teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,464 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.4
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.LDA import LDA
|
|
30
|
-
|
|
31
|
-
class LDATopicSummary:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
summary = False,
|
|
36
|
-
out_topicwordnum = "all",
|
|
37
|
-
word_weight = False,
|
|
38
|
-
word_count = False,
|
|
39
|
-
out_byword = True,
|
|
40
|
-
object_sequence_column = None,
|
|
41
|
-
object_order_column = None):
|
|
42
|
-
"""
|
|
43
|
-
DESCRIPTION:
|
|
44
|
-
The LDATopicSummary function displays in readable form information
|
|
45
|
-
from the binary model teradataml DataFrame generated by the function
|
|
46
|
-
LDA.
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
PARAMETERS:
|
|
50
|
-
object:
|
|
51
|
-
Required Argument.
|
|
52
|
-
Specifies the name of the model teradataml DataFrame generated
|
|
53
|
-
by the function LDA or instance of LDA, which contains the
|
|
54
|
-
model.
|
|
55
|
-
|
|
56
|
-
object_order_column:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies Order By columns for "object".
|
|
59
|
-
Values to this argument can be provided as list, if multiple
|
|
60
|
-
columns are used for ordering.
|
|
61
|
-
Types: str OR list of Strings (str)
|
|
62
|
-
|
|
63
|
-
summary:
|
|
64
|
-
Optional Argument.
|
|
65
|
-
Specifies whether to display only a summary of the information
|
|
66
|
-
in the model table.
|
|
67
|
-
Default Value: False
|
|
68
|
-
Types: bool
|
|
69
|
-
|
|
70
|
-
out_topicwordnum:
|
|
71
|
-
Optional Argument.
|
|
72
|
-
Specifies the number of top topic words and their topic identifiers
|
|
73
|
-
to include in the output teradataml DataFrame for each training
|
|
74
|
-
document. The value out_topicwordnum must be either a positive
|
|
75
|
-
integer or the string "all". The value "all", specifies all
|
|
76
|
-
topic words and their topic identifiers.
|
|
77
|
-
Default Value: "all"
|
|
78
|
-
Types: str
|
|
79
|
-
|
|
80
|
-
word_weight:
|
|
81
|
-
Optional Argument.
|
|
82
|
-
Specifies whether to display the weight (probability of occurrence)
|
|
83
|
-
of each unique word in each topic. The weights for the unique words
|
|
84
|
-
in each topic are normalized to 1.
|
|
85
|
-
Default Value: False
|
|
86
|
-
Types: bool
|
|
87
|
-
|
|
88
|
-
word_count:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies whether to display the count (number of occurrences)
|
|
91
|
-
of each unique word in each topic. Topic distribution is
|
|
92
|
-
factored into word counts.
|
|
93
|
-
Default Value: False
|
|
94
|
-
Types: bool
|
|
95
|
-
|
|
96
|
-
out_byword:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies whether to display each topic-word pair in its own row. If
|
|
99
|
-
you specify "false", each row contains a unique topic and all words
|
|
100
|
-
that occur in that topic, separated by commas.
|
|
101
|
-
Default Value: True
|
|
102
|
-
Types: bool
|
|
103
|
-
|
|
104
|
-
object_sequence_column:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
107
|
-
the input argument "object". The argument is used to ensure
|
|
108
|
-
deterministic results for functions which produce results that vary
|
|
109
|
-
from run to run.
|
|
110
|
-
Types: str OR list of Strings (str)
|
|
111
|
-
|
|
112
|
-
RETURNS:
|
|
113
|
-
Instance of LDATopicSummary.
|
|
114
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
115
|
-
references, such as LDATopicSummaryObj.<attribute_name>.
|
|
116
|
-
Output teradataml DataFrame attribute name is:
|
|
117
|
-
result
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
RAISES:
|
|
121
|
-
TeradataMlException
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
EXAMPLES:
|
|
125
|
-
# Load example data.
|
|
126
|
-
load_example_data("LDATopicSummary", "complaints_traintoken")
|
|
127
|
-
|
|
128
|
-
# Create teradataml DataFrame objects.
|
|
129
|
-
complaints_traintoken = DataFrame.from_table("complaints_traintoken")
|
|
130
|
-
|
|
131
|
-
# Example 1 - Build a model using LDA and use it's output as direct
|
|
132
|
-
# input to LDATopicSummary
|
|
133
|
-
lda_out = LDA(data = complaints_traintoken,
|
|
134
|
-
topic_num = 5,
|
|
135
|
-
docid_column = "doc_id",
|
|
136
|
-
word_column = "token",
|
|
137
|
-
count_column = "frequency",
|
|
138
|
-
maxiter = 30,
|
|
139
|
-
convergence_delta = 1e-3,
|
|
140
|
-
seed = 2
|
|
141
|
-
)
|
|
142
|
-
|
|
143
|
-
LDATopicSummary_out1 = LDATopicSummary(object=lda_out,
|
|
144
|
-
summary=False,
|
|
145
|
-
out_topicwordnum='all',
|
|
146
|
-
word_weight=False,
|
|
147
|
-
word_count=False,
|
|
148
|
-
out_byword=True,
|
|
149
|
-
object_sequence_column='topicid'
|
|
150
|
-
)
