snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -0,0 +1,146 @@
1
+ import inspect
2
+ from typing import List
3
+
4
+ import cloudpickle as cp
5
+ import numpy as np
6
+
7
+ from snowflake.ml._internal.exceptions import error_codes, exceptions
8
+
9
+
10
+ class ModelSpecifications:
11
+ """
12
+ A dataclass to define model based specifications like required imports, and package dependencies for Sproc/Udfs.
13
+ """
14
+
15
+ def __init__(self, imports: List[str], pkgDependencies: List[str]) -> None:
16
+ self.imports = imports
17
+ self.pkgDependencies = pkgDependencies
18
+
19
+
20
+ class SKLearnModelSpecifications(ModelSpecifications):
21
+ def __init__(self) -> None:
22
+ import sklearn
23
+
24
+ imports: List[str] = ["sklearn"]
25
+ # TODO(snandamuri): Replace cloudpickle with joblib after latest version of joblib is added to snowflake conda.
26
+ pkgDependencies = [
27
+ f"numpy=={np.__version__}",
28
+ f"scikit-learn=={sklearn.__version__}",
29
+ f"cloudpickle=={cp.__version__}",
30
+ ]
31
+
32
+ # A change from previous implementation.
33
+ # When reusing the Sprocs for all the fit() call in the session, the static dpendencies list should include
34
+ # all the possible dependencies required during the lifetime.
35
+
36
+ # Include XGBoost in the dependencies if it is installed.
37
+ try:
38
+ import xgboost
39
+ except ModuleNotFoundError:
40
+ pass
41
+ else:
42
+ pkgDependencies.append(f"xgboost=={xgboost.__version__}")
43
+
44
+ # Include lightgbm in the dependencies if it is installed.
45
+ try:
46
+ import lightgbm
47
+ except ModuleNotFoundError:
48
+ pass
49
+ else:
50
+ pkgDependencies.append(f"lightgbm=={lightgbm.__version__}")
51
+
52
+ super().__init__(imports=imports, pkgDependencies=pkgDependencies)
53
+
54
+
55
+ class XGBoostModelSpecifications(ModelSpecifications):
56
+ def __init__(self) -> None:
57
+ import xgboost
58
+
59
+ imports: List[str] = ["xgboost"]
60
+ pkgDependencies: List[str] = [
61
+ f"numpy=={np.__version__}",
62
+ f"xgboost=={xgboost.__version__}",
63
+ f"cloudpickle=={cp.__version__}",
64
+ ]
65
+ super().__init__(imports=imports, pkgDependencies=pkgDependencies)
66
+
67
+
68
+ class LightGBMModelSpecifications(ModelSpecifications):
69
+ def __init__(self) -> None:
70
+ import lightgbm
71
+
72
+ imports: List[str] = ["lightgbm"]
73
+ pkgDependencies: List[str] = [
74
+ f"numpy=={np.__version__}",
75
+ f"lightgbm=={lightgbm.__version__}",
76
+ f"cloudpickle=={cp.__version__}",
77
+ ]
78
+ super().__init__(imports=imports, pkgDependencies=pkgDependencies)
79
+
80
+
81
+ class SklearnModelSelectionModelSpecifications(ModelSpecifications):
82
+ def __init__(self) -> None:
83
+ import sklearn
84
+ import xgboost
85
+
86
+ imports: List[str] = ["sklearn", "xgboost"]
87
+ pkgDependencies: List[str] = [
88
+ f"numpy=={np.__version__}",
89
+ f"scikit-learn=={sklearn.__version__}",
90
+ f"cloudpickle=={cp.__version__}",
91
+ f"xgboost=={xgboost.__version__}",
92
+ ]
93
+
94
+ # Only include lightgbm in the dependencies if it is installed.
