snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class DictionaryLearning(BaseTransformer):
57
58
  r"""Dictionary learning
58
59
  For more details on this class, see [sklearn.decomposition.DictionaryLearning]
@@ -60,6 +61,49 @@ class DictionaryLearning(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Number of dictionary elements to extract. If None, then ``n_components``
65
109
  is set to ``n_features``.
@@ -148,42 +192,6 @@ class DictionaryLearning(BaseTransformer):
148
192
  transform_max_iter: int, default=1000
149
193
  Maximum number of iterations to perform if `algorithm='lasso_cd'` or
150
194
  `'lasso_lars'`.
151
-
152
- input_cols: Optional[Union[str, List[str]]]
153
- A string or list of strings representing column names that contain features.
154
- If this parameter is not specified, all columns in the input DataFrame except
155
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
156
- parameters are considered input columns.
157
-
158
- label_cols: Optional[Union[str, List[str]]]
159
- A string or list of strings representing column names that contain labels.
160
- This is a required param for estimators, as there is no way to infer these
161
- columns. If this parameter is not specified, then object is fitted without
162
- labels (like a transformer).
163
-
164
- output_cols: Optional[Union[str, List[str]]]
165
- A string or list of strings representing column names that will store the
166
- output of predict and transform operations. The length of output_cols must
167
- match the expected number of output columns from the specific estimator or
168
- transformer class used.
169
- If this parameter is not specified, output column names are derived by
170
- adding an OUTPUT_ prefix to the label column names. These inferred output
171
- column names work for estimator's predict() method, but output_cols must
172
- be set explicitly for transformers.
173
-
174
- sample_weight_col: Optional[str]
175
- A string representing the column name containing the sample weights.
176
- This argument is only required when working with weighted datasets.
177
-
178
- passthrough_cols: Optional[Union[str, List[str]]]
179
- A string or a list of strings indicating column names to be excluded from any
180
- operations (such as train, transform, or inference). These specified column(s)
181
- will remain untouched throughout the process. This option is helpful in scenarios
182
- requiring automatic input_cols inference, but need to avoid using specific
183
- columns, like index columns, during training or inference.
184
-
185
- drop_input_cols: Optional[bool], default=False
186
- If set, the response of predict(), transform() methods will not contain input columns.
187
195
  """
188
196
 
189
197
  def __init__( # type: ignore[no-untyped-def]
@@ -222,7 +230,7 @@ class DictionaryLearning(BaseTransformer):
222
230
  self.set_passthrough_cols(passthrough_cols)
223
231
  self.set_drop_input_cols(drop_input_cols)
224
232
  self.set_sample_weight_col(sample_weight_col)
225
- deps = set(SklearnWrapperProvider().dependencies)
233
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
226
234
 
227
235
  self._deps = list(deps)
228
236
 
@@ -248,13 +256,14 @@ class DictionaryLearning(BaseTransformer):
248
256
  args=init_args,
249
257
  klass=sklearn.decomposition.DictionaryLearning
250
258
  )
251
- self._sklearn_object = sklearn.decomposition.DictionaryLearning(
259
+ self._sklearn_object: Any = sklearn.decomposition.DictionaryLearning(
252
260
  **cleaned_up_init_args,
253
261
  )
254
262
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
255
263
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
256
264
  self._snowpark_cols: Optional[List[str]] = self.input_cols
257
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
265
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=DictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
266
+ self._autogenerated = True
258
267
 
259
268
  def _get_rand_id(self) -> str:
260
269
  """
@@ -310,54 +319,48 @@ class DictionaryLearning(BaseTransformer):
310
319
  self
311
320
  """
312
321
  self._infer_input_output_cols(dataset)
313
- if isinstance(dataset, pd.DataFrame):
314
- assert self._sklearn_object is not None # keep mypy happy
315
- self._sklearn_object = self._handlers.fit_pandas(
316
- dataset,
317
- self._sklearn_object,
318
- self.input_cols,
319
- self.label_cols,
320
- self.sample_weight_col
321
- )
322
- elif isinstance(dataset, DataFrame):
323
- self._fit_snowpark(dataset)
324
- else:
325
- raise TypeError(
326
- f"Unexpected dataset type: {type(dataset)}."
327
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
328
- )
322
+ if isinstance(dataset, DataFrame):
323
+ session = dataset._session
324
+ assert session is not None # keep mypy happy
325
+ # Validate that key package version in user workspace are supported in snowflake conda channel
326
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
327
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
328
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
329
+
330
+ # Specify input columns so column pruning will be enforced
331
+ selected_cols = self._get_active_columns()
332
+ if len(selected_cols) > 0:
333
+ dataset = dataset.select(selected_cols)
334
+
335
+ self._snowpark_cols = dataset.select(self.input_cols).columns
336
+
337
+ # If we are already in a stored procedure, no need to kick off another one.
338
+ if SNOWML_SPROC_ENV in os.environ:
339
+ statement_params = telemetry.get_function_usage_statement_params(
340
+ project=_PROJECT,
341
+ subproject=_SUBPROJECT,
342
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DictionaryLearning.__class__.__name__),
343
+ api_calls=[Session.call],
344
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
345
+ )
346
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
347
+ pd_df.columns = dataset.columns
348
+ dataset = pd_df
349
+
350
+ model_trainer = ModelTrainerBuilder.build(
351
+ estimator=self._sklearn_object,
352
+ dataset=dataset,
353
+ input_cols=self.input_cols,
354
+ label_cols=self.label_cols,
355
+ sample_weight_col=self.sample_weight_col,
356
+ autogenerated=self._autogenerated,
357
+ subproject=_SUBPROJECT
358
+ )
359
+ self._sklearn_object = model_trainer.train()
329
360
  self._is_fitted = True
330
361
  self._get_model_signatures(dataset)
331
362
  return self
332
363
 