|
|
151
|
-
|
|
152
|
-
# Print the result teradataml DataFrame.
|
|
153
|
-
print(LDATopicSummary_out1)
|
|
154
|
-
|
|
155
|
-
# Persist the model table generated by the LDA function.
|
|
156
|
-
copy_to_sql(lda_out.model_table, "model_lda_out")
|
|
157
|
-
|
|
158
|
-
# Create teradataml DataFrame objects.
|
|
159
|
-
model_lda_out = DataFrame.from_table("model_lda_out")
|
|
160
|
-
|
|
161
|
-
# Example 2 - summary argument True.
|
|
162
|
-
LDATopicSummary_out2 = LDATopicSummary(object = model_lda_out,
|
|
163
|
-
summary = True
|
|
164
|
-
)
|
|
165
|
-
|
|
166
|
-
# Print the result teradataml DataFrame.
|
|
167
|
-
print(LDATopicSummary_out2.result)
|
|
168
|
-
|
|
169
|
-
# Example 3 - out_byword is False.
|
|
170
|
-
LDATopicSummary_out3 = LDATopicSummary(object = model_lda_out,
|
|
171
|
-
out_topicwordnum = 'all',
|
|
172
|
-
out_byword = False
|
|
173
|
-
)
|
|
174
|
-
|
|
175
|
-
# Print the result teradataml DataFrame.
|
|
176
|
-
print(LDATopicSummary_out3)
|
|
177
|
-
|
|
178
|
-
# Example 4 - Arguments word_weight and word_count are True.
|
|
179
|
-
LDATopicSummary_out4 = LDATopicSummary(object = model_lda_out,
|
|
180
|
-
word_weight = True,
|
|
181
|
-
word_count = True,
|
|
182
|
-
out_byword = True
|
|
183
|
-
)
|
|
184
|
-
|
|
185
|
-
# Print the result teradataml DataFrame.
|
|
186
|
-
print(LDATopicSummary_out4)
|
|
187
|
-
|
|
188
|
-
"""
|
|
189
|
-
|
|
190
|
-
# Start the timer to get the build time
|
|
191
|
-
_start_time = time.time()
|
|
192
|
-
|
|
193
|
-
self.object = object
|
|
194
|
-
self.summary = summary
|
|
195
|
-
self.out_topicwordnum = out_topicwordnum
|
|
196
|
-
self.word_weight = word_weight
|
|
197
|
-
self.word_count = word_count
|
|
198
|
-
self.out_byword = out_byword
|
|
199
|
-
self.object_sequence_column = object_sequence_column
|
|
200
|
-
self.object_order_column = object_order_column
|
|
201
|
-
|
|
202
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
203
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
204
|
-
self.__aed_utils = AedUtils()
|
|
205
|
-
|
|
206
|
-
# Create argument information matrix to do parameter checking
|
|
207
|
-
self.__arg_info_matrix = []
|
|
208
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
209
|
-
self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
|
|
210
|
-
self.__arg_info_matrix.append(["summary", self.summary, True, (bool)])
|
|
211
|
-
self.__arg_info_matrix.append(["out_topicwordnum", self.out_topicwordnum, True, (str)])
|
|
212
|
-
self.__arg_info_matrix.append(["word_weight", self.word_weight, True, (bool)])
|
|
213
|
-
self.__arg_info_matrix.append(["word_count", self.word_count, True, (bool)])
|
|
214
|
-
self.__arg_info_matrix.append(["out_byword", self.out_byword, True, (bool)])
|
|
215
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
216
|
-
|
|
217
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
218
|
-
# Perform the function validations
|
|
219
|
-
self.__validate()
|
|
220
|
-
# Generate the ML query
|
|
221
|
-
self.__form_tdml_query()
|
|
222
|
-
# Execute ML query
|
|
223
|
-
self.__execute()
|
|
224
|
-
# Get the prediction type
|
|
225
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
226
|
-
|
|
227
|
-
# End the timer to get the build time
|
|
228
|
-
_end_time = time.time()
|
|
229
|
-
|
|
230
|
-
# Calculate the build time
|
|
231
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
232
|
-
|
|
233
|
-
def __validate(self):
|
|
234
|
-
"""
|
|
235
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
236
|
-
arguments, input argument and table types. Also processes the
|
|
237
|
-
argument values.
