teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,578 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 3.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.SentimentTrainer import SentimentTrainer
|
|
30
|
-
|
|
31
|
-
class SentimentExtractor:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
newdata = None,
|
|
36
|
-
dict_data = None,
|
|
37
|
-
text_column = None,
|
|
38
|
-
language = "en",
|
|
39
|
-
level = "DOCUMENT",
|
|
40
|
-
high_priority = "NONE",
|
|
41
|
-
filter = "ALL",
|
|
42
|
-
accumulate = None,
|
|
43
|
-
newdata_sequence_column = None,
|
|
44
|
-
dict_data_sequence_column = None,
|
|
45
|
-
newdata_order_column = None,
|
|
46
|
-
dict_data_order_column = None):
|
|
47
|
-
"""
|
|
48
|
-
DESCRIPTION:
|
|
49
|
-
The SentimentExtractor function extracts the sentiment (positive,
|
|
50
|
-
negative, or neutral) of each input document or sentence, using
|
|
51
|
-
either a classification model output by the function SentimentTrainer
|
|
52
|
-
or a dictionary model.
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
PARAMETERS:
|
|
56
|
-
object:
|
|
57
|
-
Optional Argument.
|
|
58
|
-
Specifies the model type and file. The default model type is
|
|
59
|
-
dictionary. If you omit this argument or specify dictionary without
|
|
60
|
-
dictionary file, then you must specify a dictionary teradataml DataFrame
|
|
61
|
-
with the name dict_data. If you specify both dict and dictionary file, then
|
|
62
|
-
whenever their words conflict, dict has higher priority. The
|
|
63
|
-
dictionary file must be a text file in which each line contains only a
|
|
64
|
-
sentiment word, a space, and the opinion score of the sentiment word.
|
|
65
|
-
If you specify classification:model_file, model_file must be the name
|
|
66
|
-
of a model file generated and installed on the database by the
|
|
67
|
-
function SentimentTrainer.
|
|
68
|
-
Note: Before running the function, add the location of dictionary file or
|
|
69
|
-
model_file to the user/session default search path.
|
|
70
|
-
Types: str
|
|
71
|
-
|
|
72
|
-
newdata:
|
|
73
|
-
Required Argument.
|
|
74
|
-
Specifies the teradataml DataFrame defining the input text.
|
|
75
|
-
|
|
76
|
-
newdata_order_column:
|
|
77
|
-
Optional Argument.
|
|
78
|
-
Specifies Order By columns for newdata.
|
|
79
|
-
Values to this argument can be provided as list, if multiple columns
|
|
80
|
-
are used for ordering.
|
|
81
|
-
Types: str OR list of Strings (str)
|
|
82
|
-
|
|
83
|
-
dict_data:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
Specifies the teradataml DataFrame defining the dictionary.
|
|
86
|
-
|
|
87
|
-
dict_data_order_column:
|
|
88
|
-
Optional Argument.
|
|
89
|
-
Specifies Order By columns for dict_data.
|
|
90
|
-
Values to this argument can be provided as list, if multiple columns
|
|
91
|
-
are used for ordering.
|
|
92
|
-
Types: str OR list of Strings (str)
|
|
93
|
-
|
|
94
|
-
text_column:
|
|
95
|
-
Required Argument.
|
|
96
|
-
Specifies the name of the input column that contains text from which
|
|
97
|
-
to extract sentiments.
|
|
98
|
-
Types: str
|
|
99
|
-
|
|
100
|
-
language:
|
|
101
|
-
Optional Argument.
|
|
102
|
-
Specifies the language of the input text:
|
|
103
|
-
- en (English)
|
|
104
|
-
- zh_CN (Simplified Chinese)
|
|
105
|
-
- zh_TW (Traditional Chinese)
|
|
106
|
-
Default Value: "en"
|
|
107
|
-
Permitted Values: en, zh_CN, zh_TW
|
|
108
|
-
Types: str
|
|
109
|
-
|
|
110
|
-
level:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
Specifies the level of analysis — whether to analyze each document or
|
|
113
|
-
each sentence.
