teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/dataframe/copy_to.py
CHANGED
|
@@ -30,9 +30,10 @@ from teradatasql import OperationalError
|
|
|
30
30
|
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
31
31
|
from teradataml.utils.utils import execute_sql
|
|
32
32
|
from teradataml.utils.validators import _Validators
|
|
33
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
33
34
|
|
|
34
35
|
|
|
35
|
-
|
|
36
|
+
@collect_queryband(queryband="CpToSql")
|
|
36
37
|
def copy_to_sql(df, table_name,
|
|
37
38
|
schema_name=None, if_exists='append',
|
|
38
39
|
index=False, index_label=None,
|
|
@@ -408,7 +409,7 @@ def copy_to_sql(df, table_name,
|
|
|
408
409
|
warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
|
|
409
410
|
'primary_index',
|
|
410
411
|
'timecode_column',
|
|
411
|
-
'specified'))
|
|
412
|
+
'specified'), stacklevel=2)
|
|
412
413
|
else:
|
|
413
414
|
ignored = []
|
|
414
415
|
if timezero_date is not None: ignored.append('timezero_date')
|
|
@@ -422,7 +423,7 @@ def copy_to_sql(df, table_name,
|
|
|
422
423
|
warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
|
|
423
424
|
ignored,
|
|
424
425
|
'timecode_column',
|
|
425
|
-
'missing'))
|
|
426
|
+
'missing'), stacklevel=2)
|
|
426
427
|
|
|
427
428
|
# Unset schema_name when temporary is True since volatile tables are always in the user database
|
|
428
429
|
if temporary is True:
|
|
@@ -430,7 +431,7 @@ def copy_to_sql(df, table_name,
|
|
|
430
431
|
warnings.warn(Messages.get_message(MessageCodes.IGNORE_ARGS_WARN,
|
|
431
432
|
'schema_name',
|
|
432
433
|
'temporary=True',
|
|
433
|
-
'specified'))
|
|
434
|
+
'specified'), stacklevel=2)
|
|
434
435
|
schema_name = None
|
|
435
436
|
|
|
436
437
|
# Validate DataFrame & related flags; Proceed only when True
|
|
@@ -550,6 +551,8 @@ def copy_to_sql(df, table_name,
|
|
|
550
551
|
|
|
551
552
|
# When index isn't saved & for non-PTI tables, to_sql insertion used (batch)
|
|
552
553
|
else:
|
|
554
|
+
# Empty queryband buffer before SQL call.
|
|
555
|
+
UtilFuncs._set_queryband()
|
|
553
556
|
df.to_sql(table_name, get_context(), if_exists='append', index=False, index_label=None,
|
|
554
557
|
chunksize=chunksize, schema=schema_name)
|
|
555
558
|
|
|
@@ -591,6 +594,7 @@ def copy_to_sql(df, table_name,
|
|
|
591
594
|
raise TeradataMlException(Messages.get_message(MessageCodes.COPY_TO_SQL_FAIL) + str(err),
|
|
592
595
|
MessageCodes.COPY_TO_SQL_FAIL) from err
|
|
593
596
|
|
|
597
|
+
|
|
594
598
|
def _check_table_name_conflict(df, table_name):
|
|
595
599
|
"""
|
|
596
600
|
Check whether destination "table_name" matches with the teradataml dataframe parent nodes.
|
|
@@ -721,6 +725,7 @@ def _get_index_labels(df, index_label):
|
|
|
721
725
|
|
|
722
726
|
return ind_names, ind_types
|
|
723
727
|
|
|
728
|
+
|
|
724
729
|
def _validate_pti_copy_parameters(df, timecode_column, timebucket_duration,
|
|
725
730
|
timezero_date, primary_time_index_name, columns_list,
|
|
726
731
|
sequence_column, seq_max, types, index, index_label):
|
|
@@ -968,7 +973,7 @@ def _validate_column_type(df, col, col_arg, expected_types, types = None, index
|
|
|
968
973
|
MessageCodes.INVALID_COLUMN_TYPE)
|
|
969
974
|
# Else we need to copy without any casting
|
|
970
975
|
elif isinstance(df, pd.DataFrame):
|
|
971
|
-
t =
|
|
976
|
+
t = _get_sqlalchemy_mapping_types(str(df.dtypes[col]))
|
|
972
977
|
if t not in expected_types:
|
|
973
978
|
raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_COLUMN_TYPE).
