snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Lars(BaseTransformer):
57
58
  r"""Least Angle Regression model a
58
59
  For more details on this class, see [sklearn.linear_model.Lars]
@@ -60,6 +61,51 @@ class Lars(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations
@@ -109,42 +155,6 @@ class Lars(BaseTransformer):
109
155
  Determines random number generation for jittering. Pass an int
110
156
  for reproducible output across multiple function calls.
111
157
  See :term:`Glossary <random_state>`. Ignored if `jitter` is None.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
117
- parameters are considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- passthrough_cols: Optional[Union[str, List[str]]]
140
- A string or a list of strings indicating column names to be excluded from any
141
- operations (such as train, transform, or inference). These specified column(s)
142
- will remain untouched throughout the process. This option is helpful in scenarios
143
- requiring automatic input_cols inference, but need to avoid using specific
144
- columns, like index columns, during training or inference.
145
-
146
- drop_input_cols: Optional[bool], default=False
147
- If set, the response of predict(), transform() methods will not contain input columns.
148
158
  """
149
159
 
150
160
  def __init__( # type: ignore[no-untyped-def]
@@ -175,7 +185,7 @@ class Lars(BaseTransformer):
175
185
  self.set_passthrough_cols(passthrough_cols)
176
186
  self.set_drop_input_cols(drop_input_cols)
177
187
  self.set_sample_weight_col(sample_weight_col)
178
- deps = set(SklearnWrapperProvider().dependencies)
188
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
179
189
 
180
190
  self._deps = list(deps)
181
191
 
@@ -193,13 +203,14 @@ class Lars(BaseTransformer):
193
203
  args=init_args,
194
204
  klass=sklearn.linear_model.Lars
195
205
  )
196
- self._sklearn_object = sklearn.linear_model.Lars(
206
+ self._sklearn_object: Any = sklearn.linear_model.Lars(
197
207
  **cleaned_up_init_args,
198
208
  )
199
209
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
200
210
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
201
211
  self._snowpark_cols: Optional[List[str]] = self.input_cols
202
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
212
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lars.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
213
+ self._autogenerated = True
203
214
 
204
215
  def _get_rand_id(self) -> str:
205
216
  """
@@ -255,54 +266,48 @@ class Lars(BaseTransformer):
255
266
  self
256
267
  """
257
268
  self._infer_input_output_cols(dataset)
258
- if isinstance(dataset, pd.DataFrame):
259
- assert self._sklearn_object is not None # keep mypy happy
260
- self._sklearn_object = self._handlers.fit_pandas(
261
- dataset,
262
- self._sklearn_object,
263
- self.input_cols,
264
- self.label_cols,
265
- self.sample_weight_col
266
- )
267
- elif isinstance(dataset, DataFrame):
268
- self._fit_snowpark(dataset)
269
- else:
270
- raise TypeError(
271
- f"Unexpected dataset type: {type(dataset)}."
272
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
273
- )
269
+ if isinstance(dataset, DataFrame):
270
+ session = dataset._session
271
+ assert session is not None # keep mypy happy
272
+ # Validate that key package version in user workspace are supported in snowflake conda channel
273
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
274
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
275
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
276
+
277
+ # Specify input columns so column pruning will be enforced
278
+ selected_cols = self._get_active_columns()
279
+ if len(selected_cols) > 0:
280
+ dataset = dataset.select(selected_cols)
281
+
282
+ self._snowpark_cols = dataset.select(self.input_cols).columns
283
+
284
+ # If we are already in a stored procedure, no need to kick off another one.
285
+ if SNOWML_SPROC_ENV in os.environ:
286
+ statement_params = telemetry.get_function_usage_statement_params(
287
+ project=_PROJECT,
288
+ subproject=_SUBPROJECT,
289
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lars.__class__.__name__),
290
+ api_calls=[Session.call],
291
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
+ )
293
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
294
+ pd_df.columns = dataset.columns
295
+ dataset = pd_df
296
+
297
+ model_trainer = ModelTrainerBuilder.build(
298
+ estimator=self._sklearn_object,
299
+ dataset=dataset,
300
+ input_cols=self.input_cols,
301
+ label_cols=self.label_cols,
302
+ sample_weight_col=self.sample_weight_col,
303
+ autogenerated=self._autogenerated,
304
+ subproject=_SUBPROJECT
305
+ )
306
+ self._sklearn_object = model_trainer.train()
274
307
  self._is_fitted = True
275
308
  self._get_model_signatures(dataset)
276
309
  return self
277
310
 
