teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,578 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 3.7
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.SentimentTrainer import SentimentTrainer
30
-
31
- class SentimentExtractor:
32
-
33
- def __init__(self,
34
- object = None,
35
- newdata = None,
36
- dict_data = None,
37
- text_column = None,
38
- language = "en",
39
- level = "DOCUMENT",
40
- high_priority = "NONE",
41
- filter = "ALL",
42
- accumulate = None,
43
- newdata_sequence_column = None,
44
- dict_data_sequence_column = None,
45
- newdata_order_column = None,
46
- dict_data_order_column = None):
47
- """
48
- DESCRIPTION:
49
- The SentimentExtractor function extracts the sentiment (positive,
50
- negative, or neutral) of each input document or sentence, using
51
- either a classification model output by the function SentimentTrainer
52
- or a dictionary model.
53
-
54
-
55
- PARAMETERS:
56
- object:
57
- Optional Argument.
58
- Specifies the model type and file. The default model type is
59
- dictionary. If you omit this argument or specify dictionary without
60
- dictionary file, then you must specify a dictionary teradataml DataFrame
61
- with the name dict_data. If you specify both dict and dictionary file, then
62
- whenever their words conflict, dict has higher priority. The
63
- dictionary file must be a text file in which each line contains only a
64
- sentiment word, a space, and the opinion score of the sentiment word.
65
- If you specify classification:model_file, model_file must be the name
66
- of a model file generated and installed on the database by the
67
- function SentimentTrainer.
68
- Note: Before running the function, add the location of dictionary file or
69
- model_file to the user/session default search path.
70
- Types: str
71
-
72
- newdata:
73
- Required Argument.
74
- Specifies the teradataml DataFrame defining the input text.
75
-
76
- newdata_order_column:
77
- Optional Argument.
78
- Specifies Order By columns for newdata.
79
- Values to this argument can be provided as list, if multiple columns
80
- are used for ordering.
81
- Types: str OR list of Strings (str)
82
-
83
- dict_data:
84
- Optional Argument.
85
- Specifies the teradataml DataFrame defining the dictionary.
86
-
87
- dict_data_order_column:
88
- Optional Argument.
89
- Specifies Order By columns for dict_data.
90
- Values to this argument can be provided as list, if multiple columns
91
- are used for ordering.
92
- Types: str OR list of Strings (str)
93
-
94
- text_column:
95
- Required Argument.
96
- Specifies the name of the input column that contains text from which
97
- to extract sentiments.
98
- Types: str
99
-
100
- language:
101
- Optional Argument.
102
- Specifies the language of the input text:
103
- - en (English)
104
- - zh_CN (Simplified Chinese)
105
- - zh_TW (Traditional Chinese)
106
- Default Value: "en"
107
- Permitted Values: en, zh_CN, zh_TW
108
- Types: str
109
-
110
- level:
111
- Optional Argument.
112
- Specifies the level of analysis — whether to analyze each document or
113
- each sentence.
114
- Default Value: "DOCUMENT"
115
- Permitted Values: DOCUMENT, SENTENCE
116
- Types: str
117
-
118
- high_priority:
119
- Optional Argument.
120
- Specifies the highest priority when returning results:
121
- - NEGATIVE_RECALL: Give highest priority to negative results, including
122
- those with lower confidence sentiment classifications
123
- (maximizes the number of negative results returned).
124
- - NEGATIVE_PRECISION: Give highest priority to negative results with
125
- high-confidence sentiment classifications.
126
- - POSITIVE_RECALL: Give highest priority to positive results, including
127
- those with lower confidence sentiment classifications
128
- (maximizes the number of positive results returned).
129
- - POSITIVE_PRECISION: Give highest priority to positive results with
130
- high-confidence sentiment classifications.
131
- NONE: Give all results the same priority.
132
- Default Value: "NONE"
133
- Permitted Values: NEGATIVE_RECALL, NEGATIVE_PRECISION,
134
- POSITIVE_RECALL, POSITIVE_PRECISION, NONE
135
- Types: str
136
-
137
- filter:
138
- Optional Argument.
139
- Specifies the kind of results to return:
140
- - POSITIVE: Return only results with positive sentiments.
