teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,488 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.2
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class UnivariateStatistics:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
target_columns = None,
|
|
35
|
-
exclude_columns = None,
|
|
36
|
-
statistics = None,
|
|
37
|
-
partition_columns = None,
|
|
38
|
-
data_sequence_column = None):
|
|
39
|
-
"""
|
|
40
|
-
DESCRIPTION:
|
|
41
|
-
The UnivariateStatistics function calculates descriptive statistics
|
|
42
|
-
for a set of target columns.
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
PARAMETERS:
|
|
46
|
-
data:
|
|
47
|
-
Required Argument.
|
|
48
|
-
Specifies the input teradataml DataFrame that contains columns
|
|
49
|
-
to calculate descriptive statistics.
|
|
50
|
-
|
|
51
|
-
target_columns:
|
|
52
|
-
Optional Argument.
|
|
53
|
-
Specifies the input teradataml DataFrame columns that contain
|
|
54
|
-
numeric values to calculate statistics for.
|
|
55
|
-
Types: str OR list of Strings (str)
|
|
56
|
-
|
|
57
|
-
exclude_columns:
|
|
58
|
-
Optional Argument.
|
|
59
|
-
Specifies the teradataml DataFrame columns which should be
|
|
60
|
-
ignored, the rest of numeric columns in the teradataml
|
|
61
|
-
DataFrame will be used as target variables.
|
|
62
|
-
Types: str OR list of Strings (str)
|
|
63
|
-
|
|
64
|
-
statistics:
|
|
65
|
-
Optional Argument.
|
|
66
|
-
Specifies the groups of statistical measures to include in the
|
|
67
|
-
response.
|
|
68
|
-
Permitted Values: MOMENTS, BASIC, QUANTILES
|
|
69
|
-
Types: str
|
|
70
|
-
|
|
71
|
-
partition_columns:
|
|
72
|
-
Optional Argument.
|
|
73
|
-
Specifies the columns which define groups for which statistics
|
|
74
|
-
is calculated.
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
data_sequence_column:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
80
|
-
row of the input argument "data". The argument is used to
|
|
81
|
-
ensure deterministic results for functions which produce
|
|
82
|
-
results that vary from run to run.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
RETURNS:
|
|
86
|
-
Instance of UnivariateStatistics.
|
|
87
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
88
|
-
references, such as UnivariateStatisticsObj.<attribute_name>.
|
|
89
|
-
Output teradataml DataFrame attribute names are:
|
|
90
|
-
1. moments_table
|
|
91
|
-
2. basic_table
|
|
92
|
-
3. quantiles_table
|
|
93
|
-
4. output
|
|
94
|
-
|
|
95
|
-
When the argument 'statistics' is None, all the four output
|
|
96
|
-
teradataml DataFrames are generated. When the argument 'statistics'
|
|
97
|
-
is given one of the permitted values (not None), the instance of
|
|
98
|
-
UnivariateStatistics has the corresponding output teradataml
|
|
99
|
-
DataFrame along with 'output' teradataml DataFrame.
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
RAISES:
|
|
103
|
-
TeradataMlException
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
EXAMPLES:
|
|
107
|
-
# Load example data.
|
|
108
|
-
load_example_data("univariatestatistics", "finance_data3")
|
|
109
|
-
|
|
110
|
-
# Provided example table 'finance_data3' contains the columns
|
|
111
|
-
# 'expenditure', 'income' and 'investment' for which the below
|
|
112
|
-
# examples try to generate descriptive statistics.
|
|
113
|
-
|
|
114
|
-
# Create teradataml DataFrame objects.
|
|
115
|
-
finance_data3 = DataFrame.from_table("finance_data3")
|
|
116
|
-
|
|
117
|
-
# Example 1 : UnivariateStatistics for all the numeric columns except 'id' and 'period'.
|
|
118
|
-
US_out1 = UnivariateStatistics(data = finance_data3, exclude_columns = ["id","period"])
|
|
119
|
-
|
|
120
|
-
# Print the results
|
|
121
|
-
print(US_out1.moments_table) # Prints 'moments_table' teradataml DataFrame.
|
|
122
|
-
print(US_out1.basic_table) # Prints 'basic_table' teradataml DataFrame.
|
|
123
|
-
print(US_out1.quantiles_table) # Prints 'quantiles_table' teradataml DataFrame.
|
|
124
|
-
print(US_out1.output) # Prints 'output' teradataml DataFrame.