278
- def _fit_snowpark(self, dataset: DataFrame) -> None:
279
- session = dataset._session
280
- assert session is not None # keep mypy happy
281
- # Validate that key package version in user workspace are supported in snowflake conda channel
282
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
283
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
284
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
285
-
286
- # Specify input columns so column pruning will be enforced
287
- selected_cols = self._get_active_columns()
288
- if len(selected_cols) > 0:
289
- dataset = dataset.select(selected_cols)
290
-
291
- estimator = self._sklearn_object
292
- assert estimator is not None # Keep mypy happy
293
-
294
- self._snowpark_cols = dataset.select(self.input_cols).columns
295
-
296
- self._sklearn_object = self._handlers.fit_snowpark(
297
- dataset,
298
- session,
299
- estimator,
300
- ["snowflake-snowpark-python"] + self._get_dependencies(),
301
- self.input_cols,
302
- self.label_cols,
303
- self.sample_weight_col,
304
- )
305
-
306
311
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
307
312
  if self._drop_input_cols:
308
313
  return []
@@ -490,11 +495,6 @@ class Lars(BaseTransformer):
490
495
  subproject=_SUBPROJECT,
491
496
  custom_tags=dict([("autogen", True)]),
492
497
  )
493
- @telemetry.add_stmt_params_to_df(
494
- project=_PROJECT,
495
- subproject=_SUBPROJECT,
496
- custom_tags=dict([("autogen", True)]),
497
- )
498
498
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
499
499
  """Predict using the linear model
500
500
  For more details on this function, see [sklearn.linear_model.Lars.predict]
@@ -548,11 +548,6 @@ class Lars(BaseTransformer):
548
548
  subproject=_SUBPROJECT,
549
549
  custom_tags=dict([("autogen", True)]),
550
550
  )
551
- @telemetry.add_stmt_params_to_df(
552
- project=_PROJECT,
553
- subproject=_SUBPROJECT,
554
- custom_tags=dict([("autogen", True)]),
555
- )
556
551
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
557
552
  """Method not supported for this class.
558
553
 
@@ -609,7 +604,8 @@ class Lars(BaseTransformer):
609
604
  if False:
610
605
  self.fit(dataset)
611
606
  assert self._sklearn_object is not None
612
- return self._sklearn_object.labels_
607
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
608
+ return labels
613
609
  else:
614
610
  raise NotImplementedError
615
611
 
@@ -645,6 +641,7 @@ class Lars(BaseTransformer):
645
641
  output_cols = []
646
642
 
647
643
  # Make sure column names are valid snowflake identifiers.
644
+ assert output_cols is not None # Make MyPy happy
648
645
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
649
646
 
650
647
  return rv
@@ -655,11 +652,6 @@ class Lars(BaseTransformer):
655
652
  subproject=_SUBPROJECT,
656
653
  custom_tags=dict([("autogen", True)]),
657
654
  )
658
- @telemetry.add_stmt_params_to_df(
659
- project=_PROJECT,
660
- subproject=_SUBPROJECT,
661
- custom_tags=dict([("autogen", True)]),
662
- )
663
655
  def predict_proba(
664
656
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
665
657
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -700,11 +692,6 @@ class Lars(BaseTransformer):
700
692
  subproject=_SUBPROJECT,
701
693
  custom_tags=dict([("autogen", True)]),
702
694
  )
703
- @telemetry.add_stmt_params_to_df(
704
- project=_PROJECT,
705
- subproject=_SUBPROJECT,
706
- custom_tags=dict([("autogen", True)]),
707
- )
708
695
  def predict_log_proba(
709
696
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
710
697
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -741,16 +728,6 @@ class Lars(BaseTransformer):
741
728
  return output_df
742
729
 
743
730
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
744
- @telemetry.send_api_usage_telemetry(
745
- project=_PROJECT,
746
- subproject=_SUBPROJECT,
747
- custom_tags=dict([("autogen", True)]),
748
- )
749
- @telemetry.add_stmt_params_to_df(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
731
  def decision_function(
755
732
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
756
733
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -851,11 +828,6 @@ class Lars(BaseTransformer):
851
828
  subproject=_SUBPROJECT,
852
829
  custom_tags=dict([("autogen", True)]),
853
830
  )
854
- @telemetry.add_stmt_params_to_df(
855
- project=_PROJECT,
856
- subproject=_SUBPROJECT,
857
- custom_tags=dict([("autogen", True)]),
858
- )
859
831
  def kneighbors(
860
832
  self,
861
833
  dataset: Union[DataFrame, pd.DataFrame],
@@ -915,9 +887,9 @@ class Lars(BaseTransformer):
915
887
  # For classifier, the type of predict is the same as the type of label
916
888
  if self._sklearn_object._estimator_type == 'classifier':
917
889
  # label columns is the desired type for output
918
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
890
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
919
891
  # rename the output columns
920
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
892
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
921
893
  self._model_signature_dict["predict"] = ModelSignature(inputs,
922
894
  ([] if self._drop_input_cols else inputs)
923
895
  + outputs)