teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,572 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.10
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class HMMUnsupervised:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
vertices = None,
|
|
34
|
-
model_key = None,
|
|
35
|
-
sequence_key = None,
|
|
36
|
-
observed_key = None,
|
|
37
|
-
hidden_states_num = None,
|
|
38
|
-
max_iter_num = 10,
|
|
39
|
-
epsilon = None,
|
|
40
|
-
skip_column = None,
|
|
41
|
-
init_methods = None,
|
|
42
|
-
init_params = None,
|
|
43
|
-
vertices_sequence_column = None,
|
|
44
|
-
vertices_partition_column = None,
|
|
45
|
-
vertices_order_column=None):
|
|
46
|
-
"""
|
|
47
|
-
DESCRIPTION:
|
|
48
|
-
The HMMUnsupervised function runs on the SQL-GR framework. The
|
|
49
|
-
function can produce multiple HMM models simultaneously, where each
|
|
50
|
-
model is learned from a set of sequences and each sequence
|
|
51
|
-
represents a vertex.
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
PARAMETERS:
|
|
55
|
-
vertices:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies the teradataml DataFrame containing the vertex data.
|
|
58
|
-
|
|
59
|
-
vertices_partition_column:
|
|
60
|
-
Required Argument.
|
|
61
|
-
Specifies Partition By columns for vertices.
|
|
62
|
-
Values to this argument can be provided as list, if multiple columns
|
|
63
|
-
are used for partition.
|
|
64
|
-
Note:
|
|
65
|
-
1. This argument must contain the name of the column specified in
|
|
66
|
-
'sequence_key' argument.
|
|
67
|
-
2. This argument should contain the name of the column specified in
|
|
68
|
-
'model_key', if 'model_key' argument is used, and it must be
|
|
69
|
-
the first column followed by the name of the column specified
|
|
70
|
-
in 'sequence_key'.
|
|
71
|
-
Types: str OR list of Strings (str)
|
|
72
|
-
|
|
73
|
-
vertices_order_column:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies Order By columns for vertices.
|
|
76
|
-
Values to this argument can be provided as list, if multiple columns
|
|
77
|
-
are used for ordering.
|
|
78
|
-
Note: This argument must contain the name of the column, containing
|
|
79
|
-
time ordered sequence, as one of its columns.
|
|
80
|
-
Types: str OR list of Strings (str)
|
|
81
|
-
|
|
82
|
-
model_key:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies the name of the column that contains the model attribute.
|
|
85
|
-
The values in the column can be integers or strings.
|
|
86
|
-
Note: Note: The 'vertices_partition_column' argument should contain the name
|
|
87
|
-
of the column specified in this argument.
|
|
88
|
-
Types: str
|
|
89
|
-
|
|
90
|
-
sequence_key:
|
|
91
|
-
Required Argument.
|
|
92
|
-
Specifies the name of the column that contains the sequence attribute. The
|
|
93
|
-
sequence_key must be a sequence attribute in the
|
|
94
|
-
vertices_partition_column. A sequence (value in this column) must contain more
|
|
95
|
-
than two observation symbols. Each sequence represent a vertex.
|
|
96
|
-
Types: str
|
|
97
|
-
|
|
98
|
-
observed_key:
|
|
99
|
-
Required Argument.
|
|
100
|
-
Specifies the name of the column that contains the observed symbols. The
|
|
101
|
-
function scans the input teradataml DataFrame to find all possible
|
|
102
|
-
observed symbols.
|
|
103
|
-
Note: Observed symbols are case-sensitive.
|
|
104
|
-
Types: str
|
|
105
|
-
|
|
106
|
-
hidden_states_num:
|
|
107
|
-
Required Argument.
|
|
108
|
-
Specifies the number of hidden states.
|
|
109
|
-
Note: The number of hidden states can influence model quality and
|
|
110
|
-
performance, so choose the number appropriately.
|
|
111
|
-
Types: int
|
|
112
|
-
|
|
113
|
-
max_iter_num:
|
|
114
|
-
Optional Argument.
