teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,152 @@
1
+ import pickle
2
+ import math
3
+ import sys
4
+ import numpy as np
5
+
6
+ # The below import is needed to convert sparse matrix to dense array as sparse matrices are NOT
7
+ # supported in Vantage.
8
+ # This is in scipy 1.6.x. Might vary based on scipy version.
9
+ from scipy.sparse.csr import csr_matrix
10
+
11
+
12
+ DELIMITER = '\t'
13
+
14
+
15
+ def get_value(value):
16
+ ret_val = value
17
+ try:
18
+ ret_val = float(value.replace(' ', ''))
19
+ except Exception as ex:
20
+ # If the value can't be converted to float, then it is string.
21
+ pass
22
+ return ret_val
23
+
24
+
25
+ def get_values_list(values, ignore_none=True):
26
+ ret_vals = []
27
+ for val in values:
28
+ if val == "" and ignore_none:
29
+ # Empty cell value in the database table.
30
+ continue
31
+ ret_vals.append(get_value(val))
32
+
33
+ return ret_vals
34
+
35
+ def convert_to_type(val, typee):
36
+ if typee == 'int':
37
+ return int(val)
38
+ if typee == 'float':
39
+ return float(val)
40
+ if typee == 'bool':
41
+ return eval(val)
42
+ return str(val)
43
+
44
+ def splitter(strr, delim=",", convert_to="str"):
45
+ """
46
+ Split the string based on delimiter and convert to the type specified.
47
+ """
48
+ if strr == "None":
49
+ return []
50
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
51
+
52
+
53
+ # Arguments to the Script
54
+ if len(sys.argv) < 7:
55
+ # At least 7 arguments command line arguments should be passed to this file.
56
+ # 1: file to be run
57
+ # 2. function name.
58
+ # 3. No of feature columns.
59
+ # 4. Comma separated indices of partition columns.
60
+ # 5. Comma separated types of the partition columns.
61
+ # 6. Model file prefix to generate model file using partition columns.
62
+ # 7. Flag to check the system type. True, means Lake, Enterprise otherwise.
63
+ # 8. OPTIONAL - Arguments in string format like "return_distance True-bool",
64
+ # "n_neighbors 3-int", "radius 3.4-float" etc.
65
+ sys.exit("At least 7 arguments should be passed to this file - file to be run, function name, "\
66
+ "no of feature columns, comma separated indices and types of partition columns, "\
67
+ "model file prefix to generate model file using partition columns, flag to check "\
68
+ "lake or enterprise and optional arguments in string format.")
69
+
70
+ convert_to_int = lambda x: int(x) if x != "None" else None
71
+
72
+ is_lake_system = eval(sys.argv[6])
73
+ if not is_lake_system:
74
+ db = sys.argv[0].split("/")[1]
75
+ func_name = sys.argv[1]
76
+ n_f_cols = convert_to_int(sys.argv[2])
77
+ data_partition_column_types = splitter(sys.argv[4])
78
+ data_partition_column_indices = splitter(sys.argv[3], convert_to="int") # indices are integers.
79
+ model_file_prefix = sys.argv[5]
80
+ # Extract arguments from string.
81
+ arguments = {}
82
+ for i in range(7, len(sys.argv), 2):
83
+ value = sys.argv[i + 1].split("-", 1)
84
+ arguments[sys.argv[i]] = convert_to_type(value[0], value[1])
85
+
86
+ model = None
87
+ data_partition_column_values = []
88
+
89
+ # Data Format:
90
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
91
+ # data_partition_columnn.
92
+ # label is optional (it is present when label_exists is not "None")
93
+
94
+ # `return_distance` is needed as the result is a tuple of two arrays when it is True.
95
+ return_distance = arguments.get("return_distance", True) # Default value is True.
96
+
97
+ while 1:
98
+ try:
99
+ line = input()
100
+ if line == '': # Exit if user provides blank line
101
+ break
102
+ else:
103
+ values = line.split(DELIMITER)
104
+ if not data_partition_column_values:
105
+ # Partition column values is same for all rows. Hence, only read once.
106
+ for i, val in enumerate(data_partition_column_indices):
107
+ data_partition_column_values.append(
108
+ convert_to_type(values[val], typee=data_partition_column_types[i])
109
+ )
110
+
111
+ # Prepare the corresponding model file name and extract model.
