snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class AffinityPropagation(BaseTransformer):
57
58
  r"""Perform Affinity Propagation Clustering of data
58
59
  For more details on this class, see [sklearn.cluster.AffinityPropagation]
@@ -60,6 +61,49 @@ class AffinityPropagation(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  damping: float, default=0.5
64
108
  Damping factor in the range `[0.5, 1.0)` is the extent to
65
109
  which the current value is maintained relative to
@@ -96,42 +140,6 @@ class AffinityPropagation(BaseTransformer):
96
140
  Pseudo-random number generator to control the starting state.
97
141
  Use an int for reproducible results across function calls.
98
142
  See the :term:`Glossary <random_state>`.
99
-
100
- input_cols: Optional[Union[str, List[str]]]
101
- A string or list of strings representing column names that contain features.
102
- If this parameter is not specified, all columns in the input DataFrame except
103
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
104
- parameters are considered input columns.
105
-
106
- label_cols: Optional[Union[str, List[str]]]
107
- A string or list of strings representing column names that contain labels.
108
- This is a required param for estimators, as there is no way to infer these
109
- columns. If this parameter is not specified, then object is fitted without
110
- labels (like a transformer).
111
-
112
- output_cols: Optional[Union[str, List[str]]]
113
- A string or list of strings representing column names that will store the
114
- output of predict and transform operations. The length of output_cols must
115
- match the expected number of output columns from the specific estimator or
116
- transformer class used.
117
- If this parameter is not specified, output column names are derived by
118
- adding an OUTPUT_ prefix to the label column names. These inferred output
119
- column names work for estimator's predict() method, but output_cols must
120
- be set explicitly for transformers.
121
-
122
- sample_weight_col: Optional[str]
123
- A string representing the column name containing the sample weights.
124
- This argument is only required when working with weighted datasets.
125
-
126
- passthrough_cols: Optional[Union[str, List[str]]]
127
- A string or a list of strings indicating column names to be excluded from any
128
- operations (such as train, transform, or inference). These specified column(s)
129
- will remain untouched throughout the process. This option is helpful in scenarios
130
- requiring automatic input_cols inference, but need to avoid using specific
131
- columns, like index columns, during training or inference.
132
-
133
- drop_input_cols: Optional[bool], default=False
134
- If set, the response of predict(), transform() methods will not contain input columns.
135
143
  """
136
144
 
137
145
  def __init__( # type: ignore[no-untyped-def]
@@ -160,7 +168,7 @@ class AffinityPropagation(BaseTransformer):
160
168
  self.set_passthrough_cols(passthrough_cols)
161
169
  self.set_drop_input_cols(drop_input_cols)
162
170
  self.set_sample_weight_col(sample_weight_col)
163
- deps = set(SklearnWrapperProvider().dependencies)
171
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
164
172
 
165
173
  self._deps = list(deps)
166
174
 
@@ -176,13 +184,14 @@ class AffinityPropagation(BaseTransformer):
176
184
  args=init_args,
177
185
  klass=sklearn.cluster.AffinityPropagation
178
186
  )
179
- self._sklearn_object = sklearn.cluster.AffinityPropagation(
187
+ self._sklearn_object: Any = sklearn.cluster.AffinityPropagation(
180
188
  **cleaned_up_init_args,
181
189
  )
182
190
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
183
191
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
184
192
  self._snowpark_cols: Optional[List[str]] = self.input_cols
185
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
193
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
194
+ self._autogenerated = True
186
195
 
187
196
  def _get_rand_id(self) -> str:
188
197
  """
@@ -238,54 +247,48 @@ class AffinityPropagation(BaseTransformer):
238
247
  self
239
248
  """
240
249
  self._infer_input_output_cols(dataset)
241
- if isinstance(dataset, pd.DataFrame):
242
- assert self._sklearn_object is not None # keep mypy happy
243
- self._sklearn_object = self._handlers.fit_pandas(
244
- dataset,
245
- self._sklearn_object,
246
- self.input_cols,
247
- self.label_cols,
248
- self.sample_weight_col
249
- )
250
- elif isinstance(dataset, DataFrame):
251
- self._fit_snowpark(dataset)
252
- else:
253
- raise TypeError(
254
- f"Unexpected dataset type: {type(dataset)}."
255
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
256
- )
250
+ if isinstance(dataset, DataFrame):
251
+ session = dataset._session
252
+ assert session is not None # keep mypy happy
253
+ # Validate that key package version in user workspace are supported in snowflake conda channel
254
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
255
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
256
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
257
+
258
+ # Specify input columns so column pruning will be enforced
259
+ selected_cols = self._get_active_columns()
260
+ if len(selected_cols) > 0:
261
+ dataset = dataset.select(selected_cols)
262
+
263
+ self._snowpark_cols = dataset.select(self.input_cols).columns
264
+
265
+ # If we are already in a stored procedure, no need to kick off another one.
266
+ if SNOWML_SPROC_ENV in os.environ:
267
+ statement_params = telemetry.get_function_usage_statement_params(
268
+ project=_PROJECT,
269
+ subproject=_SUBPROJECT,
270
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
271
+ api_calls=[Session.call],
272
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
273
+ )
274
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
275
+ pd_df.columns = dataset.columns
276
+ dataset = pd_df
277
+
278
+ model_trainer = ModelTrainerBuilder.build(
279
+ estimator=self._sklearn_object,
280
+ dataset=dataset,
281
+ input_cols=self.input_cols,
282
+ label_cols=self.label_cols,
283
+ sample_weight_col=self.sample_weight_col,
284
+ autogenerated=self._autogenerated,
285
+ subproject=_SUBPROJECT
286
+ )
287
+ self._sklearn_object = model_trainer.train()
257
288
  self._is_fitted = True
258
289
  self._get_model_signatures(dataset)
259
290
  return self
260
291
 