|
|
238
|
-
"""
|
|
239
|
-
if isinstance(self.object, LDA):
|
|
240
|
-
self.object = self.object._mlresults[0]
|
|
241
|
-
|
|
242
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
243
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
244
|
-
|
|
245
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
246
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
247
|
-
|
|
248
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
249
|
-
self.__awu._validate_input_table_datatype(self.object, "object", LDA)
|
|
250
|
-
|
|
251
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
252
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
253
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
254
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
255
|
-
|
|
256
|
-
self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
|
|
257
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
def __form_tdml_query(self):
|
|
261
|
-
"""
|
|
262
|
-
Function to generate the analytical function queries. The function defines
|
|
263
|
-
variables and list of arguments required to form the query.
|
|
264
|
-
"""
|
|
265
|
-
|
|
266
|
-
# Output table arguments list
|
|
267
|
-
self.__func_output_args_sql_names = []
|
|
268
|
-
self.__func_output_args = []
|
|
269
|
-
|
|
270
|
-
# Model Cataloging related attributes.
|
|
271
|
-
self._sql_specific_attributes = {}
|
|
272
|
-
self._sql_formula_attribute_mapper = {}
|
|
273
|
-
self._target_column = None
|
|
274
|
-
self._algorithm_name = None
|
|
275
|
-
|
|
276
|
-
# Generate lists for rest of the function arguments
|
|
277
|
-
self.__func_other_arg_sql_names = []
|
|
278
|
-
self.__func_other_args = []
|
|
279
|
-
self.__func_other_arg_json_datatypes = []
|
|
280
|
-
|
|
281
|
-
if self.summary is not None and self.summary != False:
|
|
282
|
-
self.__func_other_arg_sql_names.append("SummaryOutput")
|
|
283
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.summary, "'"))
|
|
284
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
285
|
-
|
|
286
|
-
if self.out_topicwordnum is not None and self.out_topicwordnum != "all":
|
|
287
|
-
self.__func_other_arg_sql_names.append("OutputTopicWordNum")
|
|
288
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.out_topicwordnum, "'"))
|
|
289
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
290
|
-
|
|
291
|
-
if self.word_weight is not None and self.word_weight != False:
|
|
292
|
-
self.__func_other_arg_sql_names.append("WordWeight")
|
|
293
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.word_weight, "'"))
|
|
294
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
295
|
-
|
|
296
|
-
if self.word_count is not None and self.word_count != False:
|
|
297
|
-
self.__func_other_arg_sql_names.append("WordCount")
|
|
298
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.word_count, "'"))
|
|
299
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
300
|
-
|
|
301
|
-
if self.out_byword is not None and self.out_byword != True:
|
|
302
|
-
self.__func_other_arg_sql_names.append("OutputByWord")
|
|
303
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.out_byword, "'"))
|
|
304
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
305
|
-
|
|
306
|
-
# Generate lists for rest of the function arguments
|
|
307
|
-
sequence_input_by_list = []
|
|
308
|
-
if self.object_sequence_column is not None:
|
|
309
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
310
|
-
|
|
311
|
-
if len(sequence_input_by_list) > 0:
|
|
312
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
313
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
314
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
315
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
316
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
# Declare empty lists to hold input table information.
|
|
320
|
-
self.__func_input_arg_sql_names = []
|
|
321
|
-
self.__func_input_table_view_query = []
|
|
322
|
-
self.__func_input_dataframe_type = []
|
|
323
|
-
self.__func_input_distribution = []
|
|
324
|
-
self.__func_input_partition_by_cols = []
|
|
325
|
-
self.__func_input_order_by_cols = []
|
|
326
|
-
|
|
327
|
-
# Process object
|
|
328
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
329
|
-
self.__func_input_distribution.append("FACT")
|
|
330
|
-
self.__func_input_arg_sql_names.append("input")
|
|
331
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
332
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
333
|
-
self.__func_input_partition_by_cols.append("1")
|
|
334
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
|
|
335
|
-
|
|
336
|
-
function_name = "LDATopicSummary"
|
|
337
|
-
# Create instance to generate SQLMR.
|
|
338
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
339
|
-
self.__func_input_arg_sql_names,
|
|
340
|
-
self.__func_input_table_view_query,
|
|
341
|
-
self.__func_input_dataframe_type,
|
|
342
|
-
self.__func_input_distribution,
|
|
343
|
-
self.__func_input_partition_by_cols,
|
|
344
|
-
self.__func_input_order_by_cols,
|
|
345
|
-
self.__func_other_arg_sql_names,
|
|
346
|
-
self.__func_other_args,
|
|
347
|
-
self.__func_other_arg_json_datatypes,
|
|
348
|
-
self.__func_output_args_sql_names,
|
|
349
|
-
self.__func_output_args,
|
|
350
|
-
engine="ENGINE_ML")
