snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MultiTaskElasticNet(BaseTransformer):
|
57
58
|
r"""Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer
|
58
59
|
For more details on this class, see [sklearn.linear_model.MultiTaskElasticNet]
|
@@ -60,6 +61,51 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the L1/L2 term. Defaults to 1.0.
|
65
111
|
|
@@ -102,42 +148,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
102
148
|
rather than looping over features sequentially by default. This
|
103
149
|
(setting to 'random') often leads to significantly faster convergence
|
104
150
|
especially when tol is higher than 1e-4.
|
105
|
-
|
106
|
-
input_cols: Optional[Union[str, List[str]]]
|
107
|
-
A string or list of strings representing column names that contain features.
|
108
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
109
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
110
|
-
parameters are considered input columns.
|
111
|
-
|
112
|
-
label_cols: Optional[Union[str, List[str]]]
|
113
|
-
A string or list of strings representing column names that contain labels.
|
114
|
-
This is a required param for estimators, as there is no way to infer these
|
115
|
-
columns. If this parameter is not specified, then object is fitted without
|
116
|
-
labels (like a transformer).
|
117
|
-
|
118
|
-
output_cols: Optional[Union[str, List[str]]]
|
119
|
-
A string or list of strings representing column names that will store the
|
120
|
-
output of predict and transform operations. The length of output_cols must
|
121
|
-
match the expected number of output columns from the specific estimator or
|
122
|
-
transformer class used.
|
123
|
-
If this parameter is not specified, output column names are derived by
|
124
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
125
|
-
column names work for estimator's predict() method, but output_cols must
|
126
|
-
be set explicitly for transformers.
|
127
|
-
|
128
|
-
sample_weight_col: Optional[str]
|
129
|
-
A string representing the column name containing the sample weights.
|
130
|
-
This argument is only required when working with weighted datasets.
|
131
|
-
|
132
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
133
|
-
A string or a list of strings indicating column names to be excluded from any
|
134
|
-
operations (such as train, transform, or inference). These specified column(s)
|
135
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
136
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
137
|
-
columns, like index columns, during training or inference.
|
138
|
-
|
139
|
-
drop_input_cols: Optional[bool], default=False
|
140
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
141
151
|
"""
|
142
152
|
|
143
153
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -167,7 +177,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
167
177
|
self.set_passthrough_cols(passthrough_cols)
|
168
178
|
self.set_drop_input_cols(drop_input_cols)
|
169
179
|
self.set_sample_weight_col(sample_weight_col)
|
170
|
-
deps = set(
|
180
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
171
181
|
|
172
182
|
self._deps = list(deps)
|
173
183
|
|
@@ -184,13 +194,14 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
184
194
|
args=init_args,
|
185
195
|
klass=sklearn.linear_model.MultiTaskElasticNet
|
186
196
|
)
|
187
|
-
self._sklearn_object = sklearn.linear_model.MultiTaskElasticNet(
|
197
|
+
self._sklearn_object: Any = sklearn.linear_model.MultiTaskElasticNet(
|
188
198
|
**cleaned_up_init_args,
|
189
199
|
)
|
190
200
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
191
201
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
192
202
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
193
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
203
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MultiTaskElasticNet.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
204
|
+
self._autogenerated = True
|
194
205
|
|
195
206
|
def _get_rand_id(self) -> str:
|
196
207
|
"""
|
@@ -246,54 +257,48 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
246
257
|
self
|
247
258
|
"""
|
248
259
|
self._infer_input_output_cols(dataset)
|
249
|
-
if isinstance(dataset,
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
self.
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
260
|
+
if isinstance(dataset, DataFrame):
|
261
|
+
session = dataset._session
|
262
|
+
assert session is not None # keep mypy happy
|
263
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
264
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
265
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
266
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
267
|
+
|
268
|
+
# Specify input columns so column pruning will be enforced
|
269
|
+
selected_cols = self._get_active_columns()
|
270
|
+
if len(selected_cols) > 0:
|
271
|
+
dataset = dataset.select(selected_cols)
|
272
|
+
|
273
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
|
+
|
275
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
276
|
+
if SNOWML_SPROC_ENV in os.environ:
|
277
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
278
|
+
project=_PROJECT,
|
279
|
+
subproject=_SUBPROJECT,
|
280
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskElasticNet.__class__.__name__),
|
281
|
+
api_calls=[Session.call],
|
282
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
283
|
+
)
|
284
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
285
|
+
pd_df.columns = dataset.columns
|
286
|
+
dataset = pd_df
|
287
|
+
|
288
|
+
model_trainer = ModelTrainerBuilder.build(
|
289
|
+
estimator=self._sklearn_object,
|
290
|
+
dataset=dataset,
|
291
|
+
input_cols=self.input_cols,
|
292
|
+
label_cols=self.label_cols,
|
293
|
+
sample_weight_col=self.sample_weight_col,