112
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
113
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
114
+ partition_join = partition_join.replace("-", "_")
115
+
116
+ model_file_path = f"{model_file_prefix}_{partition_join}" \
117
+ if is_lake_system else \
118
+ f"./{db}/{model_file_prefix}_{partition_join}"
119
+
120
+ with open(model_file_path, "rb") as fp:
121
+ model = pickle.loads(fp.read())
122
+
123
+ if not model:
124
+ sys.exit("Model file is not installed in Vantage.")
125
+
126
+ f_ = get_values_list(values[:n_f_cols])
127
+ if f_:
128
+ output = getattr(model, func_name)(np.array([f_]), **arguments)
129
+ else:
130
+ output = getattr(model, func_name)(**arguments)
131
+ result_list = f_
132
+
133
+ if func_name in ['kneighbors', 'radius_neighbors']:
134
+ if return_distance:
135
+ result_list += [str(output[0][0].tolist()), str(output[1][0].tolist())]
136
+ else:
137
+ result_list += [str(output[0].tolist())]
138
+ else:
139
+ # cases like 'kneighbors_graph', 'radius_neighbors_graph' and other functions.
140
+ if isinstance(output, csr_matrix):
141
+ # 'kneighbors_graph', 'radius_neighbors_graph' return sparse matrix.
142
+ output = output.toarray()
143
+ result_list += [str(output[0].tolist())]
144
+
145
+ print(*(data_partition_column_values +
146
+ ['' if (val is None or (not isinstance(val, str) and
147
+ (math.isnan(val) or math.isinf(val))))
148
+ else val
149
+ for val in result_list]), sep=DELIMITER)
150
+
151
+ except EOFError: # Exit if reached EOF or CTRL-D
152
+ break
@@ -0,0 +1,128 @@
1
+ import pickle
2
+ import math
3
+ import sys
4
+ import numpy as np
5
+
6
+ DELIMITER = '\t'
7
+
8
+
9
+ def get_value(value):
10
+ ret_val = value
11
+ try:
12
+ ret_val = float("".join(value.split()))
13
+ except Exception as ex:
14
+ # If the value can't be converted to float, then it is string.
15
+ pass
16
+ return ret_val
17
+
18
+
19
+ def get_values_list(values, ignore_none=True):
20
+ ret_vals = []
21
+ for val in values:
22
+ if val == "" and ignore_none:
23
+ # Empty cell value in the database table.
24
+ continue
25
+ ret_vals.append(get_value(val))
26
+
27
+ return ret_vals
28
+
29
+ def convert_to_type(val, typee):
30
+ if typee == 'int':
31
+ return int(val)
32
+ if typee == 'float':
33
+ return float(val)
34
+ if typee == 'bool':
35
+ return bool(val)
36
+ return str(val)
37
+
38
+ def splitter(strr, delim=",", convert_to="str"):
39
+ """
40
+ Split the string based on delimiter and convert to the type specified.
41
+ """
42
+ if strr == "None":
43
+ return []
44
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
45
+
46
+ # Arguments to the Script
47
+ if len(sys.argv) != 8:
48
+ # 8 command line arguments should be passed to this file.
49
+ # 1: file to be run
50
+ # 2. function name (Eg. score, aic etc)
51
+ # 3. No of feature columns.
52
+ # 4. No of class labels.
53
+ # 5. Comma separated indices of partition columns.
54
+ # 6. Comma separated types of the partition columns.
55
+ # 7. Model file prefix to generated model file using partition columns.
56
+ # 8. Flag to check the system type. True, means Lake, Enterprise otherwise.
57
+ sys.exit("8 arguments should be passed to this file - file to be run, function name, "\
58
+ "no of feature columns, no of class labels, comma separated indices and types of "\
59
+ "partition columns, model file prefix to generate model file using partition "\
60
+ "columns and flag to check lake or enterprise.")
61
+
62
+ is_lake_system = eval(sys.argv[7])
63
+ if not is_lake_system:
64
+ db = sys.argv[0].split("/")[1]
65
+ func_name = sys.argv[1]
66
+ n_f_cols = int(sys.argv[2])
67
+ n_c_labels = int(sys.argv[3])
68
+ data_partition_column_types = splitter(sys.argv[5])
69
+ data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
70
+ model_file_prefix = sys.argv[6]
71
+
72
+ model = None
73
+
74
+ # Data Format (n_features, k_labels, one data_partition_column):
75
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
76
+ # data_partition_columnn.
77
+ # labels are optional.