|
|
974
979
|
format(col_arg, t, ' or '.join(expected_type.__visit_name__
|
|
@@ -1451,7 +1456,7 @@ def _extract_column_info(df, types = None, index = False, index_label = None):
|
|
|
1451
1456
|
col_types = [types.get(col_name) if types and col_name in types else
|
|
1452
1457
|
TIMESTAMP(timezone=True) if pt.is_datetime64_ns_dtype(df.dtypes[key])
|
|
1453
1458
|
and (df[col_name].dt.tz is not None)
|
|
1454
|
-
else
|
|
1459
|
+
else _get_sqlalchemy_mapping_types(str(df.dtypes[key]))
|
|
1455
1460
|
for key, col_name in enumerate(list(df.columns))]
|
|
1456
1461
|
|
|
1457
1462
|
ind_names = []
|
|
@@ -1461,11 +1466,12 @@ def _extract_column_info(df, types = None, index = False, index_label = None):
|
|
|
1461
1466
|
ind_types = [types.get(ind_name) if types and ind_name in types
|
|
1462
1467
|
else TIMESTAMP(timezone=True) if pt.is_datetime64_ns_dtype(df.dtypes[key])
|
|
1463
1468
|
and (df[ind_name].dt.tz is not None)
|
|
1464
|
-
else
|
|
1469
|
+
else _get_sqlalchemy_mapping_types(str(ind_types[key]))
|
|
1465
1470
|
for key, ind_name in enumerate(ind_names)]
|
|
1466
1471
|
|
|
1467
1472
|
return col_names + ind_names, col_types + ind_types
|
|
1468
1473
|
|
|
1474
|
+
|
|
1469
1475
|
def _insert_from_dataframe(df, con, schema_name, table_name, index, chunksize,
|
|
1470
1476
|
is_pti=False, timecode_column=None, sequence_column=None,
|
|
1471
1477
|
match_column_order=True):
|
|
@@ -1551,6 +1557,8 @@ def _insert_from_dataframe(df, con, schema_name, table_name, index, chunksize,
|
|
|
1551
1557
|
'(' + ', '.join(['?' for i in range(len(col_names) + len(df.index.names)
|
|
1552
1558
|
if index is True else len(col_names))]) + ')')
|
|
1553
1559
|
|
|
1560
|
+
# Empty queryband buffer before SQL call.
|
|
1561
|
+
UtilFuncs._set_queryband()
|
|
1554
1562
|
rowcount = 0
|
|
1555
1563
|
# Iterate rows of DataFrame over new re-ordered columns
|
|
1556
1564
|
for row_index, row in enumerate(df[col_names].itertuples(index=True)):
|
|
@@ -1583,6 +1591,7 @@ def _insert_from_dataframe(df, con, schema_name, table_name, index, chunksize,
|
|
|
1583
1591
|
except Exception:
|
|
1584
1592
|
raise
|
|
1585
1593
|
|
|
1594
|
+
|
|
1586
1595
|
def _get_pd_df_column_names(df):
|
|
1587
1596
|
"""
|
|
1588
1597
|
Internal function to return the names of columns in a Pandas DataFrame.
|
|
@@ -1602,6 +1611,7 @@ def _get_pd_df_column_names(df):
|
|
|
1602
1611
|
"""
|
|
1603
1612
|
return df.columns.tolist()
|
|
1604
1613
|
|
|
1614
|
+
|
|
1605
1615
|
def _get_sqlalchemy_mapping(key):
|
|
1606
1616
|
"""
|
|
1607
1617
|
This is an internal function used to returns a SQLAlchemy Type Mapping
|
|
@@ -1614,7 +1624,7 @@ def _get_sqlalchemy_mapping(key):
|
|
|
1614
1624
|
key : String representing Pandas type ('int64', 'object' etc.)
|
|
1615
1625
|
|
|
1616
1626
|
RETURNS:
|
|
1617
|
-
SQLAlchemy Type (Integer, String, Float, DateTime etc.)
|
|
1627
|
+
SQLAlchemy Type Object(Integer, String, Float, DateTime etc.)
