snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OrthogonalMatchingPursuit(BaseTransformer):
|
57
58
|
r"""Orthogonal Matching Pursuit model (OMP)
|
58
59
|
For more details on this class, see [sklearn.linear_model.OrthogonalMatchingPursuit]
|
@@ -60,6 +61,51 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_nonzero_coefs: int, default=None
|
64
110
|
Desired number of non-zero entries in the solution. If None (by
|
65
111
|
default) this value is set to 10% of n_features.
|
@@ -85,42 +131,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
85
131
|
calculations. Improves performance when :term:`n_targets` or
|
86
132
|
:term:`n_samples` is very large. Note that if you already have such
|
87
133
|
matrices, you can pass them directly to the fit method.
|
88
|
-
|
89
|
-
input_cols: Optional[Union[str, List[str]]]
|
90
|
-
A string or list of strings representing column names that contain features.
|
91
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
92
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
93
|
-
parameters are considered input columns.
|
94
|
-
|
95
|
-
label_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that contain labels.
|
97
|
-
This is a required param for estimators, as there is no way to infer these
|
98
|
-
columns. If this parameter is not specified, then object is fitted without
|
99
|
-
labels (like a transformer).
|
100
|
-
|
101
|
-
output_cols: Optional[Union[str, List[str]]]
|
102
|
-
A string or list of strings representing column names that will store the
|
103
|
-
output of predict and transform operations. The length of output_cols must
|
104
|
-
match the expected number of output columns from the specific estimator or
|
105
|
-
transformer class used.
|
106
|
-
If this parameter is not specified, output column names are derived by
|
107
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
108
|
-
column names work for estimator's predict() method, but output_cols must
|
109
|
-
be set explicitly for transformers.
|
110
|
-
|
111
|
-
sample_weight_col: Optional[str]
|
112
|
-
A string representing the column name containing the sample weights.
|
113
|
-
This argument is only required when working with weighted datasets.
|
114
|
-
|
115
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
116
|
-
A string or a list of strings indicating column names to be excluded from any
|
117
|
-
operations (such as train, transform, or inference). These specified column(s)
|
118
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
119
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
120
|
-
columns, like index columns, during training or inference.
|
121
|
-
|
122
|
-
drop_input_cols: Optional[bool], default=False
|
123
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
124
134
|
"""
|
125
135
|
|
126
136
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -146,7 +156,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
146
156
|
self.set_passthrough_cols(passthrough_cols)
|
147
157
|
self.set_drop_input_cols(drop_input_cols)
|
148
158
|
self.set_sample_weight_col(sample_weight_col)
|
149
|
-
deps = set(
|
159
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
150
160
|
|
151
161
|
self._deps = list(deps)
|
152
162
|
|
@@ -159,13 +169,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
159
169
|
args=init_args,
|
160
170
|
klass=sklearn.linear_model.OrthogonalMatchingPursuit
|
161
171
|
)
|
162
|
-
self._sklearn_object = sklearn.linear_model.OrthogonalMatchingPursuit(
|
172
|
+
self._sklearn_object: Any = sklearn.linear_model.OrthogonalMatchingPursuit(
|
163
173
|
**cleaned_up_init_args,
|
164
174
|
)
|
165
175
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
166
176
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
167
177
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
168
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
178
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
179
|
+
self._autogenerated = True
|
169
180
|
|
170
181
|
def _get_rand_id(self) -> str:
|
171
182
|
"""
|
@@ -221,54 +232,48 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
221
232
|
self
|
222
233
|
"""
|
223
234
|
self._infer_input_output_cols(dataset)
|
224
|
-
if isinstance(dataset,
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
self.
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
235
|
+
if isinstance(dataset, DataFrame):
|
236
|
+
session = dataset._session
|
237
|
+
assert session is not None # keep mypy happy
|
238
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
239
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
240
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
241
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
242
|
+
|
243
|
+
# Specify input columns so column pruning will be enforced
|
244
|
+
selected_cols = self._get_active_columns()
|
245
|
+
if len(selected_cols) > 0:
|
246
|
+
dataset = dataset.select(selected_cols)
|
247
|
+
|
248
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
249
|
+
|
250
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
251
|
+
if SNOWML_SPROC_ENV in os.environ:
|
252
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
253
|
+
project=_PROJECT,
|
254
|
+
subproject=_SUBPROJECT,
|
255
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__),
|
256
|
+
api_calls=[Session.call],
|
257
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
258
|
+
)
|
259
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
260
|
+
pd_df.columns = dataset.columns
|
261
|
+
dataset = pd_df
|
262
|
+
|
263
|
+
model_trainer = ModelTrainerBuilder.build(
|
264
|
+
estimator=self._sklearn_object,
|
265
|
+
dataset=dataset,
|
266
|
+
input_cols=self.input_cols,
|
267
|
+
label_cols=self.label_cols,
|
268
|
+
sample_weight_col=self.sample_weight_col,
|
269
|
+
autogenerated=self._autogenerated,
|
270
|
+
subproject=_SUBPROJECT
