snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Isomap(BaseTransformer):
|
57
58
|
r"""Isomap Embedding
|
58
59
|
For more details on this class, see [sklearn.manifold.Isomap]
|
@@ -60,6 +61,49 @@ class Isomap(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_neighbors: int or None, default=5
|
64
108
|
Number of neighbors to consider for each point. If `n_neighbors` is an int,
|
65
109
|
then `radius` must be `None`.
|
@@ -124,42 +168,6 @@ class Isomap(BaseTransformer):
|
|
124
168
|
|
125
169
|
metric_params: dict, default=None
|
126
170
|
Additional keyword arguments for the metric function.
|
127
|
-
|
128
|
-
input_cols: Optional[Union[str, List[str]]]
|
129
|
-
A string or list of strings representing column names that contain features.
|
130
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
131
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
132
|
-
parameters are considered input columns.
|
133
|
-
|
134
|
-
label_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain labels.
|
136
|
-
This is a required param for estimators, as there is no way to infer these
|
137
|
-
columns. If this parameter is not specified, then object is fitted without
|
138
|
-
labels (like a transformer).
|
139
|
-
|
140
|
-
output_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that will store the
|
142
|
-
output of predict and transform operations. The length of output_cols must
|
143
|
-
match the expected number of output columns from the specific estimator or
|
144
|
-
transformer class used.
|
145
|
-
If this parameter is not specified, output column names are derived by
|
146
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
147
|
-
column names work for estimator's predict() method, but output_cols must
|
148
|
-
be set explicitly for transformers.
|
149
|
-
|
150
|
-
sample_weight_col: Optional[str]
|
151
|
-
A string representing the column name containing the sample weights.
|
152
|
-
This argument is only required when working with weighted datasets.
|
153
|
-
|
154
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
155
|
-
A string or a list of strings indicating column names to be excluded from any
|
156
|
-
operations (such as train, transform, or inference). These specified column(s)
|
157
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
158
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
159
|
-
columns, like index columns, during training or inference.
|
160
|
-
|
161
|
-
drop_input_cols: Optional[bool], default=False
|
162
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
163
171
|
"""
|
164
172
|
|
165
173
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -192,7 +200,7 @@ class Isomap(BaseTransformer):
|
|
192
200
|
self.set_passthrough_cols(passthrough_cols)
|
193
201
|
self.set_drop_input_cols(drop_input_cols)
|
194
202
|
self.set_sample_weight_col(sample_weight_col)
|
195
|
-
deps = set(
|
203
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
196
204
|
|
197
205
|
self._deps = list(deps)
|
198
206
|
|
@@ -212,13 +220,14 @@ class Isomap(BaseTransformer):
|
|
212
220
|
args=init_args,
|
213
221
|
klass=sklearn.manifold.Isomap
|
214
222
|
)
|
215
|
-
self._sklearn_object = sklearn.manifold.Isomap(
|
223
|
+
self._sklearn_object: Any = sklearn.manifold.Isomap(
|
216
224
|
**cleaned_up_init_args,
|
217
225
|
)
|
218
226
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
219
227
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
220
228
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
221
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
229
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Isomap.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
230
|
+
self._autogenerated = True
|
222
231
|
|
223
232
|
def _get_rand_id(self) -> str:
|
224
233
|
"""
|
@@ -274,54 +283,48 @@ class Isomap(BaseTransformer):
|
|
274
283
|
self
|
275
284
|
"""
|
276
285
|
self._infer_input_output_cols(dataset)
|
277
|
-
if isinstance(dataset,
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
self.
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
286
|
+
if isinstance(dataset, DataFrame):
|
287
|
+
session = dataset._session
|
288
|
+
assert session is not None # keep mypy happy
|
289
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
290
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
291
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
292
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
293
|
+
|
294
|
+
# Specify input columns so column pruning will be enforced
|
295
|
+
selected_cols = self._get_active_columns()
|
296
|
+
if len(selected_cols) > 0:
|
297
|
+
dataset = dataset.select(selected_cols)
|
298
|
+
|
299
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
300
|
+
|
301
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
302
|
+
if SNOWML_SPROC_ENV in os.environ:
|
303
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
304
|
+
project=_PROJECT,
|
305
|
+
subproject=_SUBPROJECT,
|
306
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Isomap.__class__.__name__),
|
307
|
+
api_calls=[Session.call],
|
308
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
309
|
+
)
|
310
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
311
|
+
pd_df.columns = dataset.columns
|
312
|
+
dataset = pd_df
|
313
|
+
|
314
|
+
model_trainer = ModelTrainerBuilder.build(
|
315
|
+
estimator=self._sklearn_object,
|
316
|
+
dataset=dataset,
|
317
|
+
input_cols=self.input_cols,
|
318
|
+
label_cols=self.label_cols,
|
319
|
+
sample_weight_col=self.sample_weight_col,
|
320
|
+
autogenerated=self._autogenerated,
|
321
|
+
subproject=_SUBPROJECT
|
322
|
+
)
|
323
|
+
self._sklearn_object = model_trainer.train()
|
293
324
|
self._is_fitted = True
|
294
325
|
self._get_model_signatures(dataset)
|
295
326
|
return self
|
296
327
|
|
297
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
298
|
-
session = dataset._session
|
299
|
-
assert session is not None # keep mypy happy
|
300
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
301
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
302
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
303
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
304
|
-
|
305
|
-
# Specify input columns so column pruning will be enforced
|
306
|
-
selected_cols = self._get_active_columns()
|
307
|
-
if len(selected_cols) > 0:
|
308
|
-
dataset = dataset.select(selected_cols)
|
309
|
-
|
310
|
-
estimator = self._sklearn_object
|
311
|
-
assert estimator is not None # Keep mypy happy
|
312
|
-
|
313
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
314
|
-
|
315
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
316
|
-
dataset,
|
317
|
-
session,
|
318
|
-
estimator,
|
319
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
320
|
-
self.input_cols,
|
321
|
-
self.label_cols,
|
322
|
-
self.sample_weight_col,
|
323
|
-
)
|
324
|
-
|
325
328
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
326
329
|
if self._drop_input_cols:
|
327
330
|
return []
|
@@ -509,11 +512,6 @@ class Isomap(BaseTransformer):
|
|
509
512
|
subproject=_SUBPROJECT,
|
510
513
|
custom_tags=dict([("autogen", True)]),
|
511
514
|
)
|
512
|
-
@telemetry.add_stmt_params_to_df(
|
513
|
-
project=_PROJECT,
|
514
|
-
subproject=_SUBPROJECT,
|
515
|
-
custom_tags=dict([("autogen", True)]),
|
516
|
-
)
|
517
515
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
518
516
|
"""Method not supported for this class.