|
|
114
|
-
Default Value: "DOCUMENT"
|
|
115
|
-
Permitted Values: DOCUMENT, SENTENCE
|
|
116
|
-
Types: str
|
|
117
|
-
|
|
118
|
-
high_priority:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
Specifies the highest priority when returning results:
|
|
121
|
-
- NEGATIVE_RECALL: Give highest priority to negative results, including
|
|
122
|
-
those with lower confidence sentiment classifications
|
|
123
|
-
(maximizes the number of negative results returned).
|
|
124
|
-
- NEGATIVE_PRECISION: Give highest priority to negative results with
|
|
125
|
-
high-confidence sentiment classifications.
|
|
126
|
-
- POSITIVE_RECALL: Give highest priority to positive results, including
|
|
127
|
-
those with lower confidence sentiment classifications
|
|
128
|
-
(maximizes the number of positive results returned).
|
|
129
|
-
- POSITIVE_PRECISION: Give highest priority to positive results with
|
|
130
|
-
high-confidence sentiment classifications.
|
|
131
|
-
NONE: Give all results the same priority.
|
|
132
|
-
Default Value: "NONE"
|
|
133
|
-
Permitted Values: NEGATIVE_RECALL, NEGATIVE_PRECISION,
|
|
134
|
-
POSITIVE_RECALL, POSITIVE_PRECISION, NONE
|
|
135
|
-
Types: str
|
|
136
|
-
|
|
137
|
-
filter:
|
|
138
|
-
Optional Argument.
|
|
139
|
-
Specifies the kind of results to return:
|
|
140
|
-
- POSITIVE: Return only results with positive sentiments.
|
|
141
|
-
- NEGATIVE: Return only results with negative sentiments.
|
|
142
|
-
- ALL: Return all results.
|
|
143
|
-
Default Value: "ALL"
|
|
144
|
-
Permitted Values: POSITIVE, NEGATIVE, ALL
|
|
145
|
-
Types: str
|
|
146
|
-
|
|
147
|
-
accumulate:
|
|
148
|
-
Optional Argument.
|
|
149
|
-
Specifies the names of the input columns to copy to the output teradataml DataFrame.
|
|
150
|
-
Types: str OR list of Strings (str)
|
|
151
|
-
|
|
152
|
-
newdata_sequence_column:
|
|
153
|
-
Optional Argument.
|
|
154
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
155
|
-
the input argument "newdata". The argument is used to ensure
|
|
156
|
-
deterministic results for functions which produce results that vary
|
|
157
|
-
from run to run.
|
|
158
|
-
Types: str OR list of Strings (str)
|
|
159
|
-
|
|
160
|
-
dict_data_sequence_column:
|
|
161
|
-
Optional Argument.
|
|
162
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
163
|
-
the input argument "dict_data". The argument is used to ensure
|
|
164
|
-
deterministic results for functions which produce results that vary
|
|
165
|
-
from run to run.
|
|
166
|
-
Types: str OR list of Strings (str)
|
|
167
|
-
|
|
168
|
-
RETURNS:
|
|
169
|
-
Instance of SentimentExtractor.
|
|
170
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
171
|
-
references, such as SentimentExtractorObj.<attribute_name>.
|
|
172
|
-
Output teradataml DataFrame attribute name is:
|
|
173
|
-
result
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
RAISES:
|
|
177
|
-
TeradataMlException
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
EXAMPLES:
|
|
181
|
-
# Load example data.
|
|
182
|
-
load_example_data("sentimenttrainer", "sentiment_train")
|
|
183
|
-
load_example_data("sentimentextractor", ["sentiment_extract_input", "sentiment_word"])
|
|
184
|
-
|
|
185
|
-
# Create teradataml DataFrame objects.
|
|
186
|
-
sentiment_train = DataFrame.from_table("sentiment_train")
|
|
187
|
-
sentiment_extract_input = DataFrame.from_table("sentiment_extract_input")
|
|
188
|
-
sentiment_word = DataFrame.from_table("sentiment_word")
|
|
189
|
-
|
|
190
|
-
# Example 1 - This example uses the dictionary model file to analyze each document.
|
|
191
|
-
SentimentExtractor_out1 = SentimentExtractor(object = "dictionary",
|
|
192
|
-
newdata = sentiment_extract_input,
|
|
193
|
-
text_column = "review",
|
|
194
|
-
level = "document",
|
|
195
|
-
accumulate = ["id","product"]
|
|
196
|
-
)
|
|
197
|
-
# Print the results
|
|
198
|
-
print(SentimentExtractor_out1)