|
|
115
|
-
Specifies the number of iterations that the training process runs before the
|
|
116
|
-
function completes.
|
|
117
|
-
Default Value: 10
|
|
118
|
-
Types: int
|
|
119
|
-
|
|
120
|
-
epsilon:
|
|
121
|
-
Optional Argument.
|
|
122
|
-
Specifies the threshold value in determining the convergence of HMM training.
|
|
123
|
-
If the parameter value difference is less than the threshold, the
|
|
124
|
-
training process converges. There is no default value. If you do not
|
|
125
|
-
specify this argument, only max_iter_num determines when the training
|
|
126
|
-
process converges.
|
|
127
|
-
Types: float
|
|
128
|
-
|
|
129
|
-
skip_column:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies the name of the column whose values determine whether the function
|
|
132
|
-
skips the row. The function skips the row if the value is "true",
|
|
133
|
-
"yes", "y", or "1". The function does not skip the row if the value
|
|
134
|
-
is "false", "f", "no", "n", "0", or NULL.
|
|
135
|
-
Types: str
|
|
136
|
-
|
|
137
|
-
init_methods:
|
|
138
|
-
Optional Argument.
|
|
139
|
-
Specifies the method that the function uses to generate the initial parameters
|
|
140
|
-
for the initial state probabilities, state transition probabilities,
|
|
141
|
-
and emission probabilities. Permitted values:
|
|
142
|
-
• random (default): The initial parameters are based on uniform
|
|
143
|
-
distribution.
|
|
144
|
-
• flat: The probabilities are equal. Each cell holds the same
|
|
145
|
-
probability in the matrix or vector.
|
|
146
|
-
• input: The function takes the initial parameters from the
|
|
147
|
-
init_params argument.
|
|
148
|
-
The names of these methods are case-insensitive.
|
|
149
|
-
The seed number is meaningful only when the specified method is random.
|
|
150
|
-
Types: str OR list of Strings (str)
|
|
151
|
-
|
|
152
|
-
init_params:
|
|
153
|
-
Optional Argument.
|
|
154
|
-
When init_methods has the value "input", this argument specifies the
|
|
155
|
-
initial parameters for the models. The first parameter specifies the
|
|
156
|
-
initial state probabilities, the second parameter specifies the state
|
|
157
|
-
transition probabilities, and the third parameter specifies the
|
|
158
|
-
emission probabilities.
|
|
159
|
-
For example, if the hidden_states_num argument specifies three hidden
|
|
160
|
-
states and two observed symbols ("yes" and "no"), then the init_params
|
|
161
|
-
values are:
|
|
162
|
-
• init_state_probability_vector (the initial state probabilities):
|
|
163
|
-
"0.3333333333 0.3333333333 0.3333333333",
|
|
164
|
-
• state_transition_probability_matrix (the state transition probabilities):
|
|
165
|
-
"0.3333333333 0.3333333333 0.3333333333; 0.3333333333
|
|
166
|
-
0.3333333333 0.3333333333; 0.3333333333 0.3333333333 0.3333333333",
|
|
167
|
-
• observation_emission_probability_matrix (the emission probabilities):
|
|
168
|
-
"no:0.25 yes:0.75; no:0.35 yes:0.65; no:0.45 yes:0.55"
|
|
169
|
-
The sum of the probabilities in each row for the initial state probabilities, state
|
|
170
|
-
transition probabilities, or emission probabilities parameters must
|
|
171
|
-
be rounded to 1.0. The observed symbols are case-sensitive. The
|
|
172
|
-
number of states and the number of observed symbols must be
|
|
173
|
-
consistent with the number_hidden_states argument and the observed
|
|
174
|
-
symbols in the input table; otherwise, the function displays error
|
|
175
|
-
messages.
|
|
176
|
-
Types: str OR list of Strings (str)
|
|
177
|
-
|
|
178
|
-
vertices_sequence_column:
|
|
179
|
-
Optional Argument.