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
# Example 2 : UnivariateStatistics for columns 'expenditure', 'income' and
|
|
128
|
-
# 'investment' partitioned by the column 'id'.
|
|
129
|
-
US_out2 = UnivariateStatistics(data = finance_data3,partition_columns = ["id"],
|
|
130
|
-
target_columns = ["expenditure","income","investment"])
|
|
131
|
-
|
|
132
|
-
# Print the results
|
|
133
|
-
print(US_out2.moments_table) # Prints 'moments_table' teradataml DataFrame.
|
|
134
|
-
print(US_out2.basic_table) # Prints 'basic_table' teradataml DataFrame.
|
|
135
|
-
print(US_out2.quantiles_table) # Prints 'quantiles_table' teradataml DataFrame.
|
|
136
|
-
print(US_out2.output) # Prints 'output' teradataml DataFrame.
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
# Example 3 : UnivariateStatistics for generating only BASIC statistics for all the
|
|
140
|
-
# numeric columns except 'id' and 'period'.
|
|
141
|
-
US_out3 = UnivariateStatistics(data = finance_data3, exclude_columns = ["id","period"],
|
|
142
|
-
statistics = "BASIC")
|
|
143
|
-
|
|
144
|
-
# US_out3 doesn't have teradataml DataFrames 'moments_table' and 'output' as the
|
|
145
|
-
# 'statistics' argument has only 'BASIC'.
|
|
146
|
-
# Print the results
|
|
147
|
-
print(US_out3.basic_table) # Prints 'basic_table' teradataml DataFrame.
|
|
148
|
-
print(US_out3.output) # Prints 'output' teradataml DataFrame.
|
|
149
|
-
|
|
150
|
-
"""
|
|
151
|
-
|
|
152
|
-
# Start the timer to get the build time
|
|
153
|
-
_start_time = time.time()
|
|
154
|
-
|
|
155
|
-
self.data = data
|
|
156
|
-
self.target_columns = target_columns
|
|
157
|
-
self.exclude_columns = exclude_columns
|
|
158
|
-
self.statistics = statistics
|
|
159
|
-
self.partition_columns = partition_columns
|
|
160
|
-
self.data_sequence_column = data_sequence_column
|
|
161
|
-
|
|
162
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
163
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
164
|
-
self.__aed_utils = AedUtils()
|
|
165
|
-
|
|
166
|
-
# Create argument information matrix to do parameter checking
|
|
167
|
-
self.__arg_info_matrix = []
|
|
168
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
169
|
-
self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
|
|
170
|
-
self.__arg_info_matrix.append(["exclude_columns", self.exclude_columns, True, (str,list)])
|
|
171
|
-
self.__arg_info_matrix.append(["statistics", self.statistics, True, (str,list)])
|
|
172
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
173
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
174
|
-
|
|
175
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
176
|
-
# Perform the function validations
|
|
177
|
-
self.__validate()
|
|
178
|
-
# Generate the ML query
|
|
179
|
-
self.__form_tdml_query()
|
|
180
|
-
# Execute ML query
|
|
181
|
-
self.__execute()
|
|
182
|
-
# Get the prediction type
|
|
183
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
184
|
-
|
|
185
|
-
# End the timer to get the build time
|
|
186
|
-
_end_time = time.time()
|
|
187
|
-
|
|
188
|
-
# Calculate the build time
|
|
189
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
190
|
-
|
|
191
|
-
def __validate(self):
|
|
192
|
-
"""
|
|
193
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
194
|
-
arguments, input argument and table types. Also processes the
|
|
195
|
-
argument values.
|
|
196
|
-
"""
|
|
197
|
-
|
|
198
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
199
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
200
|
-
|
|
201
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
202
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
203
|
-
|
|
204
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
205
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
206
|
-
|
|
207
|
-
# Check for permitted values
|
|
208
|
-
statistics_permitted_values = ["MOMENTS", "BASIC", "QUANTILES"]
|
|
209
|
-
self.__awu._validate_permitted_values(self.statistics, statistics_permitted_values, "statistics")
|
|
210
|
-
|
|
211
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
212
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
213
|
-
self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
|
|
214
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data, "data", False)
|
|
215
|
-
|
|
216
|
-
self.__awu._validate_input_columns_not_empty(self.exclude_columns, "exclude_columns")
|
|
217
|
-
self.__awu._validate_dataframe_has_argument_columns(self.exclude_columns, "exclude_columns", self.data, "data", False)
|
|
218
|
-
|
|
219
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
220
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
221
|
-
|
|
222
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
223
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
def __form_tdml_query(self):
|
|
227
|
-
"""
|
|
228
|
-
Function to generate the analytical function queries. The function defines
|
|
229
|
-
variables and list of arguments required to form the query.