78
+
79
+ data_partition_column_values = []
80
+
81
+ features = []
82
+ labels = []
83
+ while 1:
84
+ try:
85
+ line = input()
86
+ if line == '': # Exit if user provides blank line
87
+ break
88
+ else:
89
+ values = line.split(DELIMITER)
90
+ features.append(get_values_list(values[:n_f_cols]))
91
+ if n_c_labels > 0:
92
+ labels.append(get_values_list(values[n_f_cols:(n_f_cols+n_c_labels)]))
93
+
94
+ if not data_partition_column_values:
95
+ # Partition column values is same for all rows. Hence, only read once.
96
+ for i, val in enumerate(data_partition_column_indices):
97
+ data_partition_column_values.append(
98
+ convert_to_type(values[val], typee=data_partition_column_types[i])
99
+ )
100
+
101
+ # Prepare the corresponding model file name and extract model.
102
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
103
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
104
+ partition_join = partition_join.replace("-", "_")
105
+
106
+ model_file_path = f"{model_file_prefix}_{partition_join}" \
107
+ if is_lake_system else \
108
+ f"./{db}/{model_file_prefix}_{partition_join}"
109
+
110
+ with open(model_file_path, "rb") as fp:
111
+ model = pickle.loads(fp.read())
112
+
113
+ if not model:
114
+ sys.exit("Model file is not installed in Vantage.")
115
+
116
+ except EOFError: # Exit if reached EOF or CTRL-D
117
+ break
118
+
119
+ if len(features) == 0:
120
+ sys.exit(0)
121
+
122
+ if labels:
123
+ val = getattr(model, func_name)(np.array(features), np.array(labels))
124
+ else:
125
+ val = getattr(model, func_name)(np.array(features))
126
+
127
+ result_val = ['' if (val is None or math.isnan(val) or math.isinf(val)) else val]
128
+ print(*(data_partition_column_values + result_val), sep=DELIMITER)
@@ -0,0 +1,179 @@
1
+ import pickle
2
+ import math
3
+ import os
4
+ import sys
5
+ import numpy as np
6
+
7
+ # The below import is needed to convert sparse matrix to dense array as sparse matrices are NOT
8
+ # supported in Vantage.
9
+ # This is in scipy 1.10.0. Might vary based on scipy version.
10
+ from scipy.sparse import csr_matrix
11
+
12
+ DELIMITER = '\t'
13
+
14
+ def get_value(value):
15
+ ret_val = value
16
+ try:
17
+ ret_val = float(value.replace(' ', ''))
18
+ except Exception as ex:
19
+ # If the value can't be converted to float, then it is string.
20
+ pass
21
+ return ret_val
22
+
23
+
24
+ def get_values_list(values, ignore_none=True):
25
+ ret_vals = []
26
+ for val in values:
27
+ if val == "" and ignore_none:
28
+ # Empty cell value in the database table.
29
+ continue
30
+ ret_vals.append(get_value(val))
31
+
32
+ return ret_vals
33
+
34
+ def convert_to_type(val, typee):
35
+ if typee == 'int':
36
+ return int(val)
37
+ if typee == 'float':
38
+ return float(val)
39
+ if typee == 'bool':
40
+ return eval(val)
41
+ return str(val)
42
+
43
+ def splitter(strr, delim=",", convert_to="str"):
44
+ """
45
+ Split the string based on delimiter and convert to the type specified.
46
+ """
47
+ if strr == "None":
48
+ return []
49
+ return [convert_to_type(i, convert_to) for i in strr.split(delim)]
50
+
51
+ # Process output returned by sklearn function.
52
+ def get_output_data(trans_values, func_name, model_obj, n_c_labels):
53
+ # Converting sparse matrix to dense array as sparse matrices are NOT
54
+ # supported in Vantage.
55
+ module_name = model_obj.__module__.split("._")[0]
56
+
57
+ if isinstance(trans_values, csr_matrix):
58
+ trans_values = trans_values.toarray()
59
+
60
+ if module_name == "sklearn.cross_decomposition" and n_c_labels > 0 and func_name == "transform":
61
+ # For cross_decomposition, output is a tuple of arrays when label columns are provided
62
+ # along with feature columns for transform function. In this case, concatenate the
63
+ # arrays and return the combined values.
64
+ if isinstance(trans_values, tuple):
65
+ return np.concatenate(trans_values, axis=1).tolist()[0]
66
+
67
+ if isinstance(trans_values[0], np.ndarray) \
68
+ or isinstance(trans_values[0], list) \
69
+ or isinstance(trans_values[0], tuple):
70
+ # Here, the value returned by sklearn function is list type.