95
+ try:
96
+ import lightgbm
97
+ except ModuleNotFoundError:
98
+ pass
99
+ else:
100
+ imports.append("lightgbm")
101
+ pkgDependencies.append(f"lightgbm=={lightgbm.__version__}")
102
+
103
+ super().__init__(imports=imports, pkgDependencies=pkgDependencies)
104
+
105
+
106
+ class ModelSpecificationsBuilder:
107
+ """
108
+ A factory class to build ModelSpecifications object for different types of models.
109
+ """
110
+
111
+ @classmethod
112
+ def build(cls, model: object) -> ModelSpecifications:
113
+ """
114
+ A static factory method that builds ModelSpecifications object based on the module name of native model object.
115
+
116
+ Args:
117
+ model: Native model object to be trained.
118
+
119
+ Returns:
120
+ Appropriate ModelSpecification object
121
+
122
+ Raises:
123
+ SnowflakeMLException: Raises an exception the module of given model can't be determined.
124
+ TypeError: Raises the exception for unsupported modules.
125
+ """
126
+ module = inspect.getmodule(model)
127
+ if module is None:
128
+ raise exceptions.SnowflakeMLException(
129
+ error_code=error_codes.INVALID_TYPE,
130
+ original_exception=ValueError("Unable to infer model type of the given native model object."),
131
+ )
132
+ root_module_name = module.__name__.split(".")[0]
133
+ if root_module_name == "sklearn":
134
+ from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
135
+
136
+ if isinstance(model, GridSearchCV) or isinstance(model, RandomizedSearchCV):
137
+ return SklearnModelSelectionModelSpecifications()
138
+ return SKLearnModelSpecifications()
139
+ elif root_module_name == "xgboost":
140
+ return XGBoostModelSpecifications()
141
+ elif root_module_name == "lightgbm":
142
+ return LightGBMModelSpecifications()
143
+ else:
144
+ raise TypeError(
145
+ f"Unexpected module type: {root_module_name}." "Supported module types: sklearn, xgboost, lightgbm."
146
+ )
@@ -0,0 +1,13 @@
1
+ from typing import Protocol
2
+
3
+
4
+ class ModelTrainer(Protocol):
5
+ """
6
+ Interface for model trainer implementations.
7
+
8
+ There are multiple flavors of training like training with pandas datasets, training with
9
+ Snowpark datasets using sprocs, and out of core training with Snowpark datasets etc.
10
+ """
11
+
12
+ def train(self) -> object:
13
+ raise NotImplementedError
@@ -0,0 +1,78 @@
1
+ from typing import List, Optional, Union
2
+
3
+ import pandas as pd
4
+ from sklearn import model_selection
5
+
6
+ from snowflake.ml.modeling._internal.distributed_hpo_trainer import (
7
+ DistributedHPOTrainer,
8
+ )
9
+ from snowflake.ml.modeling._internal.estimator_utils import is_single_node
10
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
11
+ from snowflake.ml.modeling._internal.pandas_trainer import PandasModelTrainer
12
+ from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer
13
+ from snowflake.snowpark import DataFrame, Session
14
+
15
+ _PROJECT = "ModelDevelopment"
16
+
17
+
18
+ class ModelTrainerBuilder:
19
+ """
20
+ A builder class to create instances of ModelTrainer for different models and training conditions.
21
+
22
+ This class provides methods to build instances of ModelTrainer tailored to specific machine learning
23
+ models and training configurations like dataset's location etc. It abstracts the creation process,
24
+ allowing the user to obtain a configured ModelTrainer for a particular model architecture or configuration.
25
+ """
26
+
27
+ _ENABLE_DISTRIBUTED = True
28
+
29
+ @classmethod
30
+ def _check_if_distributed_hpo_enabled(cls, session: Session) -> bool:
31
+ return not is_single_node(session) and ModelTrainerBuilder._ENABLE_DISTRIBUTED is True
32
+
33
+ @classmethod
34
+ def build(
35
+ cls,
36
+ estimator: object,
37
+ dataset: Union[DataFrame, pd.DataFrame],
38
+ input_cols: Optional[List[str]] = None,
39
+ label_cols: Optional[List[str]] = None,
40
+ sample_weight_col: Optional[str] = None,
41
+ autogenerated: bool = False,
42
+ subproject: str = "",
43
+ ) -> ModelTrainer:
44
+ """
45
+ Builder method that creates an approproiate ModelTrainer instance based on the given params.