261
- def _fit_snowpark(self, dataset: DataFrame) -> None:
262
- session = dataset._session
263
- assert session is not None # keep mypy happy
264
- # Validate that key package version in user workspace are supported in snowflake conda channel
265
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
266
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
267
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
268
-
269
- # Specify input columns so column pruning will be enforced
270
- selected_cols = self._get_active_columns()
271
- if len(selected_cols) > 0:
272
- dataset = dataset.select(selected_cols)
273
-
274
- estimator = self._sklearn_object
275
- assert estimator is not None # Keep mypy happy
276
-
277
- self._snowpark_cols = dataset.select(self.input_cols).columns
278
-
279
- self._sklearn_object = self._handlers.fit_snowpark(
280
- dataset,
281
- session,
282
- estimator,
283
- ["snowflake-snowpark-python"] + self._get_dependencies(),
284
- self.input_cols,
285
- self.label_cols,
286
- self.sample_weight_col,
287
- )
288
-
289
292
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
290
293
  if self._drop_input_cols:
291
294
  return []
@@ -473,11 +476,6 @@ class AffinityPropagation(BaseTransformer):
473
476
  subproject=_SUBPROJECT,
474
477
  custom_tags=dict([("autogen", True)]),
475
478
  )
476
- @telemetry.add_stmt_params_to_df(
477
- project=_PROJECT,
478
- subproject=_SUBPROJECT,
479
- custom_tags=dict([("autogen", True)]),
480
- )
481
479
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
482
480
  """Predict the closest cluster each sample in X belongs to
483
481
  For more details on this function, see [sklearn.cluster.AffinityPropagation.predict]
@@ -531,11 +529,6 @@ class AffinityPropagation(BaseTransformer):
531
529
  subproject=_SUBPROJECT,
532
530
  custom_tags=dict([("autogen", True)]),
533
531
  )
534
- @telemetry.add_stmt_params_to_df(
535
- project=_PROJECT,
536
- subproject=_SUBPROJECT,
537
- custom_tags=dict([("autogen", True)]),
538
- )
539
532
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
540
533
  """Method not supported for this class.
541
534
 
@@ -594,7 +587,8 @@ class AffinityPropagation(BaseTransformer):
594
587
  if True:
595
588
  self.fit(dataset)
596
589
  assert self._sklearn_object is not None
597
- return self._sklearn_object.labels_
590
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
591
+ return labels
598
592
  else:
599
593
  raise NotImplementedError
600
594
 
@@ -630,6 +624,7 @@ class AffinityPropagation(BaseTransformer):
630
624
  output_cols = []
631
625
 
632
626
  # Make sure column names are valid snowflake identifiers.
627
+ assert output_cols is not None # Make MyPy happy
633
628
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
634
629
 
635
630
  return rv
@@ -640,11 +635,6 @@ class AffinityPropagation(BaseTransformer):
640
635
  subproject=_SUBPROJECT,
641
636
  custom_tags=dict([("autogen", True)]),
642
637
  )
643
- @telemetry.add_stmt_params_to_df(
644
- project=_PROJECT,
645
- subproject=_SUBPROJECT,
646
- custom_tags=dict([("autogen", True)]),
647
- )
648
638
  def predict_proba(
649
639
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
650
640
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -685,11 +675,6 @@ class AffinityPropagation(BaseTransformer):
685
675
  subproject=_SUBPROJECT,
686
676
  custom_tags=dict([("autogen", True)]),
687
677
  )
688
- @telemetry.add_stmt_params_to_df(
689
- project=_PROJECT,
690
- subproject=_SUBPROJECT,
691
- custom_tags=dict([("autogen", True)]),
692
- )
693
678
  def predict_log_proba(
694
679
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
695
680
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -726,16 +711,6 @@ class AffinityPropagation(BaseTransformer):
726
711
  return output_df
727
712
 
728
713
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
729
- @telemetry.send_api_usage_telemetry(
730
- project=_PROJECT,
731
- subproject=_SUBPROJECT,
732
- custom_tags=dict([("autogen", True)]),
733
- )
734
- @telemetry.add_stmt_params_to_df(
735
- project=_PROJECT,
736
- subproject=_SUBPROJECT,
737
- custom_tags=dict([("autogen", True)]),
738
- )
739
714
  def decision_function(
740
715
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
741
716
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -834,11 +809,6 @@ class AffinityPropagation(BaseTransformer):
834
809
  subproject=_SUBPROJECT,
835
810
  custom_tags=dict([("autogen", True)]),
836
811
  )
837
- @telemetry.add_stmt_params_to_df(
838
- project=_PROJECT,
839
- subproject=_SUBPROJECT,
840
- custom_tags=dict([("autogen", True)]),
841
- )
842
812
  def kneighbors(
843
813
  self,
844
814
  dataset: Union[DataFrame, pd.DataFrame],
@@ -898,9 +868,9 @@ class AffinityPropagation(BaseTransformer):
898
868
  # For classifier, the type of predict is the same as the type of label
899
869
  if self._sklearn_object._estimator_type == 'classifier':
900
870
  # label columns is the desired type for output
901
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
871
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
902
872
  # rename the output columns
903
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
873
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
904
874
  self._model_signature_dict["predict"] = ModelSignature(inputs,
905
875
  ([] if self._drop_input_cols else inputs)
906
876
  + outputs)