71
+ opt_list = list(trans_values[0])
72
+ if func_name == "inverse_transform" and type(model_obj).__name__ == "MultiLabelBinarizer":
73
+ # output array "trans_values[0]" may not be of same size. It should be of
74
+ # maximum size of `model.classes_`
75
+ # Append None to last elements.
76
+ if len(opt_list) < len(model_obj.classes_):
77
+ opt_list += [""] * (len(model_obj.classes_) - len(opt_list))
78
+ return opt_list
79
+ return [trans_values[0]]
80
+
81
+ # Arguments to the Script
82
+ if len(sys.argv) != 8:
83
+ # 8 arguments command line arguments should be passed to this file.
84
+ # 1: file to be run
85
+ # 2. function name (Eg. predict, fit etc)
86
+ # 3. No of feature columns.
87
+ # 4. No of class labels.
88
+ # 5. Comma separated indices of partition columns.
89
+ # 6. Comma separated types of the partition columns.
90
+ # 7. Model file prefix to generated model file using partition columns.
91
+ # 8. Flag to check the system type. True, means Lake, Enterprise otherwise.
92
+ sys.exit("8 arguments should be passed to this file - file to be run, function name, "\
93
+ "no of feature columns, no of class labels, comma separated indices and types of "\
94
+ "partition columns, model file prefix to generate model file using partition "\
95
+ "columns and flag to check lake or enterprise.")
96
+
97
+ is_lake_system = eval(sys.argv[7])
98
+ if not is_lake_system:
99
+ db = sys.argv[0].split("/")[1]
100
+ func_name = sys.argv[1]
101
+ n_f_cols = int(sys.argv[2])
102
+ n_c_labels = int(sys.argv[3])
103
+ data_partition_column_types = splitter(sys.argv[5])
104
+ data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
105
+ model_file_prefix = sys.argv[6]
106
+
107
+ model = None
108
+ data_partition_column_values = []
109
+
110
+ # Data Format:
111
+ # feature1, feature2, ..., featuren, label1, label2, ... labelk, data_partition_column1, ...,
112
+ # data_partition_columnn.
113
+ # label is optional (it is present when label_exists is not "None")
114
+
115
+ while 1:
116
+ try:
117
+ line = input()
118
+ if line == '': # Exit if user provides blank line
119
+ break
120
+ else:
121
+ values = line.split(DELIMITER)
122
+ if not data_partition_column_values:
123
+ # Partition column values is same for all rows. Hence, only read once.
124
+ for i, val in enumerate(data_partition_column_indices):
125
+ data_partition_column_values.append(
126
+ convert_to_type(values[val], typee=data_partition_column_types[i])
127
+ )
128
+
129
+ # Prepare the corresponding model file name and extract model.
130
+ partition_join = "_".join([str(x) for x in data_partition_column_values])
131
+ # Replace '-' with '_' as '-' because partition_columns can be negative.
132
+ partition_join = partition_join.replace("-", "_")
133
+
134
+ model_file_path = f"{model_file_prefix}_{partition_join}" \
135
+ if is_lake_system else \
136
+ f"./{db}/{model_file_prefix}_{partition_join}"
137
+
138
+ with open(model_file_path, "rb") as fp:
139
+ model = pickle.loads(fp.read())
140
+
141
+ if not model:
142
+ sys.exit("Model file is not installed in Vantage.")
143
+
144
+ f_ = get_values_list(values[:n_f_cols])
145
+ if n_c_labels > 0:
146
+ # Labels are present in last column.
147
+ l_ = get_values_list(values[n_f_cols:n_f_cols+n_c_labels])
148
+ # predict() now takes 'y' also for it to return the labels from script. Skipping 'y'
149
+ # in function call. Generally, 'y' is passed to return y along with actual output.
150
+ try:
151
+ # cross_composition functions uses Y for labels.
152
+ # used 'in' in if constion, as model.__module__ is giving
153
+ # 'sklearn.cross_decomposition._pls'.
154
+ if "cross_decomposition" in model.__module__:
155
+ trans_values = getattr(model, func_name)(X=np.array([f_]), Y=np.array([l_]))
156
+ else:
157
+ trans_values = getattr(model, func_name)(X=np.array([f_]), y=np.array([l_]))
158
+
159
+ except TypeError as ex:
160
+ # Function which does not accept 'y' like predict_proba() raises error like
161
+ # "TypeError: predict_proba() takes 2 positional arguments but 3 were given".
162
+ trans_values = getattr(model, func_name)(np.array([f_]))
163
+ else:
164
+ # If class labels do not exist in data, don't read labels, read just features.
