snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KNeighborsClassifier(BaseTransformer):
|
57
58
|
r"""Classifier implementing the k-nearest neighbors vote
|
58
59
|
For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
|
@@ -60,6 +61,51 @@ class KNeighborsClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_neighbors: int, default=5
|
64
110
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
111
|
|
@@ -125,42 +171,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
125
171
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
126
172
|
for more details.
|
127
173
|
Doesn't affect :meth:`fit` method.
|
128
|
-
|
129
|
-
input_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that contain features.
|
131
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
132
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
133
|
-
parameters are considered input columns.
|
134
|
-
|
135
|
-
label_cols: Optional[Union[str, List[str]]]
|
136
|
-
A string or list of strings representing column names that contain labels.
|
137
|
-
This is a required param for estimators, as there is no way to infer these
|
138
|
-
columns. If this parameter is not specified, then object is fitted without
|
139
|
-
labels (like a transformer).
|
140
|
-
|
141
|
-
output_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that will store the
|
143
|
-
output of predict and transform operations. The length of output_cols must
|
144
|
-
match the expected number of output columns from the specific estimator or
|
145
|
-
transformer class used.
|
146
|
-
If this parameter is not specified, output column names are derived by
|
147
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
148
|
-
column names work for estimator's predict() method, but output_cols must
|
149
|
-
be set explicitly for transformers.
|
150
|
-
|
151
|
-
sample_weight_col: Optional[str]
|
152
|
-
A string representing the column name containing the sample weights.
|
153
|
-
This argument is only required when working with weighted datasets.
|
154
|
-
|
155
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
156
|
-
A string or a list of strings indicating column names to be excluded from any
|
157
|
-
operations (such as train, transform, or inference). These specified column(s)
|
158
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
159
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
160
|
-
columns, like index columns, during training or inference.
|
161
|
-
|
162
|
-
drop_input_cols: Optional[bool], default=False
|
163
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
164
174
|
"""
|
165
175
|
|
166
176
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -189,7 +199,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
189
199
|
self.set_passthrough_cols(passthrough_cols)
|
190
200
|
self.set_drop_input_cols(drop_input_cols)
|
191
201
|
self.set_sample_weight_col(sample_weight_col)
|
192
|
-
deps = set(
|
202
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
193
203
|
|
194
204
|
self._deps = list(deps)
|
195
205
|
|
@@ -205,13 +215,14 @@ class KNeighborsClassifier(BaseTransformer):
|
|
205
215
|
args=init_args,
|
206
216
|
klass=sklearn.neighbors.KNeighborsClassifier
|
207
217
|
)
|
208
|
-
self._sklearn_object = sklearn.neighbors.KNeighborsClassifier(
|
218
|
+
self._sklearn_object: Any = sklearn.neighbors.KNeighborsClassifier(
|
209
219
|
**cleaned_up_init_args,
|
210
220
|
)
|
211
221
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
212
222
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
213
223
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
214
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
224
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
225
|
+
self._autogenerated = True
|
215
226
|
|
216
227
|
def _get_rand_id(self) -> str:
|
217
228
|
"""
|
@@ -267,54 +278,48 @@ class KNeighborsClassifier(BaseTransformer):
|
|
267
278
|
self
|
268
279
|
"""
|
269
280
|
self._infer_input_output_cols(dataset)
|
270
|
-
if isinstance(dataset,
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
self.
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
281
|
+
if isinstance(dataset, DataFrame):
|
282
|
+
session = dataset._session
|
283
|
+
assert session is not None # keep mypy happy
|
284
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
285
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
286
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
287
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
288
|
+
|
289
|
+
# Specify input columns so column pruning will be enforced
|
290
|
+
selected_cols = self._get_active_columns()
|
291
|
+
if len(selected_cols) > 0:
|
292
|
+
dataset = dataset.select(selected_cols)
|
293
|
+
|
294
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
|
+
|
296
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
|
+
if SNOWML_SPROC_ENV in os.environ:
|
298
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
299
|
+
project=_PROJECT,
|
300
|
+
subproject=_SUBPROJECT,
|
301
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNeighborsClassifier.__class__.__name__),
|
302
|
+
api_calls=[Session.call],
|
303
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
|
+
)
|
305
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
306
|
+
pd_df.columns = dataset.columns
|
307
|
+
dataset = pd_df
|
308
|
+
|
309
|
+
model_trainer = ModelTrainerBuilder.build(
|
310
|
+
estimator=self._sklearn_object,
|
311
|
+
dataset=dataset,
|
312
|
+
input_cols=self.input_cols,
|
313
|
+
label_cols=self.label_cols,
|
314
|
+
sample_weight_col=self.sample_weight_col,
|
315
|
+
autogenerated=self._autogenerated,
|
316
|
+
subproject=_SUBPROJECT
|
317
|
+
)
|
318
|
+
self._sklearn_object = model_trainer.train()
|
286
319
|