|
|
199
|
-
|
|
200
|
-
# Example 2 - This example uses the dictionary model file to analyze each sentence.
|
|
201
|
-
SentimentExtractor_out2 = SentimentExtractor(object = "dictionary",
|
|
202
|
-
newdata = sentiment_extract_input,
|
|
203
|
-
text_column = "review",
|
|
204
|
-
level = "sentence",
|
|
205
|
-
accumulate = ["id","product"]
|
|
206
|
-
)
|
|
207
|
-
# Print the results
|
|
208
|
-
print(SentimentExtractor_out2)
|
|
209
|
-
|
|
210
|
-
# Example 3 - This example uses a maximum entropy classification model file.
|
|
211
|
-
SentimentExtractor_out3 = SentimentExtractor(object = "classification:default_sentiment_classification_model.bin",
|
|
212
|
-
newdata = sentiment_extract_input,
|
|
213
|
-
text_column = "review",
|
|
214
|
-
level = "document",
|
|
215
|
-
accumulate = ["id"]
|
|
216
|
-
)
|
|
217
|
-
# Print the results
|
|
218
|
-
print(SentimentExtractor_out3)
|
|
219
|
-
|
|
220
|
-
# Example 4 - This example uses a model file output by the SentimentTrainer function.
|
|
221
|
-
SentimentTrainer_out = SentimentTrainer(data = sentiment_train,
|
|
222
|
-
text_column = "review",
|
|
223
|
-
sentiment_column = "category",
|
|
224
|
-
model_file = "sentimentmodel1.bin"
|
|
225
|
-
)
|
|
226
|
-
|
|
227
|
-
SentimentExtractor_out4 = SentimentExtractor(object = "classification:sentimentmodel1.bin",
|
|
228
|
-
newdata = sentiment_extract_input,
|
|
229
|
-
text_column = "review",
|
|
230
|
-
level = "document",
|
|
231
|
-
accumulate = ["id"]
|
|
232
|
-
)
|
|
233
|
-
# Print the results
|
|
234
|
-
print(SentimentExtractor_out4)
|
|
235
|
-
|
|
236
|
-
# Example 5 - This example uses a dictionary instead of a model file.
|
|
237
|
-
SentimentExtractor_out5 = SentimentExtractor(dict_data = sentiment_word,
|
|
238
|
-
newdata = sentiment_extract_input,
|
|
239
|
-
text_column = "review",
|
|
240
|
-
level = "document",
|
|
241
|
-
accumulate = ["id", "product"]
|
|
242
|
-
)
|
|
243
|
-
# Print the results
|
|
244
|
-
print(SentimentExtractor_out5)
|
|
245
|
-
|
|
246
|
-
"""
|
|
247
|
-
|
|
248
|
-
# Start the timer to get the build time
|
|
249
|
-
_start_time = time.time()
|
|
250
|
-
|
|
251
|
-
self.object = object
|
|
252
|
-
self.newdata = newdata
|
|
253
|
-
self.dict_data = dict_data
|
|
254
|
-
self.text_column = text_column
|
|
255
|
-
self.language = language
|
|
256
|
-
self.level = level
|
|
257
|
-
self.high_priority = high_priority
|
|
258
|
-
self.filter = filter
|
|
259
|
-
self.accumulate = accumulate
|
|
260
|
-
self.newdata_sequence_column = newdata_sequence_column
|
|
261
|
-
self.dict_data_sequence_column = dict_data_sequence_column
|
|
262
|
-
self.newdata_order_column = newdata_order_column
|
|
263
|
-
self.dict_data_order_column = dict_data_order_column
|
|
264
|
-
|
|
265
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
266
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
267
|
-
self.__aed_utils = AedUtils()
|
|
268
|
-
|
|
269
|
-
# Create argument information matrix to do parameter checking
|
|
270
|
-
self.__arg_info_matrix = []
|
|
271
|
-
self.__arg_info_matrix.append(["object", self.object, True, (str)])
|
|
272
|
-
self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
|
|
273
|
-
self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
|
|
274
|
-
self.__arg_info_matrix.append(["dict_data", self.dict_data, True, (DataFrame)])
|
|
275
|
-
self.__arg_info_matrix.append(["dict_data_order_column", self.dict_data_order_column, True, (str,list)])
|
|
276
|
-
self.__arg_info_matrix.append(["text_column", self.text_column, False, (str)])
|
|
277
|
-
self.__arg_info_matrix.append(["language", self.language, True, (str)])
|
|
278
|
-
self.__arg_info_matrix.append(["level", self.level, True, (str)])
|
|
279
|
-
self.__arg_info_matrix.append(["high_priority", self.high_priority, True, (str)])
|
|
280
|
-