165
+ trans_values = getattr(model, func_name)(np.array([f_]))
166
+
167
+ result_list = f_
168
+ if n_c_labels > 0 and func_name in ["predict", "decision_function"]:
169
+ result_list += l_
170
+ result_list += get_output_data(trans_values=trans_values, func_name=func_name,
171
+ model_obj=model, n_c_labels=n_c_labels)
172
+
173
+ print(*(data_partition_column_values +
174
+ ['' if (val is None or math.isnan(val) or math.isinf(val))
175
+ else val for val in result_list]),
176
+ sep=DELIMITER)
177
+
178
+ except EOFError: # Exit if reached EOF or CTRL-D
179
+ break
@@ -0,0 +1,9 @@
1
+ {
2
+ "env_specs": [
3
+ {
4
+ "env_name": "openml_env",
5
+ "libs": "scikit-learn",
6
+ "desc": "DONT DELETE: OpenML environment"
7
+ }
8
+ ]
9
+ }
@@ -1200,5 +1200,77 @@
1200
1200
  "column_name": "VARCHAR(20)",
1201
1201
  "category": "VARCHAR(50)",
1202
1202
  "ordinal_value": "INTEGER"
1203
+ },
1204
+ "insurance":{
1205
+ "age":"INTEGER",
1206
+ "sex":"VARCHAR(20)",
1207
+ "bmi":"FLOAT",
1208
+ "children":"INTEGER",
1209
+ "smoker":"VARCHAR(20)",
1210
+ "region":"VARCHAR(20)",
1211
+ "charges":"FLOAT"
1212
+ },
1213
+ "bank_churn":{
1214
+ "customer_id":"BIGINT",
1215
+ "credit_score":"BIGINT",
1216
+ "country":"VARCHAR(256)",
1217
+ "gender":"varchar(20)",
1218
+ "age":"INTEGER",
1219
+ "tenure":"BIGINT",
1220
+ "balance":"FLOAT",
1221
+ "products_number":"BIGINT",
1222
+ "credit_card":"BIGINT",
1223
+ "active_member":"BIGINT",
1224
+ "estimated_salary":"FLOAT",
1225
+ "churn":"BIGINT"
1226
+ },
1227
+ "wine_data":{
1228
+ "fixed_acidity":"FLOAT",
1229
+ "volatile_acidity":"FLOAT",
1230
+ "citric_acid":"FLOAT",
1231
+ "residual_sugar":"FLOAT",
1232
+ "chlorides":"FLOAT",
1233
+ "free_sulfur_dioxide":"FLOAT",
1234
+ "total_sulfur_dioxide":"FLOAT",
1235
+ "density":"FLOAT",
1236
+ "pH":"FLOAT",
1237
+ "sulphates":"FLOAT",
1238
+ "alcohol":"FLOAT",
1239
+ "quality":"VARCHAR(20)"
1240
+ },
1241
+ "fish":{
1242
+ "Species":"VARCHAR(20)",
1243
+ "Weight":"INTEGER",
1244
+ "Length1":"FLOAT",
1245
+ "Length2":"FLOAT",
1246
+ "Length3":"FLOAT",
1247
+ "Height":"FLOAT",
1248
+ "Width":"FLOAT"
1249
+ },
1250
+ "iris_data":{
1251
+ "sepal_length":"FLOAT",
1252
+ "sepal_width":"FLOAT",
1253
+ "petal_length":"FLOAT",
1254
+ "petal_width":"FLOAT",
1255
+ "species":"VARCHAR(20)"
1256
+ },
1257
+ "glass_types":{
1258
+ "ri":"FLOAT",
1259
+ "na":"FLOAT",
1260
+ "mg":"FLOAT",
1261
+ "ai":"FLOAT",
1262
+ "si":"FLOAT",
1263
+ "k":"FLOAT",
1264
+ "ca":"FLOAT",
1265
+ "ba":"FLOAT",
1266
+ "fe":"FLOAT",
1267
+ "gtype":"INTEGER"
1268
+ },
1269
+ "bmi":{
1270
+ "gender":"VARCHAR(20)",
1271
+ "height":"INTEGER",
1272
+ "weight":"INTEGER",
1273
+ "bmi":"INTEGER"
1203
1274
  }
1204
- }
1275
+
1276
+ }
@@ -0,0 +1,101 @@
1
+ col1,col2,col3,col4,label
2
+ -7.156025619387396e-02,2.295539000122874e-01,2.1654344712218576e-01,6.527397921673574e-02,1
3
+ -4.032571038523639e-01,2.0061840569850093e+00,2.027512477119932e+00,8.508919440196765e-01,1
4
+ -1.1305820619922704e+00,-2.0295925141421645e-02,-7.102336334648424e-01,-1.440991082992062e+00,0
5
+ 1.8332468205821462e-01,-7.74610353732039e-01,-7.66054694735782e-01,-2.9366863291253276e-01,0
6