|
|
180
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
181
|
-
the input argument "vertices". The argument is used to ensure
|
|
182
|
-
deterministic results for functions which produce results that vary
|
|
183
|
-
from run to run.
|
|
184
|
-
Types: str OR list of Strings (str)
|
|
185
|
-
|
|
186
|
-
RETURNS:
|
|
187
|
-
Instance of HMMUnsupervised.
|
|
188
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
189
|
-
references, such as HMMUnsupervisedObj.<attribute_name>.
|
|
190
|
-
Output teradataml DataFrame attribute names are:
|
|
191
|
-
1. output_initialstate_table
|
|
192
|
-
2. output_statetransition_table
|
|
193
|
-
3. output_emission_table
|
|
194
|
-
4. output
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
RAISES:
|
|
198
|
-
TeradataMlException
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
EXAMPLES:
|
|
202
|
-
# Load example data.
|
|
203
|
-
load_example_data("hmmunsupervised", "loan_prediction")
|
|
204
|
-
|
|
205
|
-
# Create teradataml DataFrame objects.
|
|
206
|
-
loan_prediction = DataFrame.from_table("loan_prediction")
|
|
207
|
-
|
|
208
|
-
# Example 1 - Build a HMM Unsupervised model on the loan prediction dataset
|
|
209
|
-
HMMUnsupervised_out = HMMUnsupervised(vertices = loan_prediction,
|
|
210
|
-
vertices_partition_column = ["model_id", "seq_id"],
|
|
211
|
-
vertices_order_column = ["seq_vertex_id"],
|
|
212
|
-
model_key = "model_id",
|
|
213
|
-
sequence_key = "seq_id",
|
|
214
|
-
observed_key = "observed_id",
|
|
215
|
-
hidden_states_num = 3,
|
|
216
|
-
init_methods = ["random"]
|
|
217
|
-
)
|
|
218
|
-
|
|
219
|
-
# Print the results for each output teradataml DataFrame.
|
|
220
|
-
print(HMMUnsupervised_out.output_initialstate_table)
|
|
221
|
-
print(HMMUnsupervised_out.output_statetransition_table)
|
|
222
|
-
print(HMMUnsupervised_out.output_emission_table)
|
|
223
|
-
print(HMMUnsupervised_out.output)
|
|
224
|
-
|
|
225
|
-
"""
|
|
226
|
-
|
|
227
|
-
# Start the timer to get the build time
|
|
228
|
-
_start_time = time.time()
|
|
229
|
-
|
|
230
|
-
self.vertices = vertices
|
|
231
|
-
self.model_key = model_key
|
|
232
|
-
self.sequence_key = sequence_key
|
|
233
|
-
self.observed_key = observed_key
|
|
234
|
-
self.hidden_states_num = hidden_states_num
|
|
235
|
-
self.max_iter_num = max_iter_num
|
|
236
|
-
self.epsilon = epsilon
|
|
237
|
-
self.skip_column = skip_column
|
|
238
|
-
self.init_methods = init_methods
|
|
239
|
-
self.init_params = init_params
|
|
240
|
-
self.vertices_sequence_column = vertices_sequence_column
|
|
241
|
-
self.vertices_partition_column = vertices_partition_column
|
|
242
|
-
self.vertices_order_column = vertices_order_column
|
|
243
|
-
|
|
244
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
245
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
246
|
-
self.__aed_utils = AedUtils()
|
|
247
|
-
|
|
248
|
-
# Create argument information matrix to do parameter checking
|
|
249
|
-
self.__arg_info_matrix = []
|
|
250
|
-
self.__arg_info_matrix.append(["vertices", self.vertices, False, (DataFrame)])
|
|
251
|
-
self.__arg_info_matrix.append(["vertices_partition_column", self.vertices_partition_column, False, (str,list)])
|
|
252
|
-
self.__arg_info_matrix.append(["vertices_order_column", self.vertices_order_column, False, (str,list)])
|
|
253
|
-
self.__arg_info_matrix.append(["model_key", self.model_key, True, (str)])
|
|
254
|
-
self.__arg_info_matrix.append(["sequence_key", self.sequence_key, False, (str)])
|
|
255
|
-
self.__arg_info_matrix.append(["observed_key", self.observed_key, False, (str)])
|
|
256
|
-
self.__arg_info_matrix.append(["hidden_states_num", self.hidden_states_num, False, (int)])
|
|
257
|
-
self.__arg_info_matrix.append(["max_iter_num", self.max_iter_num, True, (int)])