self.__arg_info_matrix.append(["filter", self.filter, True, (str)])
|
|
281
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
282
|
-
self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
|
|
283
|
-
self.__arg_info_matrix.append(["dict_data_sequence_column", self.dict_data_sequence_column, True, (str,list)])
|
|
284
|
-
|
|
285
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
286
|
-
# Perform the function validations
|
|
287
|
-
self.__validate()
|
|
288
|
-
# Generate the ML query
|
|
289
|
-
self.__form_tdml_query()
|
|
290
|
-
# Execute ML query
|
|
291
|
-
self.__execute()
|
|
292
|
-
# Get the prediction type
|
|
293
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
294
|
-
|
|
295
|
-
# End the timer to get the build time
|
|
296
|
-
_end_time = time.time()
|
|
297
|
-
|
|
298
|
-
# Calculate the build time
|
|
299
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
300
|
-
|
|
301
|
-
def __validate(self):
|
|
302
|
-
"""
|
|
303
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
304
|
-
arguments, input argument and table types. Also processes the
|
|
305
|
-
argument values.
|
|
306
|
-
"""
|
|
307
|
-
|
|
308
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
309
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
310
|
-
|
|
311
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
312
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
313
|
-
|
|
314
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
315
|
-
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
316
|
-
self.__awu._validate_input_table_datatype(self.dict_data, "dict_data", None)
|
|
317
|
-
|
|
318
|
-
# Check for permitted values
|
|
319
|
-
language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
|
|
320
|
-
self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
|
|
321
|
-
|
|
322
|
-
level_permitted_values = ["DOCUMENT", "SENTENCE"]
|
|
323
|
-
self.__awu._validate_permitted_values(self.level, level_permitted_values, "level")
|
|
324
|
-
|
|
325
|
-
high_priority_permitted_values = ["NEGATIVE_RECALL", "NEGATIVE_PRECISION", "POSITIVE_RECALL", "POSITIVE_PRECISION", "NONE"]
|
|
326
|
-
self.__awu._validate_permitted_values(self.high_priority, high_priority_permitted_values, "high_priority")
|
|
327
|
-
|
|
328
|
-
filter_permitted_values = ["POSITIVE", "NEGATIVE", "ALL"]
|
|
329
|
-
self.__awu._validate_permitted_values(self.filter, filter_permitted_values, "filter")
|
|
330
|
-
|
|
331
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
332
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
333
|
-
self.__awu._validate_input_columns_not_empty(self.text_column, "text_column")
|
|
334
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_column, "text_column", self.newdata, "newdata", False)
|
|
335
|
-
|
|
336
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
337
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.newdata, "newdata", False)
|
|
338
|
-
|
|
339
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
|
|
340
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
|
|
341
|
-
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.dict_data_sequence_column, "dict_data_sequence_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_data_sequence_column, "dict_data_sequence_column", self.dict_data, "dict_data", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
|
|
347
|
-
|
|
348
|
-
self.__awu._validate_input_columns_not_empty(self.dict_data_order_column, "dict_data_order_column")
|
|
349
|
-
self.__awu._validate_dataframe_has_argument_columns(self.dict_data_order_column, "dict_data_order_column", self.dict_data, "dict_data", False)
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
def __form_tdml_query(self):
|
|
353
|
-
"""
|
|
354
|
-
Function to generate the analytical function queries. The function defines
|
|
355
|
-
variables and list of arguments required to form the query.