+ -2.8692000017174224e-01,-7.169529842687833e-01,-9.865850877151031e-01,-8.48214734984639e-01,0
7
+ -2.5604297516143286e+00,4.0223233672431147e-01,-1.1007419820939432e+00,-2.9595882598466674e+00,0
8
+ 4.223414406917685e-01,-2.039114403027563e+00,-2.053215806414584e+00,-8.491230457662061e-01,0
9
+ -5.097927128625588e-01,4.926589443964751e-01,2.482067293662461e-01,-3.095907315896897e-01,1
10
+ 7.216694959200303e-01,-1.1215566442946217e+00,-8.318398647044646e-01,1.5074209659533433e-01,0
11
+ -9.861325665504175e-01,1.7105310292848412e+00,1.3382818041204743e+00,-8.534109029742931e-02,1
12
+ -7.231680381760497e-02,-7.736683335839201e-01,-9.203832529446819e-01,-6.157487035381035e-01,0
13
+ 4.559464978500706e-01,-4.578687619407589e-01,-2.4152710035941571e-01,2.6519962031057953e-01,1
14
+ 3.9390607557342605e-01,3.902473455403299e-01,6.815206771027396e-01,7.618043278846556e-01,1
15
+ 2.031968254396686e+00,8.403986546299471e-01,2.1871813975599217e+00,3.1348238328210307e+00,1
16
+ 4.5893100825733946e-02,-2.614033916761356e-01,-2.682252643663885e-01,-1.1926611814335958e-01,1
17
+ 3.734361597739779e-01,-1.0738263398394476e+00,-9.894492879424683e-01,-2.565077828985802e-01,0
18
+ -1.2011443492922544e+00,1.1724106094128572e-01,-5.973218447748447e-01,-1.436834012027966e+00,0
19
+ -1.308191714615154e+00,-4.3265955878063e-01,-1.2853288297891097e+00,-1.9447377443527114e+00,0
20
+ 5.5626974301926e-01,-5.842642261304858e-01,-3.2372692196790664e-01,3.0616506646092834e-01,1
21
+ -1.7950634462096733e+00,3.929047275333263e+00,3.3597325348675415e+00,3.9736974686402515e-01,1
22
+ -1.3081345089927474e+00,1.5169724178877273e+00,9.232814514163201e-01,-6.230425160474049e-01,1
23
+ -2.380763938123808e+00,1.1371277773786237e+00,-1.5902752431047806e-01,-2.2346069917229e+00,0
24
+ -4.86612461597536e-01,-1.9216172048359466e+00,-2.4726349400207184e+00,-1.916925819699851e+00,0
25
+ 4.329945316598389e-01,2.2034637129059273e-01,5.128145618207097e-01,6.959760736131354e-01,1
26
+ 1.2678043992138572e+00,-1.8017079299088052e+00,-1.2703498629717205e+00,3.791128277285917e-01,0
27
+ 1.1050264748849479e+00,-1.9498938738833806e+00,-1.5371644824583068e+00,7.317120819146172e-02,1
28
+ 1.3405762424958136e+00,-8.145933633680679e-01,-1.0789456676958853e-01,1.1401276101958635e+00,1
29
+ -6.795980112953546e-01,1.0394390740067625e+00,7.643895292440813e-01,-1.5329770651272379e-01,1
30
+ -1.8289652217246832e-01,-1.0129018665883924e+00,-1.258608594846326e+00,-9.175155960168716e-01,0
31
+ 1.1069863727547826e+00,-1.067015728836049e+00,-5.358340907741215e-01,6.741337341703041e-01,1
32
+ 5.448188127966272e-01,-1.3333047607577708e+00,-1.1792131172184188e+00,-2.1605253663187984e-01,1
33
+ 1.555250600398339e+00,2.562532716572834e-01,1.2356714816573484e+00,2.1370389455234107e+00,1
34
+ -3.4553805148756467e-01,-2.2967233366922146e+00,-2.8118071037996795e+00,-1.9931134219738014e+00,0
35
+ 1.120734838779243e+00,-3.247441907424656e-01,3.133806659361569e-01,1.1946631281496634e+00,1
36
+ -9.071974278788116e-01,3.8781319921728025e-01,-1.1213297416928425e-01,-8.82342711984023e-01,1
37
+ 1.878348872411074e+00,5.772885191549086e-01,1.7957459076734437e+00,2.7625386504818605e+00,1
38