|
294
|
+
autogenerated=self._autogenerated,
|
295
|
+
subproject=_SUBPROJECT
|
296
|
+
)
|
297
|
+
self._sklearn_object = model_trainer.train()
|
265
298
|
self._is_fitted = True
|
266
299
|
self._get_model_signatures(dataset)
|
267
300
|
return self
|
268
301
|
|
269
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
270
|
-
session = dataset._session
|
271
|
-
assert session is not None # keep mypy happy
|
272
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
273
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
274
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
275
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
276
|
-
|
277
|
-
# Specify input columns so column pruning will be enforced
|
278
|
-
selected_cols = self._get_active_columns()
|
279
|
-
if len(selected_cols) > 0:
|
280
|
-
dataset = dataset.select(selected_cols)
|
281
|
-
|
282
|
-
estimator = self._sklearn_object
|
283
|
-
assert estimator is not None # Keep mypy happy
|
284
|
-
|
285
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
286
|
-
|
287
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
288
|
-
dataset,
|
289
|
-
session,
|
290
|
-
estimator,
|
291
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
292
|
-
self.input_cols,
|
293
|
-
self.label_cols,
|
294
|
-
self.sample_weight_col,
|
295
|
-
)
|
296
|
-
|
297
302
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
298
303
|
if self._drop_input_cols:
|
299
304
|
return []
|
@@ -481,11 +486,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
481
486
|
subproject=_SUBPROJECT,
|
482
487
|
custom_tags=dict([("autogen", True)]),
|
483
488
|
)
|
484
|
-
@telemetry.add_stmt_params_to_df(
|
485
|
-
project=_PROJECT,
|
486
|
-
subproject=_SUBPROJECT,
|
487
|
-
custom_tags=dict([("autogen", True)]),
|
488
|
-
)
|
489
489
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
490
490
|
"""Predict using the linear model
|
491
491
|
For more details on this function, see [sklearn.linear_model.MultiTaskElasticNet.predict]
|
@@ -539,11 +539,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
539
539
|
subproject=_SUBPROJECT,
|
540
540
|
custom_tags=dict([("autogen", True)]),
|
541
541
|
)
|
542
|
-
@telemetry.add_stmt_params_to_df(
|
543
|
-
project=_PROJECT,
|
544
|
-
subproject=_SUBPROJECT,
|
545
|
-
custom_tags=dict([("autogen", True)]),
|
546
|
-
)
|
547
542
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
548
543
|
"""Method not supported for this class.
|
549
544
|
|
@@ -600,7 +595,8 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
600
595
|
if False:
|
601
596
|
self.fit(dataset)
|
602
597
|
assert self._sklearn_object is not None
|
603
|
-
|
598
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
599
|
+
return labels
|
604
600
|
else:
|
605
601
|
raise NotImplementedError
|
606
602
|
|
@@ -636,6 +632,7 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
636
632
|
output_cols = []
|
637
633
|
|
638
634
|
# Make sure column names are valid snowflake identifiers.
|
635
|
+
assert output_cols is not None # Make MyPy happy
|
639
636
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
640
637
|
|
641
638
|
return rv
|
@@ -646,11 +643,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
646
643
|
subproject=_SUBPROJECT,
|
647
644
|
custom_tags=dict([("autogen", True)]),
|
648
645
|
)
|
649
|
-
@telemetry.add_stmt_params_to_df(
|
650
|
-
project=_PROJECT,
|
651
|
-
subproject=_SUBPROJECT,
|
652
|
-
custom_tags=dict([("autogen", True)]),
|
653
|
-
)
|
654
646
|
def predict_proba(
|
655
647
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
656
648
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -691,11 +683,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
691
683
|
subproject=_SUBPROJECT,
|
692
684
|
custom_tags=dict([("autogen", True)]),
|
693
685
|
)
|
694
|
-
@telemetry.add_stmt_params_to_df(
|
695
|
-
project=_PROJECT,
|
696
|
-
subproject=_SUBPROJECT,
|
697
|
-
custom_tags=dict([("autogen", True)]),
|
698
|
-
)
|
699
686
|
def predict_log_proba(
|
700
687
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
701
688
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,16 +719,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
732
719
|
return output_df
|
733
720
|
|
734
721
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
735
|
-
@telemetry.send_api_usage_telemetry(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
|
-
@telemetry.add_stmt_params_to_df(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
722
|
def decision_function(
|
746
723
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
747
724
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -842,11 +819,6 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
842
819
|
subproject=_SUBPROJECT,
|
843
820
|
custom_tags=dict([("autogen", True)]),
|
844
821
|
)
|
845
|
-
@telemetry.add_stmt_params_to_df(
|
846
|
-
project=_PROJECT,
|
847
|
-
subproject=_SUBPROJECT,
|
848
|
-
custom_tags=dict([("autogen", True)]),
|
849
|
-
)
|
850
822
|
def kneighbors(
|
851
823
|
self,
|
852
824
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -906,9 +878,9 @@ class MultiTaskElasticNet(BaseTransformer):
|
|
906
878
|
# For classifier, the type of predict is the same as the type of label
|
907
879
|
if self._sklearn_object._estimator_type == 'classifier':
|
908
880
|
# label columns is the desired type for output
|
909
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
881
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
910
882
|
# rename the output columns
|
911
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
883
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
912
884
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
913
885
|
([] if self._drop_input_cols else inputs)
|
914
886
|
+ outputs)
|