|
|
230
|
-
"""
|
|
231
|
-
# Generate temp table names for output table parameters if any.
|
|
232
|
-
self.__moments_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_univariatestatistics0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
233
|
-
self.__basic_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_univariatestatistics1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
234
|
-
self.__quantiles_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_univariatestatistics2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
235
|
-
|
|
236
|
-
# Output table arguments list
|
|
237
|
-
if self.statistics is None:
|
|
238
|
-
self.__func_output_args_sql_names = ["MomentsTableName", "BasicTableName", "QuantilesTableName"]
|
|
239
|
-
self.__func_output_args = [self.__moments_table_temp_tablename, self.__basic_table_temp_tablename, self.__quantiles_table_temp_tablename]
|
|
240
|
-
elif self.statistics.upper() == "MOMENTS":
|
|
241
|
-
self.__func_output_args_sql_names = ["MomentsTableName"]
|
|
242
|
-
self.__func_output_args = [self.__moments_table_temp_tablename]
|
|
243
|
-
elif self.statistics.upper() == "BASIC":
|
|
244
|
-
self.__func_output_args_sql_names = ["BasicTableName"]
|
|
245
|
-
self.__func_output_args = [self.__basic_table_temp_tablename]
|
|
246
|
-
else: # if self.statistics.upper() == "QUANTILES"
|
|
247
|
-
self.__func_output_args_sql_names = ["QuantilesTableName"]
|
|
248
|
-
self.__func_output_args = [self.__quantiles_table_temp_tablename]
|
|
249
|
-
|
|
250
|
-
# Model Cataloging related attributes.
|
|
251
|
-
self._sql_specific_attributes = {}
|
|
252
|
-
self._sql_formula_attribute_mapper = {}
|
|
253
|
-
self._target_column = None
|
|
254
|
-
self._algorithm_name = None
|
|
255
|
-
|
|
256
|
-
# Generate lists for rest of the function arguments
|
|
257
|
-
self.__func_other_arg_sql_names = []
|
|
258
|
-
self.__func_other_args = []
|
|
259
|
-
self.__func_other_arg_json_datatypes = []
|
|
260
|
-
|
|
261
|
-
if self.target_columns is not None:
|
|
262
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
263
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_columns, "\""), "'"))
|
|
264
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
265
|
-
|
|
266
|
-
if self.exclude_columns is not None:
|
|
267
|
-
self.__func_other_arg_sql_names.append("ExcludeColumns")
|
|
268
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.exclude_columns, "\""), "'"))
|
|
269
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
270
|
-
|
|
271
|
-
if self.partition_columns is not None:
|
|
272
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
273
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
274
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
275
|
-
|
|
276
|
-
if self.statistics is not None:
|
|
277
|
-
self.__func_other_arg_sql_names.append("StatisticsGroups")
|
|
278
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.statistics, "'"))
|
|
279
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
280
|
-
|
|
281
|
-
# Generate lists for rest of the function arguments
|
|
282
|
-
sequence_input_by_list = []
|
|
283
|
-
if self.data_sequence_column is not None:
|
|
284
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
285
|
-
|
|
286
|
-
if len(sequence_input_by_list) > 0:
|
|
287
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
288
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
289
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
290
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
291
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
# Declare empty lists to hold input table information.
|
|
295
|
-
self.__func_input_arg_sql_names = []
|
|
296
|
-
self.__func_input_table_view_query = []
|
|
297
|
-
self.__func_input_dataframe_type = []
|
|
298
|
-
self.__func_input_distribution = []
|
|
299
|
-
self.__func_input_partition_by_cols = []
|
|
300
|
-
self.__func_input_order_by_cols = []
|
|
301
|
-
|
|
302
|
-
# Process data
|
|
303
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
304
|
-
self.__func_input_distribution.append("NONE")
|
|
305
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
306
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
307
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
308
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
309
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
310
|
-
|
|
311
|
-
function_name = "UnivariateStatistics"