+ 1.4337012132131193e+00,-1.7542398362245135e+00,-1.1157342322226846e+00,6.207167434763821e-01,0
39
+ 3.802515663893694e-01,2.0295669683967534e+00,2.530269084921403e+00,1.855834485876084e+00,1
40
+ -1.2573206891835977e+00,-2.1486101200899306e+00,-3.198263394150648e+00,-3.043733068054326e+00,0
41
+ 6.876617604053404e-01,-1.3659201799604759e+00,-1.1293310758797774e+00,-5.78388149501351e-02,0
42
+ -1.1045395160596065e+00,2.1014117205877856e+00,1.7091024231467271e+00,3.0154944776507597e-02,1
43
+ -7.934701915546589e-01,1.2666241997891345e+00,9.52529621622912e-01,-1.4304352954382915e-01,0
44
+ -1.2437812638415866e+00,2.808211117074704e-01,-4.3793316291108564e-01,-1.3797701364848058e+00,0
45
+ 4.171803637611743e-01,-1.1678611541651076e+00,-1.069382886775273e+00,-2.650302736268299e-01,0
46
+ -4.2276158128364316e-01,-7.692135037774855e-01,-1.1283601124999758e+00,-1.0551260019803728e+00,0
47
+ -2.475534022965409e-03,3.9979927136949633e-01,4.513944673876453e-01,2.6789217705377905e-01,1
48
+ 4.866811876964725e-01,-1.547405674112523e+00,-1.4570900594036427e+00,-4.3458019526275143e-01,0
49
+ -6.054157973815384e-01,-2.959705989254669e-01,-7.032919195935738e-01,-9.649029503155023e-01,0
50
+ -1.6613005248968182e+00,2.3920366515222007e+00,1.6998912473108954e+00,-4.756834722241752e-01,1
51
+ -1.4024688627878925e+00,-1.1285650300388772e-01,-9.80358458750089e-01,-1.8469628905866908e+00,0
52
+ 1.7762447906304968e+00,8.014786986933157e-01,1.9876466987502077e+00,2.7856185053131712e+00,1
53
+ -3.5875462239471156e+00,2.9181935785016044e-01,-1.850168527344012e+00,-4.331054510250071e+00,0
54
+ -8.6069961887752e-01,-3.0560569985919417e-01,-8.693850044520386e-01,-1.2937015638901872e+00,0
55
+ -2.5215955002082238e+00,2.478225544122823e+00,1.2745836381384683e+00,-1.503283196868372e+00,1
56
+ -2.680512096708636e-01,-2.510822715809212e-01,-4.4736931037076955e-01,-5.085890180828015e-01,0
57
+ 1.4704989233220236e+00,1.277797620936113e+00,2.341376260856668e+00,2.722537359608725e+00,1
58
+ -1.6207337470423404e+00,-1.0921935526093054e+00,-2.2224434857026436e+00,-2.7863740396742367e+00,0
59
+ 9.299503177551005e-01,-1.2885146301716626e+00,-8.94365875666622e-01,3.0049519527933966e-01,0
60
+ -2.0572167152672716e-01,1.7589532053530663e+00,1.867520275756581e+00,9.326645584872928e-01,1
61
+ 2.028990234337061e+00,-1.6696358577770876e-01,1.0442144720383355e+00,2.448190349139855e+00,1
62
+ 4.2434508106371127e-01,-1.278059889065437e+00,-1.1898626592786472e+00,-3.3068750825746973e-01,0
63
+ 1.2319505503720647e+00,-1.5394952592671587e+00,-9.951053168689495e-01,5.11600970144431e-01,0
64
+ 1.9769890149980527e+00,-2.1326410553140835e+00,-1.21414739515473e+00,1.0500446681804023e+00,0
65
+ 7.092165932574367e-01,-1.481739570005534e+00,-1.2474307620913612e+00,-1.091402940812165e-01,0
66
+ -9.615415551232644e-01,1.6014346799820025e+00,1.2296436790616394e+00,-1.2825229790994352e-01,1
67
+ 2.6332591353317136e+00,1.9968582753260276e+00,3.8627421878639634e+00,4.677830701373434e+00,1
68
+ -1.2326739561548532e+00,1.1655623753837756e+00,5.710681973205789e-01,-7.659970564179892e-01,0
69
+ 2.115647338564104e+00,-1.142415827390722e+00,-8.11815766831625e-03,1.8963423940631976e+00,1
70