|
|
356
|
-
"""
|
|
357
|
-
|
|
358
|
-
# Output table arguments list
|
|
359
|
-
self.__func_output_args_sql_names = []
|
|
360
|
-
self.__func_output_args = []
|
|
361
|
-
|
|
362
|
-
# Model Cataloging related attributes.
|
|
363
|
-
self._sql_specific_attributes = {}
|
|
364
|
-
self._sql_formula_attribute_mapper = {}
|
|
365
|
-
self._target_column = None
|
|
366
|
-
self._algorithm_name = None
|
|
367
|
-
|
|
368
|
-
# Generate lists for rest of the function arguments
|
|
369
|
-
self.__func_other_arg_sql_names = []
|
|
370
|
-
self.__func_other_args = []
|
|
371
|
-
self.__func_other_arg_json_datatypes = []
|
|
372
|
-
|
|
373
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_column, "\""), "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
376
|
-
|
|
377
|
-
if self.accumulate is not None:
|
|
378
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
381
|
-
|
|
382
|
-
if self.language is not None and self.language != "en":
|
|
383
|
-
self.__func_other_arg_sql_names.append("InputLanguage")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
386
|
-
|
|
387
|
-
if self.object is not None:
|
|
388
|
-
self.__func_other_arg_sql_names.append("ModelFile")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.object, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
if self.level is not None and self.level != "DOCUMENT":
|
|
393
|
-
self.__func_other_arg_sql_names.append("AnalysisType")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.level, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
|
|
397
|
-
if self.high_priority is not None and self.high_priority != "NONE":
|
|
398
|
-
self.__func_other_arg_sql_names.append("Priority")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.high_priority, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
401
|
-
|
|
402
|
-
if self.filter is not None and self.filter != "ALL":
|
|
403
|
-
self.__func_other_arg_sql_names.append("OutputType")
|
|
404
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.filter, "'"))
|
|
405
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
406
|
-
|
|
407
|
-
# Generate lists for rest of the function arguments
|
|
408
|
-
sequence_input_by_list = []
|
|
409
|
-
if self.newdata_sequence_column is not None:
|
|
410
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
|
|
411
|
-
|
|
412
|
-
if self.dict_data_sequence_column is not None:
|
|
413
|
-
sequence_input_by_list.append("dict:" + UtilFuncs._teradata_collapse_arglist(self.dict_data_sequence_column, ""))
|
|
414
|
-
|
|
415
|
-
if len(sequence_input_by_list) > 0:
|
|
416
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
417
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
418
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
419
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
420
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
# Declare empty lists to hold input table information.
|
|
424
|
-
self.__func_input_arg_sql_names = []
|
|
425
|
-
self.__func_input_table_view_query = []
|
|
426
|
-
self.__func_input_dataframe_type = []
|
|
427
|
-
self.__func_input_distribution = []
|
|
428
|
-
self.__func_input_partition_by_cols = []
|
|
429
|
-
self.__func_input_order_by_cols = []
|
|
430
|
-
|
|
431
|
-
# Process newdata
|
|
432
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
|
|
433
|
-
self.__func_input_distribution.append("FACT")
|
|
434
|
-
self.__func_input_arg_sql_names.append("input")
|
|
435
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
436
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
437
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
438
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
|
|
439
|
-
|
|
440
|
-
# Process dict_data
|
|
441
|
-
if self.dict_data is not None:
|
|
442
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.dict_data, False)
|
|
443
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
444
|
-
self.__func_input_arg_sql_names.append("dict")
|
|
445
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
446
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
447
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
448
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.dict_data_order_column, "\""))
|
|
449
|
-
|
|
450
|
-
function_name = "SentimentExtractor"
|
|
451
|
-
# Create instance to generate SQLMR.
|
|
452
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
453
|
-
self.__func_input_arg_sql_names,
|
|
454
|
-
self.__func_input_table_view_query,
|
|
455
|
-
self.__func_input_dataframe_type,
|
|
456
|
-
self.__func_input_distribution,
|
|
457
|
-
self.__func_input_partition_by_cols,
|
|
458
|
-
self.__func_input_order_by_cols,
|
|
459
|
-
self.__func_other_arg_sql_names,
|
|
460
|
-
self.__func_other_args,
|
|
461
|
-
self.__func_other_arg_json_datatypes,
|
|
462
|
-
self.__func_output_args_sql_names,
|
|
463
|
-
self.__func_output_args,
|
|
464
|
-
engine="ENGINE_ML")
|
|
465
|
-
# Invoke call to SQL-MR generation.
|
|
466
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
467
|
-
|
|
468
|
-
# Print SQL-MR query if requested to do so.
|
|
469
|
-
if display.print_sqlmr_query:
|
|
470
|
-
print(self.sqlmr_query)
|
|
471
|
-
|
|
472
|
-
# Set the algorithm name for Model Cataloging.
|
|
473
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
474
|
-
|
|
475
|
-
def __execute(self):
|
|
476
|
-
"""
|
|
477
|
-
Function to execute SQL-MR queries.