|
|
351
|
-
# Invoke call to SQL-MR generation.
|
|
352
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
353
|
-
|
|
354
|
-
# Print SQL-MR query if requested to do so.
|
|
355
|
-
if display.print_sqlmr_query:
|
|
356
|
-
print(self.sqlmr_query)
|
|
357
|
-
|
|
358
|
-
# Set the algorithm name for Model Cataloging.
|
|
359
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
360
|
-
|
|
361
|
-
def __execute(self):
|
|
362
|
-
"""
|
|
363
|
-
Function to execute SQL-MR queries.
|
|
364
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
365
|
-
"""
|
|
366
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
367
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
368
|
-
try:
|
|
369
|
-
# Generate the output.
|
|
370
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
371
|
-
except Exception as emsg:
|
|
372
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
373
|
-
|
|
374
|
-
# Update output table data frames.
|
|
375
|
-
self._mlresults = []
|
|
376
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
377
|
-
self._mlresults.append(self.result)
|
|
378
|
-
|
|
379
|
-
def show_query(self):
|
|
380
|
-
"""
|
|
381
|
-
Function to return the underlying SQL query.
|
|
382
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
383
|
-
"""
|
|
384
|
-
return self.sqlmr_query
|
|
385
|
-
|
|
386
|
-
def get_prediction_type(self):
|
|
387
|
-
"""
|
|
388
|
-
Function to return the Prediction type of the algorithm.
|
|
389
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
390
|
-
as saved in the Model Catalog.
|
|
391
|
-
"""
|
|
392
|
-
return self._prediction_type
|
|
393
|
-
|
|
394
|
-
def get_target_column(self):
|
|
395
|
-
"""
|
|
396
|
-
Function to return the Target Column of the algorithm.
|
|
397
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
398
|
-
as saved in the Model Catalog.
|
|
399
|
-
"""
|
|
400
|
-
return self._target_column
|
|
401
|
-
|
|
402
|
-
def get_build_time(self):
|
|
403
|
-
"""
|
|
404
|
-
Function to return the build time of the algorithm in seconds.
|
|
405
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
406
|
-
as saved in the Model Catalog.
|
|
407
|
-
"""
|
|
408
|
-
return self._build_time
|
|
409
|
-
|
|
410
|
-
def _get_algorithm_name(self):
|
|
411
|
-
"""
|
|
412
|
-
Function to return the name of the algorithm.
|
|
413
|
-
"""
|
|
414
|
-
return self._algorithm_name
|
|
415
|
-
|
|
416
|
-
def _get_sql_specific_attributes(self):
|
|
417
|
-
"""
|
|
418
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
419
|
-
"""
|
|
420
|
-
return self._sql_specific_attributes
|
|
421
|
-
|
|
422
|
-
@classmethod
|
|
423
|
-
def _from_model_catalog(cls,
|
|
424
|
-
result = None,
|
|
425
|
-
**kwargs):
|
|
426
|
-
"""
|
|
427
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
428
|
-
"""
|
|
429
|
-
kwargs.pop("result", None)
|
|
430
|
-
|
|
431
|
-
# Model Cataloging related attributes.
|
|
432
|
-
target_column = kwargs.pop("__target_column", None)
|
|
433
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
434
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
435
|
-
build_time = kwargs.pop("__build_time", None)
|
|
436
|
-
|
|
437
|
-
# Let's create an object of this class.
|
|
438
|
-
obj = cls(**kwargs)
|
|
439
|
-
obj.result = result
|
|
440
|
-
|
|
441
|
-
# Initialize the sqlmr_query class attribute.
|
|
442
|
-
obj.sqlmr_query = None
|
|
443
|
-
|
|
444
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
445
|
-
obj._sql_specific_attributes = None
|
|
446
|
-
obj._target_column = target_column
|
|
447
|
-
obj._prediction_type = prediction_type
|
|
448
|
-
obj._algorithm_name = algorithm_name
|
|
449
|
-
obj._build_time = build_time
|
|
450
|
-
|
|
451
|
-
# Update output table data frames.
|
|
452
|
-
obj._mlresults = []
|
|
453
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
454
|
-
obj._mlresults.append(obj.result)
|
|
455
|
-
return obj
|
|
456
|
-
|
|
457
|
-
def __repr__(self):
|
|
458
|
-
"""
|
|
459
|
-
Returns the string representation for a LDATopicSummary class instance.
|
|
460
|
-
"""
|
|
461
|
-
repr_string="############ STDOUT Output ############"
|
|
462
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
463
|
-
return repr_string
|
|
464
|
-
|