+ -1.6218421243563732e+00,1.7133806672783916e+00,9.550838772751624e-01,-8.8592125248134e-01,1
71
+ 1.7944511285596305e+00,-1.7603283965924263e+00,-9.033439498079894e-01,1.0719956418304486e+00,0
72
+ -4.3784329530910715e-02,-1.1011002600500417e+00,-1.273959668620149e+00,-8.016903048376662e-01,0
73
+ -1.0486202319833615e-01,2.771360265873167e-01,2.502022685945151e-01,5.548937069062941e-02,1
74
+ 1.7803747427888172e+00,-1.7499486432213605e+00,-9.001421449524415e-01,1.061262048267582e+00,0
75
+ 3.5117341307021976e-01,-9.789691163230871e-01,-8.955262089440742e-01,-2.203098686670774e-01,0
76
+ 5.593131963144458e-01,2.9407023239132535e-01,6.731149622919457e-01,9.054153700658307e-01,1
77
+ -2.8978824993367214e-01,-9.071101176908198e-01,-1.2037417597331295e+00,-9.807399284527443e-01,0
78
+ -8.271824743359713e-01,1.5208867942038558e+00,1.2200699738201646e+00,-1.3241124747140454e-02,1
79
+ -3.6974359976891638e+00,1.5768875645658011e+00,-4.6122012950176094e-01,-3.5986516890499547e+00,0
80
+ -8.640081290830173e-01,-7.952928105950496e-02,-6.15293009552834e-01,-1.1446247511104104e+00,0
81
+ -2.08311803057051e-01,8.624849330033639e-01,8.504116645498019e-01,3.2169391260614677e-01,1
82
+ -1.001711293894727e-01,2.1778421202365075e+00,2.406205156499104e+00,1.3498680692557434e+00,1
83
+ 1.8508239150610382e+00,-1.6824992225408963e+00,-7.80910683743241e-01,1.1959190498938077e+00,0
84
+ 7.338999623284566e-01,-5.143119923571249e-01,-1.3650854882454633e-01,5.77822711680621e-01,1
85
+ -8.695369519005374e-01,1.9989687710081492e+00,1.7359033485741289e+00,2.573749080243791e-01,1
86
+ 1.3532962753060973e+00,-1.2874410336483981e+00,-6.358121950079192e-01,8.356496699669813e-01,0
87
+ -8.002210588472312e-01,-1.7356949681552813e-01,-6.830493560168442e-01,-1.1278490368861847e+00,1
88
+ 2.4254808486506256e+00,-5.498915480430562e-01,8.5144036205131e-01,2.689134716018992e+00,1
89
+ 1.2666139424327671e+00,-1.6660989176826315e+00,-1.1174533578348345e+00,4.6953709831874846e-01,0
90
+ -3.211053667726502e-01,4.1328802958184946e-01,2.729906061625348e-01,-1.2519837916582902e-01,1
91
+ 8.658254600723946e-01,-1.4784947067277336e+00,-1.1485577664230358e+00,9.07604413995754e-02,0
92
+ -7.628844164635872e-01,-8.717458260209808e-01,-1.4512594413079423e+00,-1.5539978148072322e+00,0
93
+ -4.4358418688521395e-01,9.942821241511963e-01,8.566996977399313e-01,1.1403208330863496e-01,1
94
+ -2.2011901612056937e+00,2.867239546533001e+00,1.9100285859432384e+00,-8.351013526293585e-01,1
95
+ 1.8324086110597337e+00,-1.9101544353699098e+00,-1.049996324589264e+00,1.018348124556209e+00,0
96
+ -3.545288721030091e-01,1.212189150478433e-01,-7.818714416774197e-02,-3.653805823167333e-01,1
97
+ -1.972427560720223e+00,1.5208760827120622e+00,5.23902617748198e-01,-1.4589916202641877e+00,1
98
+ -1.0528659778077893e+00,-6.415151124325393e-01,-1.366720111082726e+00,-1.7639973894652614e+00,0
99
+ -4.718241674174253e-01,4.4496832895711996e-01,2.1726178451322842e-01,-2.939883824642023e-01,1
100
+ -1.9464385931107386e-01,1.296884427177927e+00,1.3508149060562555e+00,6.334203305402286e-01,1
101
+ -3.5996730357206175e-01,-1.0547372143709348e+00,-1.413635629086208e+00,-1.1694070454905325e+00,0