snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AffinityPropagation(BaseTransformer):
|
57
58
|
r"""Perform Affinity Propagation Clustering of data
|
58
59
|
For more details on this class, see [sklearn.cluster.AffinityPropagation]
|
@@ -60,6 +61,49 @@ class AffinityPropagation(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
damping: float, default=0.5
|
64
108
|
Damping factor in the range `[0.5, 1.0)` is the extent to
|
65
109
|
which the current value is maintained relative to
|
@@ -96,42 +140,6 @@ class AffinityPropagation(BaseTransformer):
|
|
96
140
|
Pseudo-random number generator to control the starting state.
|
97
141
|
Use an int for reproducible results across function calls.
|
98
142
|
See the :term:`Glossary <random_state>`.
|
99
|
-
|
100
|
-
input_cols: Optional[Union[str, List[str]]]
|
101
|
-
A string or list of strings representing column names that contain features.
|
102
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
103
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
104
|
-
parameters are considered input columns.
|
105
|
-
|
106
|
-
label_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain labels.
|
108
|
-
This is a required param for estimators, as there is no way to infer these
|
109
|
-
columns. If this parameter is not specified, then object is fitted without
|
110
|
-
labels (like a transformer).
|
111
|
-
|
112
|
-
output_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that will store the
|
114
|
-
output of predict and transform operations. The length of output_cols must
|
115
|
-
match the expected number of output columns from the specific estimator or
|
116
|
-
transformer class used.
|
117
|
-
If this parameter is not specified, output column names are derived by
|
118
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
119
|
-
column names work for estimator's predict() method, but output_cols must
|
120
|
-
be set explicitly for transformers.
|
121
|
-
|
122
|
-
sample_weight_col: Optional[str]
|
123
|
-
A string representing the column name containing the sample weights.
|
124
|
-
This argument is only required when working with weighted datasets.
|
125
|
-
|
126
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
127
|
-
A string or a list of strings indicating column names to be excluded from any
|
128
|
-
operations (such as train, transform, or inference). These specified column(s)
|
129
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
130
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
131
|
-
columns, like index columns, during training or inference.
|
132
|
-
|
133
|
-
drop_input_cols: Optional[bool], default=False
|
134
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
135
143
|
"""
|
136
144
|
|
137
145
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -160,7 +168,7 @@ class AffinityPropagation(BaseTransformer):
|
|
160
168
|
self.set_passthrough_cols(passthrough_cols)
|
161
169
|
self.set_drop_input_cols(drop_input_cols)
|
162
170
|
self.set_sample_weight_col(sample_weight_col)
|
163
|
-
deps = set(
|
171
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
164
172
|
|
165
173
|
self._deps = list(deps)
|
166
174
|
|
@@ -176,13 +184,14 @@ class AffinityPropagation(BaseTransformer):
|
|
176
184
|
args=init_args,
|
177
185
|
klass=sklearn.cluster.AffinityPropagation
|
178
186
|
)
|
179
|
-
self._sklearn_object = sklearn.cluster.AffinityPropagation(
|
187
|
+
self._sklearn_object: Any = sklearn.cluster.AffinityPropagation(
|
180
188
|
**cleaned_up_init_args,
|
181
189
|
)
|
182
190
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
183
191
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
184
192
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
185
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
193
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AffinityPropagation.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
194
|
+
self._autogenerated = True
|
186
195
|
|
187
196
|
def _get_rand_id(self) -> str:
|
188
197
|
"""
|
@@ -238,54 +247,48 @@ class AffinityPropagation(BaseTransformer):
|
|
238
247
|
self
|
239
248
|
"""
|
240
249
|
self._infer_input_output_cols(dataset)
|
241
|
-
if isinstance(dataset,
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
self.
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
250
|
+
if isinstance(dataset, DataFrame):
|
251
|
+
session = dataset._session
|
252
|
+
assert session is not None # keep mypy happy
|
253
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
254
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
255
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
256
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
257
|
+
|
258
|
+
# Specify input columns so column pruning will be enforced
|
259
|
+
selected_cols = self._get_active_columns()
|
260
|
+
if len(selected_cols) > 0:
|
261
|
+
dataset = dataset.select(selected_cols)
|
262
|
+
|
263
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
264
|
+
|
265
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
266
|
+
if SNOWML_SPROC_ENV in os.environ:
|
267
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
268
|
+
project=_PROJECT,
|
269
|
+
subproject=_SUBPROJECT,
|
270
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
|
271
|
+
api_calls=[Session.call],
|
272
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
273
|
+
)
|
274
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
275
|
+
pd_df.columns = dataset.columns
|
276
|
+
dataset = pd_df
|
277
|
+
|
278
|
+
model_trainer = ModelTrainerBuilder.build(
|
279
|
+
estimator=self._sklearn_object,
|
280
|
+
dataset=dataset,
|
281
|
+
input_cols=self.input_cols,
|
282
|
+
label_cols=self.label_cols,
|
283
|