|
|
312
|
-
# Create instance to generate SQLMR.
|
|
313
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
314
|
-
self.__func_input_arg_sql_names,
|
|
315
|
-
self.__func_input_table_view_query,
|
|
316
|
-
self.__func_input_dataframe_type,
|
|
317
|
-
self.__func_input_distribution,
|
|
318
|
-
self.__func_input_partition_by_cols,
|
|
319
|
-
self.__func_input_order_by_cols,
|
|
320
|
-
self.__func_other_arg_sql_names,
|
|
321
|
-
self.__func_other_args,
|
|
322
|
-
self.__func_other_arg_json_datatypes,
|
|
323
|
-
self.__func_output_args_sql_names,
|
|
324
|
-
self.__func_output_args,
|
|
325
|
-
engine="ENGINE_ML")
|
|
326
|
-
# Invoke call to SQL-MR generation.
|
|
327
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
328
|
-
|
|
329
|
-
# Print SQL-MR query if requested to do so.
|
|
330
|
-
if display.print_sqlmr_query:
|
|
331
|
-
print(self.sqlmr_query)
|
|
332
|
-
|
|
333
|
-
# Set the algorithm name for Model Cataloging.
|
|
334
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
335
|
-
|
|
336
|
-
def __execute(self):
|
|
337
|
-
"""
|
|
338
|
-
Function to execute SQL-MR queries.
|
|
339
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
340
|
-
"""
|
|
341
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
342
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
343
|
-
try:
|
|
344
|
-
# Generate the output.
|
|
345
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
346
|
-
except Exception as emsg:
|
|
347
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
348
|
-
|
|
349
|
-
# Update output table data frames.
|
|
350
|
-
self._mlresults = []
|
|
351
|
-
output_attr_info_message = "INFO: '{0}' output DataFrame is not created, when 'statistics' is set to '{1}'."
|
|
352
|
-
self.moments_table = output_attr_info_message.format('moments_table', str(self.statistics).upper())
|
|
353
|
-
self.basic_table = output_attr_info_message.format('basic_table', str(self.statistics).upper())
|
|
354
|
-
self.quantiles_table = output_attr_info_message.format('quantiles_table', str(self.statistics).upper())
|
|
355
|
-
|
|
356
|
-
if str(self.statistics).upper() not in ["BASIC", "QUANTILES"]:
|
|
357
|
-
self.moments_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__moments_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__moments_table_temp_tablename))
|
|
358
|
-
self._mlresults.append(self.moments_table)
|
|
359
|
-
if str(self.statistics).upper() not in ["MOMENTS", "QUANTILES"]:
|
|
360
|
-
self.basic_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__basic_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__basic_table_temp_tablename))
|
|
361
|
-
self._mlresults.append(self.basic_table)
|
|
362
|
-
if str(self.statistics).upper() not in ["BASIC", "MOMENTS"]:
|
|
363
|
-
self.quantiles_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__quantiles_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__quantiles_table_temp_tablename))
|
|
364
|
-
self._mlresults.append(self.quantiles_table)
|
|
365
|
-
|
|
366
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
367
|
-
self._mlresults.append(self.output)
|
|
368
|
-
|
|
369
|
-
def show_query(self):
|
|
370
|
-
"""
|
|
371
|
-
Function to return the underlying SQL query.
|
|
372
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
373
|
-
"""
|
|
374
|
-
return self.sqlmr_query
|
|
375
|
-
|
|
376
|
-
def get_prediction_type(self):
|
|
377
|
-
"""
|
|
378
|
-
Function to return the Prediction type of the algorithm.
|
|
379
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
380
|
-
as saved in the Model Catalog.
|
|
381
|
-
"""
|
|
382
|
-
return self._prediction_type
|
|
383
|
-
|
|
384
|
-
def get_target_column(self):
|
|
385
|
-
"""
|
|
386
|
-
Function to return the Target Column of the algorithm.
|
|
387
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
388
|
-
as saved in the Model Catalog.
|
|
389
|
-
"""
|
|
390
|
-
return self._target_column
|
|
391
|
-
|
|
392
|
-
def get_build_time(self):
|
|
393
|
-
"""
|
|
394
|
-
Function to return the build time of the algorithm in seconds.
|
|
395
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
396
|
-
as saved in the Model Catalog.
|
|
397
|
-
"""
|
|
398
|
-
return self._build_time
|
|
399
|
-
|
|
400
|
-
def _get_algorithm_name(self):
|
|
401
|
-
"""
|
|
402
|
-
Function to return the name of the algorithm.
