snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Lars(BaseTransformer):
|
57
58
|
r"""Least Angle Regression model a
|
58
59
|
For more details on this class, see [sklearn.linear_model.Lars]
|
@@ -60,6 +61,51 @@ class Lars(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
fit_intercept: bool, default=True
|
64
110
|
Whether to calculate the intercept for this model. If set
|
65
111
|
to false, no intercept will be used in calculations
|
@@ -109,42 +155,6 @@ class Lars(BaseTransformer):
|
|
109
155
|
Determines random number generation for jittering. Pass an int
|
110
156
|
for reproducible output across multiple function calls.
|
111
157
|
See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
117
|
-
parameters are considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
140
|
-
A string or a list of strings indicating column names to be excluded from any
|
141
|
-
operations (such as train, transform, or inference). These specified column(s)
|
142
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
143
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
144
|
-
columns, like index columns, during training or inference.
|
145
|
-
|
146
|
-
drop_input_cols: Optional[bool], default=False
|
147
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
148
158
|
"""
|
149
159
|
|
150
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -175,7 +185,7 @@ class Lars(BaseTransformer):
|
|
175
185
|
self.set_passthrough_cols(passthrough_cols)
|
176
186
|
self.set_drop_input_cols(drop_input_cols)
|
177
187
|
self.set_sample_weight_col(sample_weight_col)
|
178
|
-
deps = set(
|
188
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
179
189
|
|
180
190
|
self._deps = list(deps)
|
181
191
|
|
@@ -193,13 +203,14 @@ class Lars(BaseTransformer):
|
|
193
203
|
args=init_args,
|
194
204
|
klass=sklearn.linear_model.Lars
|
195
205
|
)
|
196
|
-
self._sklearn_object = sklearn.linear_model.Lars(
|
206
|
+
self._sklearn_object: Any = sklearn.linear_model.Lars(
|
197
207
|
**cleaned_up_init_args,
|
198
208
|
)
|
199
209
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
200
210
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
201
211
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
202
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
212
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
213
|
+
self._autogenerated = True
|
203
214
|
|
204
215
|
def _get_rand_id(self) -> str:
|
205
216
|
"""
|
@@ -255,54 +266,48 @@ class Lars(BaseTransformer):
|
|
255
266
|
self
|
256
267
|
"""
|
257
268
|
self._infer_input_output_cols(dataset)
|
258
|
-
if isinstance(dataset,
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
self.
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
269
|
+
if isinstance(dataset, DataFrame):
|
270
|
+
session = dataset._session
|
271
|
+
assert session is not None # keep mypy happy
|
272
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
273
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
274
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
275
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
276
|
+
|
277
|
+
# Specify input columns so column pruning will be enforced
|
278
|
+
selected_cols = self._get_active_columns()
|
279
|
+
if len(selected_cols) > 0:
|
280
|
+
dataset = dataset.select(selected_cols)
|
281
|
+
|
282
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
283
|
+
|
284
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
285
|
+
if SNOWML_SPROC_ENV in os.environ:
|
286
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
287
|
+
project=_PROJECT,
|
288
|
+
subproject=_SUBPROJECT,
|
289
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lars.__class__.__name__),
|
290
|
+
api_calls=[Session.call],
|
291
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
292
|
+
)
|
293
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
294
|
+
pd_df.columns = dataset.columns
|
295
|
+
dataset = pd_df
|
296
|
+
|
297
|
+
model_trainer = ModelTrainerBuilder.build(
|
298
|
+
estimator=self._sklearn_object,
|
299
|
+
dataset=dataset,
|
300
|
+
input_cols=self.input_cols,
|
301
|
+
label_cols=self.label_cols,
|
302
|
+
sample_weight_col=self.sample_weight_col,
|
303
|
+
autogenerated=self._autogenerated,
|
304
|
+
subproject=_SUBPROJECT
|
305
|
+
)
|
306
|
+
self._sklearn_object = model_trainer.train()
|
274
307
|
self._is_fitted = True
|
275
308
|
self._get_model_signatures(dataset)
|
276
309
|
return self
|
277
310
|
|
278
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
279
|
-
session = dataset._session
|
280
|
-
assert session is not None # keep mypy happy
|
281
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
282
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
283
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
284
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
285
|
-
|
286
|
-