|
|
258
|
-
self.__arg_info_matrix.append(["epsilon", self.epsilon, True, (float)])
|
|
259
|
-
self.__arg_info_matrix.append(["skip_column", self.skip_column, True, (str)])
|
|
260
|
-
self.__arg_info_matrix.append(["init_methods", self.init_methods, True, (str,list)])
|
|
261
|
-
self.__arg_info_matrix.append(["init_params", self.init_params, True, (str,list)])
|
|
262
|
-
self.__arg_info_matrix.append(["vertices_sequence_column", self.vertices_sequence_column, True, (str,list)])
|
|
263
|
-
|
|
264
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
265
|
-
# Perform the function validations
|
|
266
|
-
self.__validate()
|
|
267
|
-
# Generate the ML query
|
|
268
|
-
self.__form_tdml_query()
|
|
269
|
-
# Execute ML query
|
|
270
|
-
self.__execute()
|
|
271
|
-
# Get the prediction type
|
|
272
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
273
|
-
|
|
274
|
-
# End the timer to get the build time
|
|
275
|
-
_end_time = time.time()
|
|
276
|
-
|
|
277
|
-
# Calculate the build time
|
|
278
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
279
|
-
|
|
280
|
-
def __validate(self):
|
|
281
|
-
"""
|
|
282
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
283
|
-
arguments, input argument and table types. Also processes the
|
|
284
|
-
argument values.
|
|
285
|
-
"""
|
|
286
|
-
|
|
287
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
288
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
289
|
-
|
|
290
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
291
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
292
|
-
|
|
293
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
294
|
-
self.__awu._validate_input_table_datatype(self.vertices, "vertices", None)
|
|
295
|
-
|
|
296
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
297
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
298
|
-
self.__awu._validate_input_columns_not_empty(self.sequence_key, "sequence_key")
|
|
299
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sequence_key, "sequence_key", self.vertices, "vertices", False)
|
|
300
|
-
|
|
301
|
-
self.__awu._validate_input_columns_not_empty(self.observed_key, "observed_key")
|
|
302
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observed_key, "observed_key", self.vertices, "vertices", False)
|
|
303
|
-
|
|
304
|
-
self.__awu._validate_input_columns_not_empty(self.model_key, "model_key")
|
|
305
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_key, "model_key", self.vertices, "vertices", False)
|
|
306
|
-
|
|
307
|
-
self.__awu._validate_input_columns_not_empty(self.skip_column, "skip_column")
|
|
308
|
-
self.__awu._validate_dataframe_has_argument_columns(self.skip_column, "skip_column", self.vertices, "vertices", False)
|
|
309
|
-
|
|
310
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_sequence_column, "vertices_sequence_column")
|
|
311
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_sequence_column, "vertices_sequence_column", self.vertices, "vertices", False)
|
|
312
|
-
|
|
313
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_partition_column, "vertices_partition_column")
|
|
314
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_partition_column, "vertices_partition_column", self.vertices, "vertices", False)
|
|
315
|
-
|
|
316
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_order_column, "vertices_order_column")
|
|
317
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_order_column, "vertices_order_column", self.vertices, "vertices", False)
|
|
318
|
-
|
|
319
|
-
def __form_tdml_query(self):
|
|
320
|
-
"""
|
|
321
|
-
Function to generate the analytical function queries. The function defines
|
|
322
|
-
variables and list of arguments required to form the query.