141
- - NEGATIVE: Return only results with negative sentiments.
142
- - ALL: Return all results.
143
- Default Value: "ALL"
144
- Permitted Values: POSITIVE, NEGATIVE, ALL
145
- Types: str
146
-
147
- accumulate:
148
- Optional Argument.
149
- Specifies the names of the input columns to copy to the output teradataml DataFrame.
150
- Types: str OR list of Strings (str)
151
-
152
- newdata_sequence_column:
153
- Optional Argument.
154
- Specifies the list of column(s) that uniquely identifies each row of
155
- the input argument "newdata". The argument is used to ensure
156
- deterministic results for functions which produce results that vary
157
- from run to run.
158
- Types: str OR list of Strings (str)
159
-
160
- dict_data_sequence_column:
161
- Optional Argument.
162
- Specifies the list of column(s) that uniquely identifies each row of
163
- the input argument "dict_data". The argument is used to ensure
164
- deterministic results for functions which produce results that vary
165
- from run to run.
166
- Types: str OR list of Strings (str)
167
-
168
- RETURNS:
169
- Instance of SentimentExtractor.
170
- Output teradataml DataFrames can be accessed using attribute
171
- references, such as SentimentExtractorObj.<attribute_name>.
172
- Output teradataml DataFrame attribute name is:
173
- result
174
-
175
-
176
- RAISES:
177
- TeradataMlException
178
-
179
-
180
- EXAMPLES:
181
- # Load example data.
182
- load_example_data("sentimenttrainer", "sentiment_train")
183
- load_example_data("sentimentextractor", ["sentiment_extract_input", "sentiment_word"])
184
-
185
- # Create teradataml DataFrame objects.
186
- sentiment_train = DataFrame.from_table("sentiment_train")
187
- sentiment_extract_input = DataFrame.from_table("sentiment_extract_input")
188
- sentiment_word = DataFrame.from_table("sentiment_word")
189
-
190
- # Example 1 - This example uses the dictionary model file to analyze each document.
191
- SentimentExtractor_out1 = SentimentExtractor(object = "dictionary",
192
- newdata = sentiment_extract_input,
193
- text_column = "review",
194
- level = "document",
195
- accumulate = ["id","product"]
196
- )
197
- # Print the results
198
- print(SentimentExtractor_out1)
199
-
200
- # Example 2 - This example uses the dictionary model file to analyze each sentence.
201
- SentimentExtractor_out2 = SentimentExtractor(object = "dictionary",
202
- newdata = sentiment_extract_input,
203
- text_column = "review",
204
- level = "sentence",
205
- accumulate = ["id","product"]
206
- )
207
- # Print the results
208
- print(SentimentExtractor_out2)
209
-
210
- # Example 3 - This example uses a maximum entropy classification model file.
211
- SentimentExtractor_out3 = SentimentExtractor(object = "classification:default_sentiment_classification_model.bin",
212
- newdata = sentiment_extract_input,
213
- text_column = "review",
214
- level = "document",
215
- accumulate = ["id"]
216
- )
217
- # Print the results
218
- print(SentimentExtractor_out3)
219
-
220
- # Example 4 - This example uses a model file output by the SentimentTrainer function.
221
- SentimentTrainer_out = SentimentTrainer(data = sentiment_train,
222
- text_column = "review",
223
- sentiment_column = "category",
224
- model_file = "sentimentmodel1.bin"
225
- )
226
-
227
- SentimentExtractor_out4 = SentimentExtractor(object = "classification:sentimentmodel1.bin",
228
- newdata = sentiment_extract_input,
229
- text_column = "review",
230
- level = "document",
231
- accumulate = ["id"]
232
- )
233
- # Print the results
234
- print(SentimentExtractor_out4)
235
-
236
- # Example 5 - This example uses a dictionary instead of a model file.