# Specify input columns so column pruning will be enforced
|
287
|
-
selected_cols = self._get_active_columns()
|
288
|
-
if len(selected_cols) > 0:
|
289
|
-
dataset = dataset.select(selected_cols)
|
290
|
-
|
291
|
-
estimator = self._sklearn_object
|
292
|
-
assert estimator is not None # Keep mypy happy
|
293
|
-
|
294
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
|
-
|
296
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
297
|
-
dataset,
|
298
|
-
session,
|
299
|
-
estimator,
|
300
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
301
|
-
self.input_cols,
|
302
|
-
self.label_cols,
|
303
|
-
self.sample_weight_col,
|
304
|
-
)
|
305
|
-
|
306
311
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
307
312
|
if self._drop_input_cols:
|
308
313
|
return []
|
@@ -490,11 +495,6 @@ class Lars(BaseTransformer):
|
|
490
495
|
subproject=_SUBPROJECT,
|
491
496
|
custom_tags=dict([("autogen", True)]),
|
492
497
|
)
|
493
|
-
@telemetry.add_stmt_params_to_df(
|
494
|
-
project=_PROJECT,
|
495
|
-
subproject=_SUBPROJECT,
|
496
|
-
custom_tags=dict([("autogen", True)]),
|
497
|
-
)
|
498
498
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
499
499
|
"""Predict using the linear model
|
500
500
|
For more details on this function, see [sklearn.linear_model.Lars.predict]
|
@@ -548,11 +548,6 @@ class Lars(BaseTransformer):
|
|
548
548
|
subproject=_SUBPROJECT,
|
549
549
|
custom_tags=dict([("autogen", True)]),
|
550
550
|
)
|
551
|
-
@telemetry.add_stmt_params_to_df(
|
552
|
-
project=_PROJECT,
|
553
|
-
subproject=_SUBPROJECT,
|
554
|
-
custom_tags=dict([("autogen", True)]),
|
555
|
-
)
|
556
551
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
557
552
|
"""Method not supported for this class.
|
558
553
|
|
@@ -609,7 +604,8 @@ class Lars(BaseTransformer):
|
|
609
604
|
if False:
|
610
605
|
self.fit(dataset)
|
611
606
|
assert self._sklearn_object is not None
|
612
|
-
|
607
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
608
|
+
return labels
|
613
609
|
else:
|
614
610
|
raise NotImplementedError
|
615
611
|
|
@@ -645,6 +641,7 @@ class Lars(BaseTransformer):
|
|
645
641
|
output_cols = []
|
646
642
|
|
647
643
|
# Make sure column names are valid snowflake identifiers.
|
644
|
+
assert output_cols is not None # Make MyPy happy
|
648
645
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
649
646
|
|
650
647
|
return rv
|
@@ -655,11 +652,6 @@ class Lars(BaseTransformer):
|
|
655
652
|
subproject=_SUBPROJECT,
|
656
653
|
custom_tags=dict([("autogen", True)]),
|
657
654
|
)
|
658
|
-
@telemetry.add_stmt_params_to_df(
|
659
|
-
project=_PROJECT,
|
660
|
-
subproject=_SUBPROJECT,
|
661
|
-
custom_tags=dict([("autogen", True)]),
|
662
|
-
)
|
663
655
|
def predict_proba(
|
664
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
665
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -700,11 +692,6 @@ class Lars(BaseTransformer):
|
|
700
692
|
subproject=_SUBPROJECT,
|
701
693
|
custom_tags=dict([("autogen", True)]),
|
702
694
|
)
|
703
|
-
@telemetry.add_stmt_params_to_df(
|
704
|
-
project=_PROJECT,
|
705
|
-
subproject=_SUBPROJECT,
|
706
|
-
custom_tags=dict([("autogen", True)]),
|
707
|
-
)
|
708
695
|
def predict_log_proba(
|
709
696
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
710
697
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,16 +728,6 @@ class Lars(BaseTransformer):
|
|
741
728
|
return output_df
|
742
729
|
|
743
730
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
744
|
-
@telemetry.send_api_usage_telemetry(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
|
-
@telemetry.add_stmt_params_to_df(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
731
|
def decision_function(
|
755
732
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
756
733
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -851,11 +828,6 @@ class Lars(BaseTransformer):
|
|
851
828
|
subproject=_SUBPROJECT,
|
852
829
|
custom_tags=dict([("autogen", True)]),
|
853
830
|
)
|
854
|
-
@telemetry.add_stmt_params_to_df(
|
855
|
-
project=_PROJECT,
|
856
|
-
subproject=_SUBPROJECT,
|
857
|
-
custom_tags=dict([("autogen", True)]),
|
858
|
-
)
|
859
831
|
def kneighbors(
|
860
832
|
self,
|
861
833
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -915,9 +887,9 @@ class Lars(BaseTransformer):
|
|
915
887
|
# For classifier, the type of predict is the same as the type of label
|
916
888
|
if self._sklearn_object._estimator_type == 'classifier':
|
917
889
|
# label columns is the desired type for output
|
918
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
890
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
919
891
|
# rename the output columns
|
920
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
892
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
921
893
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
922
894
|
([] if self._drop_input_cols else inputs)
|
923
895
|
+ outputs)
|