|
|
478
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
479
|
-
"""
|
|
480
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
481
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
482
|
-
try:
|
|
483
|
-
# Generate the output.
|
|
484
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
485
|
-
except Exception as emsg:
|
|
486
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
487
|
-
|
|
488
|
-
# Update output table data frames.
|
|
489
|
-
self._mlresults = []
|
|
490
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
491
|
-
self._mlresults.append(self.result)
|
|
492
|
-
|
|
493
|
-
def show_query(self):
|
|
494
|
-
"""
|
|
495
|
-
Function to return the underlying SQL query.
|
|
496
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
497
|
-
"""
|
|
498
|
-
return self.sqlmr_query
|
|
499
|
-
|
|
500
|
-
def get_prediction_type(self):
|
|
501
|
-
"""
|
|
502
|
-
Function to return the Prediction type of the algorithm.
|
|
503
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
504
|
-
as saved in the Model Catalog.
|
|
505
|
-
"""
|
|
506
|
-
return self._prediction_type
|
|
507
|
-
|
|
508
|
-
def get_target_column(self):
|
|
509
|
-
"""
|
|
510
|
-
Function to return the Target Column of the algorithm.
|
|
511
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
512
|
-
as saved in the Model Catalog.
|
|
513
|
-
"""
|
|
514
|
-
return self._target_column
|
|
515
|
-
|
|
516
|
-
def get_build_time(self):
|
|
517
|
-
"""
|
|
518
|
-
Function to return the build time of the algorithm in seconds.
|
|
519
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
520
|
-
as saved in the Model Catalog.
|
|
521
|
-
"""
|
|
522
|
-
return self._build_time
|
|
523
|
-
|
|
524
|
-
def _get_algorithm_name(self):
|
|
525
|
-
"""
|
|
526
|
-
Function to return the name of the algorithm.
|
|
527
|
-
"""
|
|
528
|
-
return self._algorithm_name
|
|
529
|
-
|
|
530
|
-
def _get_sql_specific_attributes(self):
|
|
531
|
-
"""
|
|
532
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
533
|
-
"""
|
|
534
|
-
return self._sql_specific_attributes
|
|
535
|
-
|
|
536
|
-
@classmethod
|
|
537
|
-
def _from_model_catalog(cls,
|
|
538
|
-
result = None,
|
|
539
|
-
**kwargs):
|
|
540
|
-
"""
|
|
541
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
542
|
-
"""
|
|
543
|
-
kwargs.pop("result", None)
|
|
544
|
-
|
|
545
|
-
# Model Cataloging related attributes.
|
|
546
|
-
target_column = kwargs.pop("__target_column", None)
|
|
547
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
548
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
549
|
-
build_time = kwargs.pop("__build_time", None)
|
|
550
|
-
|
|
551
|
-
# Let's create an object of this class.
|
|
552
|
-
obj = cls(**kwargs)
|
|
553
|
-
obj.result = result
|
|
554
|
-
|
|
555
|
-
# Initialize the sqlmr_query class attribute.
|
|
556
|
-
obj.sqlmr_query = None
|
|
557
|
-
|
|
558
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
559
|
-
obj._sql_specific_attributes = None
|
|
560
|
-
obj._target_column = target_column
|
|
561
|
-
obj._prediction_type = prediction_type
|
|
562
|
-
obj._algorithm_name = algorithm_name
|
|
563
|
-
obj._build_time = build_time
|
|
564
|
-
|
|
565
|
-
# Update output table data frames.
|
|
566
|
-
obj._mlresults = []
|
|
567
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
568
|
-
obj._mlresults.append(obj.result)
|
|
569
|
-
return obj
|
|
570
|
-
|
|
571
|
-
def __repr__(self):
|
|
572
|
-
"""
|
|
573
|
-
Returns the string representation for a SentimentExtractor class instance.
|
|
574
|
-
"""
|
|
575
|
-
repr_string="############ STDOUT Output ############"
|
|
576
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
577
|
-
return repr_string
|
|
578
|
-
|