+
sample_weight_col=self.sample_weight_col,
|
284
|
+
autogenerated=self._autogenerated,
|
285
|
+
subproject=_SUBPROJECT
|
286
|
+
)
|
287
|
+
self._sklearn_object = model_trainer.train()
|
257
288
|
self._is_fitted = True
|
258
289
|
self._get_model_signatures(dataset)
|
259
290
|
return self
|
260
291
|
|
261
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
262
|
-
session = dataset._session
|
263
|
-
assert session is not None # keep mypy happy
|
264
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
265
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
266
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
267
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
268
|
-
|
269
|
-
# Specify input columns so column pruning will be enforced
|
270
|
-
selected_cols = self._get_active_columns()
|
271
|
-
if len(selected_cols) > 0:
|
272
|
-
dataset = dataset.select(selected_cols)
|
273
|
-
|
274
|
-
estimator = self._sklearn_object
|
275
|
-
assert estimator is not None # Keep mypy happy
|
276
|
-
|
277
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
|
-
|
279
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
280
|
-
dataset,
|
281
|
-
session,
|
282
|
-
estimator,
|
283
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
284
|
-
self.input_cols,
|
285
|
-
self.label_cols,
|
286
|
-
self.sample_weight_col,
|
287
|
-
)
|
288
|
-
|
289
292
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
290
293
|
if self._drop_input_cols:
|
291
294
|
return []
|
@@ -473,11 +476,6 @@ class AffinityPropagation(BaseTransformer):
|
|
473
476
|
subproject=_SUBPROJECT,
|
474
477
|
custom_tags=dict([("autogen", True)]),
|
475
478
|
)
|
476
|
-
@telemetry.add_stmt_params_to_df(
|
477
|
-
project=_PROJECT,
|
478
|
-
subproject=_SUBPROJECT,
|
479
|
-
custom_tags=dict([("autogen", True)]),
|
480
|
-
)
|
481
479
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
482
480
|
"""Predict the closest cluster each sample in X belongs to
|
483
481
|
For more details on this function, see [sklearn.cluster.AffinityPropagation.predict]
|
@@ -531,11 +529,6 @@ class AffinityPropagation(BaseTransformer):
|
|
531
529
|
subproject=_SUBPROJECT,
|
532
530
|
custom_tags=dict([("autogen", True)]),
|
533
531
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
532
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
533
|
"""Method not supported for this class.
|
541
534
|
|
@@ -594,7 +587,8 @@ class AffinityPropagation(BaseTransformer):
|
|
594
587
|
if True:
|
595
588
|
self.fit(dataset)
|
596
589
|
assert self._sklearn_object is not None
|
597
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
598
592
|
else:
|
599
593
|
raise NotImplementedError
|
600
594
|
|
@@ -630,6 +624,7 @@ class AffinityPropagation(BaseTransformer):
|
|
630
624
|
output_cols = []
|
631
625
|
|
632
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
633
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
634
629
|
|
635
630
|
return rv
|
@@ -640,11 +635,6 @@ class AffinityPropagation(BaseTransformer):
|
|
640
635
|
subproject=_SUBPROJECT,
|
641
636
|
custom_tags=dict([("autogen", True)]),
|
642
637
|
)
|
643
|
-
@telemetry.add_stmt_params_to_df(
|
644
|
-
project=_PROJECT,
|
645
|
-
subproject=_SUBPROJECT,
|
646
|
-
custom_tags=dict([("autogen", True)]),
|
647
|
-
)
|
648
638
|
def predict_proba(
|
649
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
650
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -685,11 +675,6 @@ class AffinityPropagation(BaseTransformer):
|
|
685
675
|
subproject=_SUBPROJECT,
|
686
676
|
custom_tags=dict([("autogen", True)]),
|
687
677
|
)
|
688
|
-
@telemetry.add_stmt_params_to_df(
|
689
|
-
project=_PROJECT,
|
690
|
-
subproject=_SUBPROJECT,
|
691
|
-
custom_tags=dict([("autogen", True)]),
|
692
|
-
)
|
693
678
|
def predict_log_proba(
|
694
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
695
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -726,16 +711,6 @@ class AffinityPropagation(BaseTransformer):
|
|
726
711
|
return output_df
|
727
712
|
|
728
713
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
729
|
-
@telemetry.send_api_usage_telemetry(
|
730
|
-
project=_PROJECT,
|
731
|
-
subproject=_SUBPROJECT,
|
732
|
-
custom_tags=dict([("autogen", True)]),
|
733
|
-
)
|
734
|
-
@telemetry.add_stmt_params_to_df(
|
735
|
-
project=_PROJECT,
|
736
|
-
subproject=_SUBPROJECT,
|
737
|
-
custom_tags=dict([("autogen", True)]),
|
738
|
-
)
|
739
714
|
def decision_function(
|
740
715
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
741
716
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -834,11 +809,6 @@ class AffinityPropagation(BaseTransformer):
|
|
834
809
|
subproject=_SUBPROJECT,
|
835
810
|
custom_tags=dict([("autogen", True)]),
|
836
811
|
)
|
837
|
-
@telemetry.add_stmt_params_to_df(
|
838
|
-
project=_PROJECT,
|
839
|
-
subproject=_SUBPROJECT,
|
840
|
-
custom_tags=dict([("autogen", True)]),
|
841
|
-
)
|
842
812
|
def kneighbors(
|
843
813
|
self,
|
844
814
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -898,9 +868,9 @@ class AffinityPropagation(BaseTransformer):
|
|
898
868
|
# For classifier, the type of predict is the same as the type of label
|
899
869
|
if self._sklearn_object._estimator_type == 'classifier':
|
900
870
|
# label columns is the desired type for output
|
901
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
871
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
902
872
|
# rename the output columns
|
903
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
873
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
904
874
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
905
875
|
([] if self._drop_input_cols else inputs)
|
906
876
|
+ outputs)
|