237
- SentimentExtractor_out5 = SentimentExtractor(dict_data = sentiment_word,
238
- newdata = sentiment_extract_input,
239
- text_column = "review",
240
- level = "document",
241
- accumulate = ["id", "product"]
242
- )
243
- # Print the results
244
- print(SentimentExtractor_out5)
245
-
246
- """
247
-
248
- # Start the timer to get the build time
249
- _start_time = time.time()
250
-
251
- self.object = object
252
- self.newdata = newdata
253
- self.dict_data = dict_data
254
- self.text_column = text_column
255
- self.language = language
256
- self.level = level
257
- self.high_priority = high_priority
258
- self.filter = filter
259
- self.accumulate = accumulate
260
- self.newdata_sequence_column = newdata_sequence_column
261
- self.dict_data_sequence_column = dict_data_sequence_column
262
- self.newdata_order_column = newdata_order_column
263
- self.dict_data_order_column = dict_data_order_column
264
-
265
- # Create TeradataPyWrapperUtils instance which contains validation functions.
266
- self.__awu = AnalyticsWrapperUtils()
267
- self.__aed_utils = AedUtils()
268
-
269
- # Create argument information matrix to do parameter checking
270
- self.__arg_info_matrix = []
271
- self.__arg_info_matrix.append(["object", self.object, True, (str)])
272
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
273
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
274
- self.__arg_info_matrix.append(["dict_data", self.dict_data, True, (DataFrame)])
275
- self.__arg_info_matrix.append(["dict_data_order_column", self.dict_data_order_column, True, (str,list)])
276
- self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
277
- self.__arg_info_matrix.append(["language", self.language, True, (str)])
278
- self.__arg_info_matrix.append(["level", self.level, True, (str)])
279
- self.__arg_info_matrix.append(["high_priority", self.high_priority, True, (str)])
280
- self.__arg_info_matrix.append(["filter", self.filter, True, (str)])
281
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
282
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
283
- self.__arg_info_matrix.append(["dict_data_sequence_column", self.dict_data_sequence_column, True, (str,list)])
284
-
285
- if inspect.stack()[1][3] != '_from_model_catalog':
286
- # Perform the function validations
287
- self.__validate()
288
- # Generate the ML query
289
- self.__form_tdml_query()
290
- # Execute ML query
291
- self.__execute()
292
- # Get the prediction type
293
- self._prediction_type = self.__awu._get_function_prediction_type(self)
294
-
295
- # End the timer to get the build time
296
- _end_time = time.time()
297
-
298
- # Calculate the build time
299
- self._build_time = (int)(_end_time - _start_time)
300
-
301
- def __validate(self):
302
- """
303
- Function to validate sqlmr function arguments, which verifies missing
304
- arguments, input argument and table types. Also processes the
305
- argument values.
306
- """
307
-
308
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
309
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
310
-
311
- # Make sure that a non-NULL value has been supplied correct type of argument
312
- self.__awu._validate_argument_types(self.__arg_info_matrix)
313
-
314
- # Check to make sure input table types are strings or data frame objects or of valid type.
315
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
316
- self.__awu._validate_input_table_datatype(self.dict_data, "dict_data", None)
317
-
318
- # Check for permitted values
319
- language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
320
- self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
321
-
322
- level_permitted_values = ["DOCUMENT", "SENTENCE"]
323
- self.__awu._validate_permitted_values(self.level, level_permitted_values, "level")
324
-
325
- high_priority_permitted_values = ["NEGATIVE_RECALL", "NEGATIVE_PRECISION", "POSITIVE_RECALL", "POSITIVE_PRECISION", "NONE"]
326
- self.__awu._validate_permitted_values(self.high_priority, high_priority_permitted_values, "high_priority")
327
-
328
- filter_permitted_values = ["POSITIVE", "NEGATIVE", "ALL"]
329
- self.__awu._validate_permitted_values(self.filter, filter_permitted_values, "filter")
330
-
331
- # Check whether the input columns passed to the argument are not empty.
332
- # Also check whether the input columns passed to the argument valid or not.