|
|
323
|
-
"""
|
|
324
|
-
# Generate temp table names for output table parameters if any.
|
|
325
|
-
self.__output_initialstate_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmunsupervised0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
326
|
-
self.__output_statetransition_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmunsupervised1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
327
|
-
self.__output_emission_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmunsupervised2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
328
|
-
|
|
329
|
-
# Output table arguments list
|
|
330
|
-
self.__func_output_args_sql_names = ["InitStateTable", "StateTransitionTable", "EmissionTable"]
|
|
331
|
-
self.__func_output_args = [self.__output_initialstate_table_temp_tablename, self.__output_statetransition_table_temp_tablename, self.__output_emission_table_temp_tablename]
|
|
332
|
-
|
|
333
|
-
# Model Cataloging related attributes.
|
|
334
|
-
self._sql_specific_attributes = {}
|
|
335
|
-
self._sql_formula_attribute_mapper = {}
|
|
336
|
-
self._target_column = None
|
|
337
|
-
self._algorithm_name = None
|
|
338
|
-
|
|
339
|
-
# Generate lists for rest of the function arguments
|
|
340
|
-
self.__func_other_arg_sql_names = []
|
|
341
|
-
self.__func_other_args = []
|
|
342
|
-
self.__func_other_arg_json_datatypes = []
|
|
343
|
-
|
|
344
|
-
self.__func_other_arg_sql_names.append("SeqColumn")
|
|
345
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_key, "\""), "'"))
|
|
346
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
347
|
-
|
|
348
|
-
self.__func_other_arg_sql_names.append("ObservationColumn")
|
|
349
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.observed_key, "\""), "'"))
|
|
350
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
351
|
-
|
|
352
|
-
if self.model_key is not None:
|
|
353
|
-
self.__func_other_arg_sql_names.append("ModelColumn")
|
|
354
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_key, "\""), "'"))
|
|
355
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
356
|
-
|
|
357
|
-
if self.skip_column is not None:
|
|
358
|
-
self.__func_other_arg_sql_names.append("SkipColumn")
|
|
359
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.skip_column, "\""), "'"))
|
|
360
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
361
|
-
|
|
362
|
-
self.__func_other_arg_sql_names.append("HiddenStateNum")
|
|
363
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.hidden_states_num, "'"))
|
|
364
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
365
|
-
|
|
366
|
-
if self.max_iter_num is not None and self.max_iter_num != 10:
|
|
367
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
368
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iter_num, "'"))
|
|
369
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
370
|
-
|
|
371
|
-
if self.epsilon is not None:
|
|
372
|
-
self.__func_other_arg_sql_names.append("Epsilon")
|
|
373
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.epsilon, "'"))
|
|
374
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
375
|
-
|
|
376
|
-
if self.init_params is not None:
|
|
377
|
-
self.__func_other_arg_sql_names.append("InitParams")
|
|
378
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.init_params, "'"))
|
|
379
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
380
|
-
|
|
381
|
-
if self.init_methods is not None:
|
|
382
|
-
self.__func_other_arg_sql_names.append("InitMethods")
|
|
383
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.init_methods, "'"))
|
|
384
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
385
|
-
|
|
386
|
-
# Generate lists for rest of the function arguments
|
|
387
|
-
sequence_input_by_list = []
|
|
388
|
-
if self.vertices_sequence_column is not None:
|
|
389
|
-
sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_sequence_column, ""))
|
|
390
|
-
|
|
391
|
-
if len(sequence_input_by_list) > 0:
|
|
392
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
393
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
394
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
# Declare empty lists to hold input table information.
|
|
400
|
-
self.__func_input_arg_sql_names = []
|
|
401
|
-
self.__func_input_table_view_query = []
|
|
402
|
-
self.__func_input_dataframe_type = []
|
|
403
|
-
self.__func_input_distribution = []
|
|
404
|
-
self.__func_input_partition_by_cols = []
|
|
405
|
-
self.__func_input_order_by_cols = []
|
|
406
|
-
|
|
407
|
-
# Process vertices
|
|
408
|
-
self.vertices_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_partition_column, "\"")
|
|
409
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices, False)
|
|
410
|
-
self.__func_input_distribution.append("FACT")
|
|
411
|
-
self.__func_input_arg_sql_names.append("vertices")
|
|
412
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
413
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
414
|
-
self.__func_input_partition_by_cols.append(self.vertices_partition_column)
|
|
415
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.vertices_order_column,"\""))
|
|
416
|
-
|
|
417
|
-
function_name = "HMMUnsupervised"
|
|
418
|
-
# Create instance to generate SQLMR.
|
|
419
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
420
|
-
self.__func_input_arg_sql_names,
|
|
421
|
-
self.__func_input_table_view_query,
|
|
422
|
-
self.__func_input_dataframe_type,
|
|
423
|
-
self.__func_input_distribution,
|
|
424
|
-
self.__func_input_partition_by_cols,
|
|
425
|
-
self.__func_input_order_by_cols,
|
|
426
|
-
self.__func_other_arg_sql_names,
|
|
427
|
-
self.__func_other_args,
|
|
428
|
-
self.__func_other_arg_json_datatypes,
|
|
429
|
-
self.__func_output_args_sql_names,
|
|
430
|
-
self.__func_output_args,
|
|
431
|
-
engine="ENGINE_ML")
|
|
432
|
-
# Invoke call to SQL-MR generation.
|
|
433
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
434
|
-
|
|
435
|
-
# Print SQL-MR query if requested to do so.
|
|
436
|
-
if display.print_sqlmr_query:
|
|
437
|
-
print(self.sqlmr_query)
|
|
438
|
-
|
|
439
|
-
# Set the algorithm name for Model Cataloging.
|
|
440
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
441
|
-
|
|
442
|
-
def __execute(self):
|
|
443
|
-
"""
|
|
444
|
-
Function to execute SQL-MR queries.
|
|
445
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
446
|
-
"""
|
|
447
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
448
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
449
|
-
try:
|
|
450
|
-
# Generate the output.
|
|
451
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
452
|
-
except Exception as emsg:
|
|
453
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
454
|
-
|
|
455
|
-
# Update output table data frames.
|
|
456
|
-
self._mlresults = []
|
|
457
|
-
self.output_initialstate_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_initialstate_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_initialstate_table_temp_tablename))
|
|
458
|
-
self.output_statetransition_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_statetransition_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_statetransition_table_temp_tablename))
|
|
459
|
-
self.output_emission_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_emission_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_emission_table_temp_tablename))
|
|
460
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
461
|
-
self._mlresults.append(self.output_initialstate_table)
|
|
462
|
-
self._mlresults.append(self.output_statetransition_table)
|
|
463
|
-
self._mlresults.append(self.output_emission_table)
|
|
464
|
-
self._mlresults.append(self.output)
|
|
465
|
-
|
|
466
|
-
def show_query(self):
|
|
467
|
-
"""
|
|
468
|
-
Function to return the underlying SQL query.
|
|
469
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
470
|
-
"""
|
|
471
|
-
return self.sqlmr_query
|
|
472
|
-
|
|
473
|
-
def get_prediction_type(self):
|
|
474
|
-
"""
|
|
475
|
-
Function to return the Prediction type of the algorithm.
|
|
476
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
477
|
-
as saved in the Model Catalog.
|
|
478
|
-
"""
|
|
479
|
-
return self._prediction_type
|
|
480
|
-
|
|
481
|
-
def get_target_column(self):
|
|
482
|
-
"""
|
|
483
|
-
Function to return the Target Column of the algorithm.
|
|
484
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
485
|
-
as saved in the Model Catalog.
|
|
486
|
-
"""
|
|
487
|
-
return self._target_column
|
|
488
|
-
|
|
489
|
-
def get_build_time(self):
|
|
490
|
-
"""
|
|
491
|
-
Function to return the build time of the algorithm in seconds.
|
|
492
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
493
|
-
as saved in the Model Catalog.