|
271
|
+
)
|
272
|
+
self._sklearn_object = model_trainer.train()
|
240
273
|
self._is_fitted = True
|
241
274
|
self._get_model_signatures(dataset)
|
242
275
|
return self
|
243
276
|
|
244
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
245
|
-
session = dataset._session
|
246
|
-
assert session is not None # keep mypy happy
|
247
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
248
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
249
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
250
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
251
|
-
|
252
|
-
# Specify input columns so column pruning will be enforced
|
253
|
-
selected_cols = self._get_active_columns()
|
254
|
-
if len(selected_cols) > 0:
|
255
|
-
dataset = dataset.select(selected_cols)
|
256
|
-
|
257
|
-
estimator = self._sklearn_object
|
258
|
-
assert estimator is not None # Keep mypy happy
|
259
|
-
|
260
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
261
|
-
|
262
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
263
|
-
dataset,
|
264
|
-
session,
|
265
|
-
estimator,
|
266
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
267
|
-
self.input_cols,
|
268
|
-
self.label_cols,
|
269
|
-
self.sample_weight_col,
|
270
|
-
)
|
271
|
-
|
272
277
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
273
278
|
if self._drop_input_cols:
|
274
279
|
return []
|
@@ -456,11 +461,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
456
461
|
subproject=_SUBPROJECT,
|
457
462
|
custom_tags=dict([("autogen", True)]),
|
458
463
|
)
|
459
|
-
@telemetry.add_stmt_params_to_df(
|
460
|
-
project=_PROJECT,
|
461
|
-
subproject=_SUBPROJECT,
|
462
|
-
custom_tags=dict([("autogen", True)]),
|
463
|
-
)
|
464
464
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
465
465
|
"""Predict using the linear model
|
466
466
|
For more details on this function, see [sklearn.linear_model.OrthogonalMatchingPursuit.predict]
|
@@ -514,11 +514,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
514
514
|
subproject=_SUBPROJECT,
|
515
515
|
custom_tags=dict([("autogen", True)]),
|
516
516
|
)
|
517
|
-
@telemetry.add_stmt_params_to_df(
|
518
|
-
project=_PROJECT,
|
519
|
-
subproject=_SUBPROJECT,
|
520
|
-
custom_tags=dict([("autogen", True)]),
|
521
|
-
)
|
522
517
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
523
518
|
"""Method not supported for this class.
|
524
519
|
|
@@ -575,7 +570,8 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
575
570
|
if False:
|
576
571
|
self.fit(dataset)
|
577
572
|
assert self._sklearn_object is not None
|
578
|
-
|
573
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
574
|
+
return labels
|
579
575
|
else:
|
580
576
|
raise NotImplementedError
|
581
577
|
|
@@ -611,6 +607,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
611
607
|
output_cols = []
|
612
608
|
|
613
609
|
# Make sure column names are valid snowflake identifiers.
|
610
|
+
assert output_cols is not None # Make MyPy happy
|
614
611
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
615
612
|
|
616
613
|
return rv
|
@@ -621,11 +618,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
621
618
|
subproject=_SUBPROJECT,
|
622
619
|
custom_tags=dict([("autogen", True)]),
|
623
620
|
)
|
624
|
-
@telemetry.add_stmt_params_to_df(
|
625
|
-
project=_PROJECT,
|
626
|
-
subproject=_SUBPROJECT,
|
627
|
-
custom_tags=dict([("autogen", True)]),
|
628
|
-
)
|
629
621
|
def predict_proba(
|
630
622
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
631
623
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -666,11 +658,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
666
658
|
subproject=_SUBPROJECT,
|
667
659
|
custom_tags=dict([("autogen", True)]),
|
668
660
|
)
|
669
|
-
@telemetry.add_stmt_params_to_df(
|
670
|
-
project=_PROJECT,
|
671
|
-
subproject=_SUBPROJECT,
|
672
|
-
custom_tags=dict([("autogen", True)]),
|
673
|
-
)
|
674
661
|
def predict_log_proba(
|
675
662
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
676
663
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -707,16 +694,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
707
694
|
return output_df
|
708
695
|
|
709
696
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
710
|
-
@telemetry.send_api_usage_telemetry(
|
711
|
-
project=_PROJECT,
|
712
|
-
subproject=_SUBPROJECT,
|
713
|
-
custom_tags=dict([("autogen", True)]),
|
714
|
-
)
|
715
|
-
@telemetry.add_stmt_params_to_df(
|
716
|
-
project=_PROJECT,
|
717
|
-
subproject=_SUBPROJECT,
|
718
|
-
custom_tags=dict([("autogen", True)]),
|
719
|
-
)
|
720
697
|
def decision_function(
|
721
698
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
722
699
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -817,11 +794,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
817
794
|
subproject=_SUBPROJECT,
|
818
795
|
custom_tags=dict([("autogen", True)]),
|
819
796
|
)
|
820
|
-
@telemetry.add_stmt_params_to_df(
|
821
|
-
project=_PROJECT,
|
822
|
-
subproject=_SUBPROJECT,
|
823
|
-
custom_tags=dict([("autogen", True)]),
|
824
|
-
)
|
825
797
|
def kneighbors(
|
826
798
|
self,
|
827
799
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -881,9 +853,9 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
881
853
|
# For classifier, the type of predict is the same as the type of label
|
882
854
|
if self._sklearn_object._estimator_type == 'classifier':
|
883
855
|
# label columns is the desired type for output
|
884
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
856
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
885
857
|
# rename the output columns
|
886
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
858
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
887
859
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
888
860
|
([] if self._drop_input_cols else inputs)
|
889
861
|
+ outputs)
|