
|
154
162
|
self.set_sample_weight_col(sample_weight_col)
|
155
|
-
deps = set(
|
163
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
156
164
|
|
157
165
|
self._deps = list(deps)
|
158
166
|
|
@@ -166,13 +174,14 @@ class BernoulliRBM(BaseTransformer):
|
|
166
174
|
args=init_args,
|
167
175
|
klass=sklearn.neural_network.BernoulliRBM
|
168
176
|
)
|
169
|
-
self._sklearn_object = sklearn.neural_network.BernoulliRBM(
|
177
|
+
self._sklearn_object: Any = sklearn.neural_network.BernoulliRBM(
|
170
178
|
**cleaned_up_init_args,
|
171
179
|
)
|
172
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
173
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
174
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
175
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliRBM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=BernoulliRBM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
176
185
|
|
177
186
|
def _get_rand_id(self) -> str:
|
178
187
|
"""
|
@@ -228,54 +237,48 @@ class BernoulliRBM(BaseTransformer):
|
|
228
237
|
self
|
229
238
|
"""
|
230
239
|
self._infer_input_output_cols(dataset)
|
231
|
-
if isinstance(dataset,
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
self.
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BernoulliRBM.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
247
278
|
self._is_fitted = True
|
248
279
|
self._get_model_signatures(dataset)
|
249
280
|
return self
|
250
281
|
|
251
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
252
|
-
session = dataset._session
|
253
|
-
assert session is not None # keep mypy happy
|
254
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
255
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
256
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
257
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
258
|
-
|
259
|
-
# Specify input columns so column pruning will be enforced
|
260
|
-
selected_cols = self._get_active_columns()
|
261
|
-
if len(selected_cols) > 0:
|
262
|
-
dataset = dataset.select(selected_cols)
|
263
|
-
|
264
|
-
estimator = self._sklearn_object
|
265
|
-
assert estimator is not None # Keep mypy happy
|
266
|
-
|
267
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
268
|
-
|
269
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
270
|
-
dataset,
|
271
|
-
session,
|
272
|
-
estimator,
|
273
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
274
|
-
self.input_cols,
|
275
|
-
self.label_cols,
|
276
|
-
self.sample_weight_col,
|
277
|
-
)
|
278
|
-
|
279
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
280
283
|
if self._drop_input_cols:
|
281
284
|
return []
|
@@ -463,11 +466,6 @@ class BernoulliRBM(BaseTransformer):
|
|
463
466
|
subproject=_SUBPROJECT,
|
464
467
|
custom_tags=dict([("autogen", True)]),
|
465
468
|
)
|
466
|
-
@telemetry.add_stmt_params_to_df(
|
467
|
-
project=_PROJECT,
|
468
|
-
subproject=_SUBPROJECT,
|
469
|
-
custom_tags=dict([("autogen", True)]),
|
470
|
-
)
|
471
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
472
470
|
"""Method not supported for this class.
|
473
471
|
|
@@ -519,11 +517,6 @@ class BernoulliRBM(BaseTransformer):
|
|
519
517
|
subproject=_SUBPROJECT,
|
520
518
|
custom_tags=dict([("autogen", True)]),
|
521
519
|
)
|
522
|
-
@telemetry.add_stmt_params_to_df(
|
523
|
-
project=_PROJECT,
|
524
|
-
subproject=_SUBPROJECT,
|
525
|
-
custom_tags=dict([("autogen", True)]),
|
526
|
-
)
|
527
520
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
528
521
|
"""Compute the hidden layer activation probabilities, P(h=1|v=X)
|
529
522
|
For more details on this function, see [sklearn.neural_network.BernoulliRBM.transform]
|
@@ -582,7 +575,8 @@ class BernoulliRBM(BaseTransformer):
|
|
582
575
|
if False:
|
583
576
|
self.fit(dataset)
|
584
577
|
assert self._sklearn_object is not None
|
585
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
586
580
|
else:
|
587
581
|
raise NotImplementedError
|
588
582
|
|
@@ -618,6 +612,7 @@ class BernoulliRBM(BaseTransformer):
|
|
618
612
|
output_cols = []
|
619
613
|
|
620
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
621
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
622
617
|
|
623
618
|
return rv
|
@@ -628,11 +623,6 @@ class BernoulliRBM(BaseTransformer):
|
|
628
623
|
subproject=_SUBPROJECT,
|
629
624
|
custom_tags=dict([("autogen", True)]),
|
630
625
|
)
|
631
|
-
@telemetry.add_stmt_params_to_df(
|
632
|
-
project=_PROJECT,
|
633
|
-
subproject=_SUBPROJECT,
|
634
|
-
custom_tags=dict([("autogen", True)]),
|
635
|
-
)
|
636
626
|
def predict_proba(
|
637
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
638
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -673,11 +663,6 @@ class BernoulliRBM(BaseTransformer):
|
|
673
663
|
subproject=_SUBPROJECT,
|
674
664
|
custom_tags=dict([("autogen", True)]),
|
675
665
|
)
|
676
|
-
@telemetry.add_stmt_params_to_df(
|
677
|
-
project=_PROJECT,
|
678
|
-
subproject=_SUBPROJECT,
|
679
|
-
custom_tags=dict([("autogen", True)]),
|
680
|
-
)
|
681
666
|
def predict_log_proba(
|
682
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
683
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -714,16 +699,6 @@ class BernoulliRBM(BaseTransformer):
|
|
714
699
|
return output_df
|
715
700
|
|
716
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
717
|
-
@telemetry.send_api_usage_telemetry(
|
718
|
-
project=_PROJECT,
|
719
|
-
subproject=_SUBPROJECT,
|
720
|
-
custom_tags=dict([("autogen", True)]),
|
721
|
-
)
|
722
|
-
@telemetry.add_stmt_params_to_df(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
702
|
def decision_function(
|
728
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
729
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -822,11 +797,6 @@ class BernoulliRBM(BaseTransformer):
|
|
822
797
|
subproject=_SUBPROJECT,
|
823
798
|
custom_tags=dict([("autogen", True)]),
|
824
799
|
)
|
825
|
-
@telemetry.add_stmt_params_to_df(
|
826
|
-
project=_PROJECT,
|
827
|
-
subproject=_SUBPROJECT,
|
828
|
-
custom_tags=dict([("autogen", True)]),
|
829
|
-
)
|
830
800
|
def kneighbors(
|
831
801
|
self,
|
832
802
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -886,9 +856,9 @@ class BernoulliRBM(BaseTransformer):
|
|
886
856
|
# For classifier, the type of predict is the same as the type of label
|
887
857
|
if self._sklearn_object._estimator_type == 'classifier':
|
888
858
|
# label columns is the desired type for output
|
889
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
859
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
890
860
|
# rename the output columns
|
891
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
861
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
892
862
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
893
863
|
([] if self._drop_input_cols else inputs)
|
894
864
|
+ outputs)
|