333
- def _fit_snowpark(self, dataset: DataFrame) -> None:
334
- session = dataset._session
335
- assert session is not None # keep mypy happy
336
- # Validate that key package version in user workspace are supported in snowflake conda channel
337
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
338
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
339
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
340
-
341
- # Specify input columns so column pruning will be enforced
342
- selected_cols = self._get_active_columns()
343
- if len(selected_cols) > 0:
344
- dataset = dataset.select(selected_cols)
345
-
346
- estimator = self._sklearn_object
347
- assert estimator is not None # Keep mypy happy
348
-
349
- self._snowpark_cols = dataset.select(self.input_cols).columns
350
-
351
- self._sklearn_object = self._handlers.fit_snowpark(
352
- dataset,
353
- session,
354
- estimator,
355
- ["snowflake-snowpark-python"] + self._get_dependencies(),
356
- self.input_cols,
357
- self.label_cols,
358
- self.sample_weight_col,
359
- )
360
-
361
364
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
362
365
  if self._drop_input_cols:
363
366
  return []
@@ -545,11 +548,6 @@ class DictionaryLearning(BaseTransformer):
545
548
  subproject=_SUBPROJECT,
546
549
  custom_tags=dict([("autogen", True)]),
547
550
  )
548
- @telemetry.add_stmt_params_to_df(
549
- project=_PROJECT,
550
- subproject=_SUBPROJECT,
551
- custom_tags=dict([("autogen", True)]),
552
- )
553
551
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
554
552
  """Method not supported for this class.
555
553
 
@@ -601,11 +599,6 @@ class DictionaryLearning(BaseTransformer):
601
599
  subproject=_SUBPROJECT,
602
600
  custom_tags=dict([("autogen", True)]),
603
601
  )
604
- @telemetry.add_stmt_params_to_df(
605
- project=_PROJECT,
606
- subproject=_SUBPROJECT,
607
- custom_tags=dict([("autogen", True)]),
608
- )
609
602
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
610
603
  """Encode the data as a sparse combination of the dictionary atoms
611
604
  For more details on this function, see [sklearn.decomposition.DictionaryLearning.transform]
@@ -664,7 +657,8 @@ class DictionaryLearning(BaseTransformer):
664
657
  if False:
665
658
  self.fit(dataset)
666
659
  assert self._sklearn_object is not None
667
- return self._sklearn_object.labels_
660
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
661
+ return labels
668
662
  else:
669
663
  raise NotImplementedError
670
664
 
@@ -700,6 +694,7 @@ class DictionaryLearning(BaseTransformer):
700
694
  output_cols = []
701
695
 
702
696
  # Make sure column names are valid snowflake identifiers.
697
+ assert output_cols is not None # Make MyPy happy
703
698
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
704
699
 
705
700
  return rv
@@ -710,11 +705,6 @@ class DictionaryLearning(BaseTransformer):
710
705
  subproject=_SUBPROJECT,
711
706
  custom_tags=dict([("autogen", True)]),
712
707
  )
713
- @telemetry.add_stmt_params_to_df(
714
- project=_PROJECT,
715
- subproject=_SUBPROJECT,
716
- custom_tags=dict([("autogen", True)]),
717
- )
718
708
  def predict_proba(
719
709
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
720
710
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -755,11 +745,6 @@ class DictionaryLearning(BaseTransformer):
755
745
  subproject=_SUBPROJECT,
756
746
  custom_tags=dict([("autogen", True)]),
757
747
  )
758
- @telemetry.add_stmt_params_to_df(
759
- project=_PROJECT,
760
- subproject=_SUBPROJECT,
761
- custom_tags=dict([("autogen", True)]),
762
- )
763
748
  def predict_log_proba(
764
749
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
765
750
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -796,16 +781,6 @@ class DictionaryLearning(BaseTransformer):
796
781
  return output_df
797
782
 
798
783
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
799
- @telemetry.send_api_usage_telemetry(
800
- project=_PROJECT,
801
- subproject=_SUBPROJECT,
802
- custom_tags=dict([("autogen", True)]),
803
- )
804
- @telemetry.add_stmt_params_to_df(
805
- project=_PROJECT,
806
- subproject=_SUBPROJECT,
807
- custom_tags=dict([("autogen", True)]),
808
- )
809
784
  def decision_function(
810
785
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
811
786
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -904,11 +879,6 @@ class DictionaryLearning(BaseTransformer):
904
879
  subproject=_SUBPROJECT,
905
880
  custom_tags=dict([("autogen", True)]),
906
881
  )
907
- @telemetry.add_stmt_params_to_df(
908
- project=_PROJECT,
909
- subproject=_SUBPROJECT,
910
- custom_tags=dict([("autogen", True)]),
911
- )
912
882
  def kneighbors(
913
883
  self,
914
884
  dataset: Union[DataFrame, pd.DataFrame],
@@ -968,9 +938,9 @@ class DictionaryLearning(BaseTransformer):
968
938
  # For classifier, the type of predict is the same as the type of label
969
939
  if self._sklearn_object._estimator_type == 'classifier':
970
940
  # label columns is the desired type for output
971
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
941
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
942
  # rename the output columns
973
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
943
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
944
  self._model_signature_dict["predict"] = ModelSignature(inputs,
975
945
  ([] if self._drop_input_cols else inputs)
976
946
  + outputs)