333
- self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
334
- self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.newdata, "newdata", False)
335
-
336
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
337
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
338
-
339
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
340
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
341
-
342
- self.__awu._validate_input_columns_not_empty(self.dict_data_sequence_column, "dict_data_sequence_column")
343
- self.__awu._validate_dataframe_has_argument_columns(self.dict_data_sequence_column, "dict_data_sequence_column", self.dict_data, "dict_data", False)
344
-
345
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
346
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
347
-
348
- self.__awu._validate_input_columns_not_empty(self.dict_data_order_column, "dict_data_order_column")
349
- self.__awu._validate_dataframe_has_argument_columns(self.dict_data_order_column, "dict_data_order_column", self.dict_data, "dict_data", False)
350
-
351
-
352
- def __form_tdml_query(self):
353
- """
354
- Function to generate the analytical function queries. The function defines
355
- variables and list of arguments required to form the query.
356
- """
357
-
358
- # Output table arguments list
359
- self.__func_output_args_sql_names = []
360
- self.__func_output_args = []
361
-
362
- # Model Cataloging related attributes.
363
- self._sql_specific_attributes = {}
364
- self._sql_formula_attribute_mapper = {}
365
- self._target_column = None
366
- self._algorithm_name = None
367
-
368
- # Generate lists for rest of the function arguments
369
- self.__func_other_arg_sql_names = []
370
- self.__func_other_args = []
371
- self.__func_other_arg_json_datatypes = []
372
-
373
- self.__func_other_arg_sql_names.append("TextColumn")
374
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
375
- self.__func_other_arg_json_datatypes.append("COLUMNS")
376
-
377
- if self.accumulate is not None:
378
- self.__func_other_arg_sql_names.append("Accumulate")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
380
- self.__func_other_arg_json_datatypes.append("COLUMNS")
381
-
382
- if self.language is not None and self.language != "en":
383
- self.__func_other_arg_sql_names.append("InputLanguage")
384
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
385
- self.__func_other_arg_json_datatypes.append("STRING")
386
-
387
- if self.object is not None:
388
- self.__func_other_arg_sql_names.append("ModelFile")
389
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.object, "'"))
390
- self.__func_other_arg_json_datatypes.append("STRING")
391
-
392
- if self.level is not None and self.level != "DOCUMENT":
393
- self.__func_other_arg_sql_names.append("AnalysisType")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.level, "'"))
395
- self.__func_other_arg_json_datatypes.append("STRING")
396
-
397
- if self.high_priority is not None and self.high_priority != "NONE":
398
- self.__func_other_arg_sql_names.append("Priority")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.high_priority, "'"))
400
- self.__func_other_arg_json_datatypes.append("STRING")
401
-
402
- if self.filter is not None and self.filter != "ALL":
403
- self.__func_other_arg_sql_names.append("OutputType")
404
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.filter, "'"))
405
- self.__func_other_arg_json_datatypes.append("STRING")
406
-
407
- # Generate lists for rest of the function arguments
408
- sequence_input_by_list = []
409
- if self.newdata_sequence_column is not None:
410
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
411
-
412
- if self.dict_data_sequence_column is not None:
413
- sequence_input_by_list.append("dict:" + UtilFuncs._teradata_collapse_arglist(self.dict_data_sequence_column, ""))
414
-
415
- if len(sequence_input_by_list) > 0:
416
- self.__func_other_arg_sql_names.append("SequenceInputBy")
417
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
418
- self.__func_other_args.append(sequence_input_by_arg_value)
419
- self.__func_other_arg_json_datatypes.append("STRING")
420
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
421
-
422
-
423
- # Declare empty lists to hold input table information.
424
- self.__func_input_arg_sql_names = []
425
- self.__func_input_table_view_query = []
426
- self.__func_input_dataframe_type = []
427
- self.__func_input_distribution = []
428
- self.__func_input_partition_by_cols = []
429
- self.__func_input_order_by_cols = []
430
-
431
- # Process newdata
432
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
433
- self.__func_input_distribution.append("FACT")
434
- self.__func_input_arg_sql_names.append("input")
435
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
436
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
437
- self.__func_input_partition_by_cols.append("ANY")
438
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
439
-
440
- # Process dict_data
441
- if self.dict_data is not None:
442
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.dict_data, False)
443
- self.__func_input_distribution.append("DIMENSION")
444
- self.__func_input_arg_sql_names.append("dict")
445
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
446
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
447
- self.__func_input_partition_by_cols.append("NA_character_")
448
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.dict_data_order_column, "\""))
449
-
450
- function_name = "SentimentExtractor"
451
- # Create instance to generate SQLMR.