46
+ """
47
+ assert input_cols is not None # Make MyPy happpy
48
+ if isinstance(dataset, pd.DataFrame):
49
+ return PandasModelTrainer(
50
+ estimator=estimator,
51
+ dataset=dataset,
52
+ input_cols=input_cols,
53
+ label_cols=label_cols,
54
+ sample_weight_col=sample_weight_col,
55
+ )
56
+ elif isinstance(dataset, DataFrame):
57
+ trainer_klass = SnowparkModelTrainer
58
+ assert dataset._session is not None # Make MyPy happpy
59
+ if isinstance(estimator, model_selection.GridSearchCV) or isinstance(
60
+ estimator, model_selection.RandomizedSearchCV
61
+ ):
62
+ if ModelTrainerBuilder._check_if_distributed_hpo_enabled(session=dataset._session):
63
+ trainer_klass = DistributedHPOTrainer
64
+ return trainer_klass(
65
+ estimator=estimator,
66
+ dataset=dataset,
67
+ session=dataset._session,
68
+ input_cols=input_cols,
69
+ label_cols=label_cols,
70
+ sample_weight_col=sample_weight_col,
71
+ autogenerated=autogenerated,
72
+ subproject=subproject,
73
+ )
74
+ else:
75
+ raise TypeError(
76
+ f"Unexpected dataset type: {type(dataset)}."
77
+ "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
78
+ )
@@ -0,0 +1,54 @@
1
+ import inspect
2
+ from typing import List, Optional
3
+
4
+ import pandas as pd
5
+
6
+
7
+ class PandasModelTrainer:
8
+ """
9
+ A class for training machine learning models using Pandas datasets.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ estimator: object,
15
+ dataset: pd.DataFrame,
16
+ input_cols: List[str],
17
+ label_cols: Optional[List[str]],
18
+ sample_weight_col: Optional[str],
19
+ ) -> None:
20
+ """
21
+ Initializes the PandasModelTrainer with a model, a Pandas DataFrame, feature, and label column names.
22
+
23
+ Args:
24
+ estimator: SKLearn compatible estimator or transformer object.
25
+ dataset: The dataset used for training the model.
26
+ input_cols: The name(s) of one or more columns in a DataFrame containing a feature to be used for training.
27
+ label_cols: The name(s) of one or more columns in a DataFrame representing the target variable(s) to learn.
28
+ sample_weight_col: The column name representing the weight of training examples.
29
+ """
30
+ self.estimator = estimator
31
+ self.dataset = dataset
32
+ self.input_cols = input_cols
33
+ self.label_cols = label_cols
34
+ self.sample_weight_col = sample_weight_col
35
+
36
+ def train(self) -> object:
37
+ """
38
+ Trains the model using specified features and target columns from the dataset.
39
+
40
+ Returns:
41
+ Trained model
42
+ """
43
+ assert hasattr(self.estimator, "fit") # Keep mypy happy
44
+ argspec = inspect.getfullargspec(self.estimator.fit)
45
+ args = {"X": self.dataset[self.input_cols]}
46
+
47
+ if self.label_cols:
48
+ label_arg_name = "Y" if "Y" in argspec.args else "y"
49
+ args[label_arg_name] = self.dataset[self.label_cols].squeeze()
50
+
51
+ if self.sample_weight_col is not None and "sample_weight" in argspec.args:
52
+ args["sample_weight"] = self.dataset[self.sample_weight_col].squeeze()
53
+
54
+ return self.estimator.fit(**args)