|
|
1618
1628
|
|
|
1619
1629
|
RAISES:
|
|
1620
1630
|
N/A
|
|
@@ -1633,12 +1643,12 @@ def _get_sqlalchemy_mapping(key):
|
|
|
1633
1643
|
def _get_all_sqlalchemy_mappings():
|
|
1634
1644
|
"""
|
|
1635
1645
|
This is an internal function used to return a dictionary of all SQLAlchemy Type Mappings.
|
|
1636
|
-
It contains mappings from pandas data type to
|
|
1646
|
+
It contains mappings from pandas data type to objects of SQLAlchemy Types
|
|
1637
1647
|
|
|
1638
1648
|
PARAMETERS:
|
|
1639
1649
|
|
|
1640
1650
|
RETURNS:
|
|
1641
|
-
dictionary { pandas_type : SQLAlchemy Type}
|
|
1651
|
+
dictionary { pandas_type : SQLAlchemy Type Object}
|
|
1642
1652
|
|
|
1643
1653
|
RAISES:
|
|
1644
1654
|
N/A
|
|
@@ -1646,11 +1656,11 @@ def _get_all_sqlalchemy_mappings():
|
|
|
1646
1656
|
EXAMPLES:
|
|
1647
1657
|
_get_all_sqlalchemy_mappings()
|
|
1648
1658
|
"""
|
|
1649
|
-
teradata_types_map = {'int32':INTEGER, 'int64':BIGINT,
|
|
1659
|
+
teradata_types_map = {'int32':INTEGER(), 'int64':BIGINT(),
|
|
1650
1660
|
'object':VARCHAR(configure.default_varchar_size,charset='UNICODE'),
|
|
1651
1661
|
'O':VARCHAR(configure.default_varchar_size,charset='UNICODE'),
|
|
1652
|
-
'float64':FLOAT, 'float32':FLOAT, 'bool':BYTEINT,
|
|
1653
|
-
'datetime64':TIMESTAMP, 'datetime64[ns]':TIMESTAMP,
|
|
1662
|
+
'float64':FLOAT(), 'float32':FLOAT(), 'bool':BYTEINT(),
|
|
1663
|
+
'datetime64':TIMESTAMP(), 'datetime64[ns]':TIMESTAMP(),
|
|
1654
1664
|
'datetime64[ns, UTC]':TIMESTAMP(timezone=True),
|
|
1655
1665
|
'timedelta64[ns]':VARCHAR(configure.default_varchar_size,charset='UNICODE'),
|
|
1656
1666
|
'timedelta[ns]':VARCHAR(configure.default_varchar_size,charset='UNICODE')}
|
|
@@ -1658,6 +1668,62 @@ def _get_all_sqlalchemy_mappings():
|
|
|
1658
1668
|
return teradata_types_map
|
|
1659
1669
|
|
|
1660
1670
|
|
|
1671
|
+
def _get_sqlalchemy_mapping_types(key):
|
|
1672
|
+
"""
|
|
1673
|
+
This is an internal function used to return a SQLAlchemy Type Mapping
|
|
1674
|
+
for a given Pandas DataFrame column Type.
|
|
1675
|
+
Used for Table Object creation internally based on DF column info.
|
|
1676
|
+
|
|
1677
|
+
For an unknown key, String (Mapping to VARCHAR) is returned
|
|
1678
|
+
|
|
1679
|
+
PARAMETERS:
|
|
1680
|
+
key : String representing Pandas type ('int64', 'object' etc.)
|
|
1681
|
+
|
|
1682
|
+
RETURNS:
|
|
1683
|
+
SQLAlchemy Type (Integer, String, Float, DateTime etc.)
|
|
1684
|
+
|
|
1685
|
+
RAISES:
|
|
1686
|
+
N/A
|
|
1687
|
+
|
|
1688
|
+
EXAMPLES:
|
|
1689
|
+
_get_sqlalchemy_mapping_types(key = 'int64')
|
|
1690
|
+
"""
|
|
1691
|
+
teradata_types_map = _get_all_sqlalchemy_types_mapping()
|
|
1692
|
+
|
|
1693
|
+
if key in teradata_types_map.keys():
|
|
1694
|
+
return teradata_types_map.get(key)
|
|
1695
|
+
else:
|
|
1696
|
+
return VARCHAR(configure.default_varchar_size,charset='UNICODE')
|
|
1697
|
+
|
|
1698
|
+
|
|
1699
|
+
def _get_all_sqlalchemy_types_mapping():
|
|
1700
|
+
"""
|
|
1701
|
+
This is an internal function used to return a dictionary of all SQLAlchemy Type Mappings.