452
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
453
- self.__func_input_arg_sql_names,
454
- self.__func_input_table_view_query,
455
- self.__func_input_dataframe_type,
456
- self.__func_input_distribution,
457
- self.__func_input_partition_by_cols,
458
- self.__func_input_order_by_cols,
459
- self.__func_other_arg_sql_names,
460
- self.__func_other_args,
461
- self.__func_other_arg_json_datatypes,
462
- self.__func_output_args_sql_names,
463
- self.__func_output_args,
464
- engine="ENGINE_ML")
465
- # Invoke call to SQL-MR generation.
466
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
467
-
468
- # Print SQL-MR query if requested to do so.
469
- if display.print_sqlmr_query:
470
- print(self.sqlmr_query)
471
-
472
- # Set the algorithm name for Model Cataloging.
473
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
474
-
475
- def __execute(self):
476
- """
477
- Function to execute SQL-MR queries.
478
- Create DataFrames for the required SQL-MR outputs.
479
- """
480
- # Generate STDOUT table name and add it to the output table list.
481
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
482
- try:
483
- # Generate the output.
484
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
485
- except Exception as emsg:
486
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
487
-
488
- # Update output table data frames.
489
- self._mlresults = []
490
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
491
- self._mlresults.append(self.result)
492
-
493
- def show_query(self):
494
- """
495
- Function to return the underlying SQL query.
496
- When model object is created using retrieve_model(), then None is returned.
497
- """
498
- return self.sqlmr_query
499
-
500
- def get_prediction_type(self):
501
- """
502
- Function to return the Prediction type of the algorithm.
503
- When model object is created using retrieve_model(), then the value returned is
504
- as saved in the Model Catalog.
505
- """
506
- return self._prediction_type
507
-
508
- def get_target_column(self):
509
- """
510
- Function to return the Target Column of the algorithm.
511
- When model object is created using retrieve_model(), then the value returned is
512
- as saved in the Model Catalog.
513
- """
514
- return self._target_column
515
-
516
- def get_build_time(self):
517
- """
518
- Function to return the build time of the algorithm in seconds.
519
- When model object is created using retrieve_model(), then the value returned is
520
- as saved in the Model Catalog.
521
- """
522
- return self._build_time
523
-
524
- def _get_algorithm_name(self):
525
- """
526
- Function to return the name of the algorithm.
527
- """
528
- return self._algorithm_name
529
-
530
- def _get_sql_specific_attributes(self):
531
- """
532
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
533
- """
534
- return self._sql_specific_attributes
535
-
536
- @classmethod
537
- def _from_model_catalog(cls,
538
- result = None,
539
- **kwargs):
540
- """
541
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
542
- """
543
- kwargs.pop("result", None)
544
-
545
- # Model Cataloging related attributes.
546
- target_column = kwargs.pop("__target_column", None)
547
- prediction_type = kwargs.pop("__prediction_type", None)
548
- algorithm_name = kwargs.pop("__algorithm_name", None)
549
- build_time = kwargs.pop("__build_time", None)
550
-
551
- # Let's create an object of this class.
552
- obj = cls(**kwargs)
553
- obj.result = result
554
-
555
- # Initialize the sqlmr_query class attribute.
556
- obj.sqlmr_query = None
557
-
558
- # Initialize the SQL specific Model Cataloging attributes.
559
- obj._sql_specific_attributes = None
560
- obj._target_column = target_column
561
- obj._prediction_type = prediction_type
562
- obj._algorithm_name = algorithm_name
563
- obj._build_time = build_time
564
-
565
- # Update output table data frames.
566
- obj._mlresults = []
567
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
568
- obj._mlresults.append(obj.result)
569
- return obj
570
-
571
- def __repr__(self):
572
- """
573
- Returns the string representation for a SentimentExtractor class instance.
574
- """
575
- repr_string="############ STDOUT Output ############"
576
- repr_string = "{}\n\n{}".format(repr_string,self.result)
577
- return repr_string
578
-