|
|
494
|
-
"""
|
|
495
|
-
return self._build_time
|
|
496
|
-
|
|
497
|
-
def _get_algorithm_name(self):
|
|
498
|
-
"""
|
|
499
|
-
Function to return the name of the algorithm.
|
|
500
|
-
"""
|
|
501
|
-
return self._algorithm_name
|
|
502
|
-
|
|
503
|
-
def _get_sql_specific_attributes(self):
|
|
504
|
-
"""
|
|
505
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
506
|
-
"""
|
|
507
|
-
return self._sql_specific_attributes
|
|
508
|
-
|
|
509
|
-
@classmethod
|
|
510
|
-
def _from_model_catalog(cls,
|
|
511
|
-
output_initialstate_table = None,
|
|
512
|
-
output_statetransition_table = None,
|
|
513
|
-
output_emission_table = None,
|
|
514
|
-
output = None,
|
|
515
|
-
**kwargs):
|
|
516
|
-
"""
|
|
517
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
518
|
-
"""
|
|
519
|
-
kwargs.pop("output_initialstate_table", None)
|
|
520
|
-
kwargs.pop("output_statetransition_table", None)
|
|
521
|
-
kwargs.pop("output_emission_table", None)
|
|
522
|
-
kwargs.pop("output", None)
|
|
523
|
-
|
|
524
|
-
# Model Cataloging related attributes.
|
|
525
|
-
target_column = kwargs.pop("__target_column", None)
|
|
526
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
527
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
528
|
-
build_time = kwargs.pop("__build_time", None)
|
|
529
|
-
|
|
530
|
-
# Let's create an object of this class.
|
|
531
|
-
obj = cls(**kwargs)
|
|
532
|
-
obj.output_initialstate_table = output_initialstate_table
|
|
533
|
-
obj.output_statetransition_table = output_statetransition_table
|
|
534
|
-
obj.output_emission_table = output_emission_table
|
|
535
|
-
obj.output = output
|
|
536
|
-
|
|
537
|
-
# Initialize the sqlmr_query class attribute.
|
|
538
|
-
obj.sqlmr_query = None
|
|
539
|
-
|
|
540
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
541
|
-
obj._sql_specific_attributes = None
|
|
542
|
-
obj._target_column = target_column
|
|
543
|
-
obj._prediction_type = prediction_type
|
|
544
|
-
obj._algorithm_name = algorithm_name
|
|
545
|
-
obj._build_time = build_time
|
|
546
|
-
|
|
547
|
-
# Update output table data frames.
|
|
548
|
-
obj._mlresults = []
|
|
549
|
-
obj.output_initialstate_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_initialstate_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_initialstate_table))
|
|
550
|
-
obj.output_statetransition_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_statetransition_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_statetransition_table))
|
|
551
|
-
obj.output_emission_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_emission_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_emission_table))
|
|
552
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
553
|
-
obj._mlresults.append(obj.output_initialstate_table)
|
|
554
|
-
obj._mlresults.append(obj.output_statetransition_table)
|
|
555
|
-
obj._mlresults.append(obj.output_emission_table)
|
|
556
|
-
obj._mlresults.append(obj.output)
|
|
557
|
-
return obj
|
|
558
|
-
|
|
559
|
-
def __repr__(self):
|
|
560
|
-
"""
|
|
561
|
-
Returns the string representation for a HMMUnsupervised class instance.
|
|
562
|
-
"""
|
|
563
|
-
repr_string="############ STDOUT Output ############"
|
|
564
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
565
|
-
repr_string="{}\n\n\n############ output_initialstate_table Output ############".format(repr_string)
|
|
566
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_initialstate_table)
|
|
567
|
-
repr_string="{}\n\n\n############ output_statetransition_table Output ############".format(repr_string)
|
|
568
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_statetransition_table)
|
|
569
|
-
repr_string="{}\n\n\n############ output_emission_table Output ############".format(repr_string)
|
|
570
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_emission_table)
|
|
571
|
-
return repr_string
|
|
572
|
-
|