|
519
517
|
|
@@ -565,11 +563,6 @@ class Isomap(BaseTransformer):
|
|
565
563
|
subproject=_SUBPROJECT,
|
566
564
|
custom_tags=dict([("autogen", True)]),
|
567
565
|
)
|
568
|
-
@telemetry.add_stmt_params_to_df(
|
569
|
-
project=_PROJECT,
|
570
|
-
subproject=_SUBPROJECT,
|
571
|
-
custom_tags=dict([("autogen", True)]),
|
572
|
-
)
|
573
566
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
574
567
|
"""Transform X
|
575
568
|
For more details on this function, see [sklearn.manifold.Isomap.transform]
|
@@ -628,7 +621,8 @@ class Isomap(BaseTransformer):
|
|
628
621
|
if False:
|
629
622
|
self.fit(dataset)
|
630
623
|
assert self._sklearn_object is not None
|
631
|
-
|
624
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
625
|
+
return labels
|
632
626
|
else:
|
633
627
|
raise NotImplementedError
|
634
628
|
|
@@ -664,6 +658,7 @@ class Isomap(BaseTransformer):
|
|
664
658
|
output_cols = []
|
665
659
|
|
666
660
|
# Make sure column names are valid snowflake identifiers.
|
661
|
+
assert output_cols is not None # Make MyPy happy
|
667
662
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
668
663
|
|
669
664
|
return rv
|
@@ -674,11 +669,6 @@ class Isomap(BaseTransformer):
|
|
674
669
|
subproject=_SUBPROJECT,
|
675
670
|
custom_tags=dict([("autogen", True)]),
|
676
671
|
)
|
677
|
-
@telemetry.add_stmt_params_to_df(
|
678
|
-
project=_PROJECT,
|
679
|
-
subproject=_SUBPROJECT,
|
680
|
-
custom_tags=dict([("autogen", True)]),
|
681
|
-
)
|
682
672
|
def predict_proba(
|
683
673
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
684
674
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -719,11 +709,6 @@ class Isomap(BaseTransformer):
|
|
719
709
|
subproject=_SUBPROJECT,
|
720
710
|
custom_tags=dict([("autogen", True)]),
|
721
711
|
)
|
722
|
-
@telemetry.add_stmt_params_to_df(
|
723
|
-
project=_PROJECT,
|
724
|
-
subproject=_SUBPROJECT,
|
725
|
-
custom_tags=dict([("autogen", True)]),
|
726
|
-
)
|
727
712
|
def predict_log_proba(
|
728
713
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
729
714
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -760,16 +745,6 @@ class Isomap(BaseTransformer):
|
|
760
745
|
return output_df
|
761
746
|
|
762
747
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
763
|
-
@telemetry.send_api_usage_telemetry(
|
764
|
-
project=_PROJECT,
|
765
|
-
subproject=_SUBPROJECT,
|
766
|
-
custom_tags=dict([("autogen", True)]),
|
767
|
-
)
|
768
|
-
@telemetry.add_stmt_params_to_df(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
748
|
def decision_function(
|
774
749
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
775
750
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -868,11 +843,6 @@ class Isomap(BaseTransformer):
|
|
868
843
|
subproject=_SUBPROJECT,
|
869
844
|
custom_tags=dict([("autogen", True)]),
|
870
845
|
)
|
871
|
-
@telemetry.add_stmt_params_to_df(
|
872
|
-
project=_PROJECT,
|
873
|
-
subproject=_SUBPROJECT,
|
874
|
-
custom_tags=dict([("autogen", True)]),
|
875
|
-
)
|
876
846
|
def kneighbors(
|
877
847
|
self,
|
878
848
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -932,9 +902,9 @@ class Isomap(BaseTransformer):
|
|
932
902
|
# For classifier, the type of predict is the same as the type of label
|
933
903
|
if self._sklearn_object._estimator_type == 'classifier':
|
934
904
|
# label columns is the desired type for output
|
935
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
905
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
936
906
|
# rename the output columns
|
937
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
907
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
938
908
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
939
909
|
([] if self._drop_input_cols else inputs)
|
940
910
|
+ outputs)
|