self._is_fitted = True
|
287
320
|
self._get_model_signatures(dataset)
|
288
321
|
return self
|
289
322
|
|
290
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
291
|
-
session = dataset._session
|
292
|
-
assert session is not None # keep mypy happy
|
293
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
294
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
295
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
296
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
297
|
-
|
298
|
-
# Specify input columns so column pruning will be enforced
|
299
|
-
selected_cols = self._get_active_columns()
|
300
|
-
if len(selected_cols) > 0:
|
301
|
-
dataset = dataset.select(selected_cols)
|
302
|
-
|
303
|
-
estimator = self._sklearn_object
|
304
|
-
assert estimator is not None # Keep mypy happy
|
305
|
-
|
306
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
307
|
-
|
308
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
309
|
-
dataset,
|
310
|
-
session,
|
311
|
-
estimator,
|
312
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
313
|
-
self.input_cols,
|
314
|
-
self.label_cols,
|
315
|
-
self.sample_weight_col,
|
316
|
-
)
|
317
|
-
|
318
323
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
319
324
|
if self._drop_input_cols:
|
320
325
|
return []
|
@@ -502,11 +507,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
502
507
|
subproject=_SUBPROJECT,
|
503
508
|
custom_tags=dict([("autogen", True)]),
|
504
509
|
)
|
505
|
-
@telemetry.add_stmt_params_to_df(
|
506
|
-
project=_PROJECT,
|
507
|
-
subproject=_SUBPROJECT,
|
508
|
-
custom_tags=dict([("autogen", True)]),
|
509
|
-
)
|
510
510
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
511
511
|
"""Predict the class labels for the provided data
|
512
512
|
For more details on this function, see [sklearn.neighbors.KNeighborsClassifier.predict]
|
@@ -560,11 +560,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
560
560
|
subproject=_SUBPROJECT,
|
561
561
|
custom_tags=dict([("autogen", True)]),
|
562
562
|
)
|
563
|
-
@telemetry.add_stmt_params_to_df(
|
564
|
-
project=_PROJECT,
|
565
|
-
subproject=_SUBPROJECT,
|
566
|
-
custom_tags=dict([("autogen", True)]),
|
567
|
-
)
|
568
563
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
569
564
|
"""Method not supported for this class.
|
570
565
|
|
@@ -621,7 +616,8 @@ class KNeighborsClassifier(BaseTransformer):
|
|
621
616
|
if False:
|
622
617
|
self.fit(dataset)
|
623
618
|
assert self._sklearn_object is not None
|
624
|
-
|
619
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
620
|
+
return labels
|
625
621
|
else:
|
626
622
|
raise NotImplementedError
|
627
623
|
|
@@ -657,6 +653,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
657
653
|
output_cols = []
|
658
654
|
|
659
655
|
# Make sure column names are valid snowflake identifiers.
|
656
|
+
assert output_cols is not None # Make MyPy happy
|
660
657
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
661
658
|
|
662
659
|
return rv
|
@@ -667,11 +664,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
667
664
|
subproject=_SUBPROJECT,
|
668
665
|
custom_tags=dict([("autogen", True)]),
|
669
666
|
)
|
670
|
-
@telemetry.add_stmt_params_to_df(
|
671
|
-
project=_PROJECT,
|
672
|
-
subproject=_SUBPROJECT,
|
673
|
-
custom_tags=dict([("autogen", True)]),
|
674
|
-
)
|
675
667
|
def predict_proba(
|
676
668
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
677
669
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -714,11 +706,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
714
706
|
subproject=_SUBPROJECT,
|
715
707
|
custom_tags=dict([("autogen", True)]),
|
716
708
|
)
|
717
|
-
@telemetry.add_stmt_params_to_df(
|
718
|
-
project=_PROJECT,
|
719
|
-
subproject=_SUBPROJECT,
|
720
|
-
custom_tags=dict([("autogen", True)]),
|
721
|
-
)
|
722
709
|
def predict_log_proba(
|
723
710
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
724
711
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -757,16 +744,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
757
744
|
return output_df
|
758
745
|
|
759
746
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
760
|
-
@telemetry.send_api_usage_telemetry(
|
761
|
-
project=_PROJECT,
|
762
|
-
subproject=_SUBPROJECT,
|
763
|
-
custom_tags=dict([("autogen", True)]),
|
764
|
-
)
|
765
|
-
@telemetry.add_stmt_params_to_df(
|
766
|
-
project=_PROJECT,
|
767
|
-
subproject=_SUBPROJECT,
|
768
|
-
custom_tags=dict([("autogen", True)]),
|
769
|
-
)
|
770
747
|
def decision_function(
|
771
748
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
772
749
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -867,11 +844,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
867
844
|
subproject=_SUBPROJECT,
|
868
845
|
custom_tags=dict([("autogen", True)]),
|
869
846
|
)
|
870
|
-
@telemetry.add_stmt_params_to_df(
|
871
|
-
project=_PROJECT,
|
872
|
-
subproject=_SUBPROJECT,
|
873
|
-
custom_tags=dict([("autogen", True)]),
|
874
|
-
)
|
875
847
|
def kneighbors(
|
876
848
|
self,
|
877
849
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -933,9 +905,9 @@ class KNeighborsClassifier(BaseTransformer):
|
|
933
905
|
# For classifier, the type of predict is the same as the type of label
|
934
906
|
if self._sklearn_object._estimator_type == 'classifier':
|
935
907
|
# label columns is the desired type for output
|
936
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
908
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
937
909
|
# rename the output columns
|
938
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
910
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
939
911
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
940
912
|
([] if self._drop_input_cols else inputs)
|
941
913
|
+ outputs)
|