|
|
403
|
-
"""
|
|
404
|
-
return self._algorithm_name
|
|
405
|
-
|
|
406
|
-
def _get_sql_specific_attributes(self):
|
|
407
|
-
"""
|
|
408
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
409
|
-
"""
|
|
410
|
-
return self._sql_specific_attributes
|
|
411
|
-
|
|
412
|
-
@classmethod
|
|
413
|
-
def _from_model_catalog(cls,
|
|
414
|
-
moments_table = None,
|
|
415
|
-
basic_table = None,
|
|
416
|
-
quantiles_table = None,
|
|
417
|
-
output = None,
|
|
418
|
-
**kwargs):
|
|
419
|
-
"""
|
|
420
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
421
|
-
"""
|
|
422
|
-
kwargs.pop("moments_table", None)
|
|
423
|
-
kwargs.pop("basic_table", None)
|
|
424
|
-
kwargs.pop("quantiles_table", None)
|
|
425
|
-
kwargs.pop("output", None)
|
|
426
|
-
|
|
427
|
-
# Model Cataloging related attributes.
|
|
428
|
-
target_column = kwargs.pop("__target_column", None)
|
|
429
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
430
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
431
|
-
build_time = kwargs.pop("__build_time", None)
|
|
432
|
-
|
|
433
|
-
# Let's create an object of this class.
|
|
434
|
-
obj = cls(**kwargs)
|
|
435
|
-
obj.moments_table = moments_table
|
|
436
|
-
obj.basic_table = basic_table
|
|
437
|
-
obj.quantiles_table = quantiles_table
|
|
438
|
-
obj.output = output
|
|
439
|
-
|
|
440
|
-
# Initialize the sqlmr_query class attribute.
|
|
441
|
-
obj.sqlmr_query = None
|
|
442
|
-
|
|
443
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
444
|
-
obj._sql_specific_attributes = None
|
|
445
|
-
obj._target_column = target_column
|
|
446
|
-
obj._prediction_type = prediction_type
|
|
447
|
-
obj._algorithm_name = algorithm_name
|
|
448
|
-
obj._build_time = build_time
|
|
449
|
-
|
|
450
|
-
# Update output table data frames.
|
|
451
|
-
obj._mlresults = []
|
|
452
|
-
output_attr_info_message = "INFO: '{0}' output DataFrame is not created, when 'statistics' is set to '{1}'."
|
|
453
|
-
if obj.moments_table is not None:
|
|
454
|
-
obj.moments_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.moments_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.moments_table))
|
|
455
|
-
obj._mlresults.append(obj.moments_table)
|
|
456
|
-
else:
|
|
457
|
-
obj.moments_table = output_attr_info_message.format('moments_table', "BASIC' or 'QUANTILES")
|
|
458
|
-
|
|
459
|
-
if obj.basic_table is not None:
|
|
460
|
-
obj.basic_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.basic_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.basic_table))
|
|
461
|
-
obj._mlresults.append(obj.basic_table)
|
|
462
|
-
else:
|
|
463
|
-
obj.basic_table = output_attr_info_message.format('basic_table', "MOMENTS' or 'QUANTILES")
|
|
464
|
-
|
|
465
|
-
if obj.quantiles_table is not None:
|
|
466
|
-
obj.quantiles_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.quantiles_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.quantiles_table))
|
|
467
|
-
obj._mlresults.append(obj.quantiles_table)
|
|
468
|
-
else:
|
|
469
|
-
obj.quantiles_table = output_attr_info_message.format('quantiles_table', "BASIC' or 'MOMENTS")
|
|
470
|
-
|
|
471
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
472
|
-
obj._mlresults.append(obj.output)
|
|
473
|
-
return obj
|
|
474
|
-
|
|
475
|
-
def __repr__(self):
|
|
476
|
-
"""
|
|
477
|
-
Returns the string representation for a UnivariateStatistics class instance.
|
|
478
|
-
"""
|
|
479
|
-
repr_string="############ STDOUT Output ############"
|
|
480
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
481
|
-
repr_string="{}\n\n\n############ moments_table Output ############".format(repr_string)
|
|
482
|
-
repr_string = "{}\n\n{}".format(repr_string,self.moments_table)
|
|
483
|
-
repr_string="{}\n\n\n############ basic_table Output ############".format(repr_string)
|
|
484
|
-
repr_string = "{}\n\n{}".format(repr_string,self.basic_table)
|
|
485
|
-
repr_string="{}\n\n\n############ quantiles_table Output ############".format(repr_string)
|
|
486
|
-
repr_string = "{}\n\n{}".format(repr_string,self.quantiles_table)
|
|
487
|
-
return repr_string
|
|
488
|
-
|