|
|
1702
|
+
It contains mappings from pandas data type to SQLAlchemyTypes
|
|
1703
|
+
|
|
1704
|
+
PARAMETERS:
|
|
1705
|
+
|
|
1706
|
+
RETURNS:
|
|
1707
|
+
dictionary { pandas_type : SQLAlchemy Type}
|
|
1708
|
+
|
|
1709
|
+
RAISES:
|
|
1710
|
+
N/A
|
|
1711
|
+
|
|
1712
|
+
EXAMPLES:
|
|
1713
|
+
_get_all_sqlalchemy_types_mapping()
|
|
1714
|
+
"""
|
|
1715
|
+
teradata_types_map = {'int32': INTEGER, 'int64': BIGINT,
|
|
1716
|
+
'object': VARCHAR(configure.default_varchar_size, charset='UNICODE'),
|
|
1717
|
+
'O': VARCHAR(configure.default_varchar_size, charset='UNICODE'),
|
|
1718
|
+
'float64': FLOAT, 'float32': FLOAT, 'bool': BYTEINT,
|
|
1719
|
+
'datetime64': TIMESTAMP, 'datetime64[ns]': TIMESTAMP,
|
|
1720
|
+
'datetime64[ns, UTC]': TIMESTAMP(timezone=True),
|
|
1721
|
+
'timedelta64[ns]': VARCHAR(configure.default_varchar_size, charset='UNICODE'),
|
|
1722
|
+
'timedelta[ns]': VARCHAR(configure.default_varchar_size, charset='UNICODE')}
|
|
1723
|
+
|
|
1724
|
+
return teradata_types_map
|
|
1725
|
+
|
|
1726
|
+
|
|
1661
1727
|
def _validate_timezero_date(timezero_date):
|
|
1662
1728
|
"""
|
|
1663
1729
|
Internal function to validate timezero_date specified when creating a
|
|
@@ -27,8 +27,10 @@ from teradataml.dataframe.copy_to import copy_to_sql, _create_table_object, \
|
|
|
27
27
|
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
28
|
from teradataml.dbutils.dbutils import _create_table, _execute_query_and_generate_pandas_df
|
|
29
29
|
from teradataml.utils.validators import _Validators
|
|
30
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
30
31
|
|
|
31
32
|
|
|
33
|
+
@collect_queryband(queryband="fstExprt")
|
|
32
34
|
def fastexport(df, export_to="pandas", index_column=None,
|
|
33
35
|
catch_errors_warnings=False, csv_file=None,
|
|
34
36
|
**kwargs):
|
|
@@ -363,6 +365,8 @@ def fastexport(df, export_to="pandas", index_column=None,
|
|
|
363
365
|
export_to, str(err)),
|
|
364
366
|
MessageCodes.DATA_EXPORT_FAILED)
|
|
365
367
|
|
|
368
|
+
|
|
369
|
+
@collect_queryband(queryband="rdCsv")
|
|
366
370
|
def read_csv(filepath,
|
|
367
371
|
table_name,
|
|
368
372
|
types=None,
|
|
@@ -2036,6 +2040,8 @@ class _DataTransferUtils():
|
|
|
2036
2040
|
err_dict['error_message'] = []
|
|
2037
2041
|
warn_dict['error_message'] = []
|
|
2038
2042
|
|
|
2043
|
+
# Empty queryband buffer before SQL call.
|
|
2044
|
+
UtilFuncs._set_queryband()
|
|
2039
2045
|
# Execute insert statement
|
|
2040
2046
|
cur.execute(ins)
|
|
2041
2047
|
|
|
@@ -2562,6 +2568,8 @@ class _DataTransferUtils():
|
|
|
2562
2568
|
insert_stmt = self._form_insert_query(table=table_name,
|
|
2563
2569
|
column_names=column_names)
|
|
2564
2570
|
|
|
2571
|
+
# Empty queryband buffer before SQL call.
|
|
2572
|
+
UtilFuncs._set_queryband()
|
|
2565
2573
|
try:
|
|
2566
2574
|
conn = get_connection().connection
|
|
2567
2575
|
cur = conn.cursor()
|