teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,521 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 2.1
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class HMMSupervised:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
vertices = None,
|
|
34
|
-
model_key = None,
|
|
35
|
-
sequence_key = None,
|
|
36
|
-
observed_key = None,
|
|
37
|
-
state_key = None,
|
|
38
|
-
skip_key = None,
|
|
39
|
-
batch_size = None,
|
|
40
|
-
vertices_sequence_column = None,
|
|
41
|
-
vertices_partition_column = None,
|
|
42
|
-
vertices_order_column=None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The HMMSupervised function runs on the SQL-GR framework. The function
|
|
46
|
-
can produce multiple HMM models simultaneously, where each model is
|
|
47
|
-
learned from a set of sequences and where each sequence represents a
|
|
48
|
-
vertex.
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
PARAMETERS:
|
|
52
|
-
vertices:
|
|
53
|
-
Required Argument.
|
|
54
|
-
Specifies the teradataml DataFrame containing the vertex data.
|
|
55
|
-
|
|
56
|
-
vertices_partition_column:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies Partition By columns for vertices.
|
|
59
|
-
Values to this argument can be provided as list, if multiple columns
|
|
60
|
-
are used for partition.
|
|
61
|
-
Note:
|
|
62
|
-
1. This argument must contain the name of the column specified in
|
|
63
|
-
'sequence_key' argument.
|
|
64
|
-
2. This argument should contain the name of the column specified in
|
|
65
|
-
'model_key', if 'model_key' argument is used, and it must be
|
|
66
|
-
the first column followed by the name of the column specified
|
|
67
|
-
in 'sequence_key'.
|
|
68
|
-
Types: str OR list of Strings (str)
|
|
69
|
-
|
|
70
|
-
vertices_order_column:
|
|
71
|
-
Required Argument.
|
|
72
|
-
Specifies Order By columns for vertices.
|
|
73
|
-
Values to this argument can be provided as list, if multiple columns
|
|
74
|
-
are used for ordering.
|
|
75
|
-
Note: This argument must contain the name of the column, containing
|
|
76
|
-
time ordered sequence, as one of its columns.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
model_key:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Specifies the name of the column that contains the model attribute.
|
|
82
|
-
The values in the column can be integers or strings.
|
|
83
|
-
Note: The 'vertices_partition_column' argument should contain the name
|
|
84
|
-
of the column specified in this argument.
|
|
85
|
-
Types: str
|
|
86
|
-
|
|
87
|
-
sequence_key:
|
|
88
|
-
Required Argument.
|
|
89
|
-
Specifies the name of the column that contains the sequence attribute. The
|
|
90
|
-
sequence_key must be a sequence attribute in the
|
|
91
|
-
vertices_partition_column. A sequence (value in this column) must contain more
|
|
92
|
-
than two observation symbols. Each sequence represent a vertex.
|
|
93
|
-
Types: str
|
|
94
|
-
|
|
95
|
-
observed_key:
|
|
96
|
-
Required Argument.
|
|
97
|
-
Specifies the name of the column that contains the observed symbols. The
|
|
98
|
-
function scans the input teradataml DataFrame to find all possible
|
|
99
|
-
observed symbols.
|
|
100
|
-
Note: Observed symbols are case-sensitive.
|
|
101
|
-
Types: str
|
|
102
|
-
|
|
103
|
-
state_key:
|
|
104
|
-
Required Argument.
|
|
105
|
-
Specifies the column containing state attributes. You can specify multiple
|
|
106
|
-
states. The states are case-sensitive.
|
|
107
|
-
Types: str
|
|
108
|
-
|
|
109
|
-
skip_key:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies the name of the column whose values determine whether the function
|
|
112
|
-
skips the row. The function skips the row if the value is "true",
|
|
113
|
-
"yes", "y", or "1". The function does not skip the row if the value
|
|
114
|
-
is "false", "f", "no", "n", "0", or NULL.
|
|
115
|
-
Types: str
|
|
116
|
-
|
|
117
|
-
batch_size:
|
|
118
|
-
Optional Argument.
|
|
119
|
-
Specifies the number of models to process. The size must be positive. If the
|
|
120
|
-
batch size is not specified, the function avoids out-of-memory errors
|
|
121
|
-
by determining the appropriate size. If the batch size is specified
|
|
122
|
-
and there is insufficient free memory, the function reduces the batch
|
|
123
|
-
size. The batch size is determined dynamically, based on the memory
|
|
124
|
-
conditions. For example, at time T1, the specified batch size 1000
|
|
125
|
-
might be adjusted to 980, and at time T2, the batch size might be
|
|
126
|
-
adjusted to 800.
|
|
127
|
-
Types: int
|
|
128
|
-
|
|
129
|
-
vertices_sequence_column:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
132
|
-
the input argument "vertices". The argument is used to ensure
|
|
133
|
-
deterministic results for functions which produce results that vary
|
|
134
|
-
from run to run.
|
|
135
|
-
Types: str OR list of Strings (str)
|
|
136
|
-
|
|
137
|
-
RETURNS:
|
|
138
|
-
Instance of HMMSupervised.
|
|
139
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
140
|
-
references, such as HMMSupervisedObj.<attribute_name>.
|
|
141
|
-
Output teradataml DataFrame attribute names are:
|
|
142
|
-
1. output_initialstate_table
|
|
143
|
-
2. output_statetransition_table
|
|
144
|
-
3. output_emission_table
|
|
145
|
-
4. output
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
RAISES:
|
|
149
|
-
TeradataMlException
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
EXAMPLES:
|
|
153
|
-
# Load example data.
|
|
154
|
-
load_example_data("hmmsupervised", "customer_loyalty")
|
|
155
|
-
|
|
156
|
-
#
|
|
157
|
-
# "customer_loyalty" dataset contains events that are related to customer transaction.
|
|
158
|
-
# Each event comprises of the time elapsed since the last transaction and
|
|
159
|
-
# the amount spent compared amount spent in the last transaction
|
|
160
|
-
#
|
|
161
|
-
# Time elapsed since the last transaction:
|
|
162
|
-
# small(S), medium(M) and large(L)
|
|
163
|
-
# and the amount spent compared amount spent in the last transaction:
|
|
164
|
-
# less(L), about same(S) and more(M).
|
|
165
|
-
#
|
|
166
|
-
# So there are 9 possible combinations, resulting in 9 events.
|
|
167
|
-
# For example, the event SM implies a transaction, where the time elapsed
|
|
168
|
-
# since the last transaction is small and the customer spent more than last time.
|
|
169
|
-
#
|
|
170
|
-
# Datset also contains 3 hidden states corresponding to 3 levels of loyalty:
|
|
171
|
-
# low(L), normal(N), high(H).
|
|
172
|
-
|
|
173
|
-
# Create teradataml DataFrame objects.
|
|
174
|
-
customer_loyalty = DataFrame.from_table("customer_loyalty")
|
|
175
|
-
|
|
176
|
-
# Example 1 - Train a HMM Supervised model on the customer loyalty dataset
|
|
177
|
-
HMMSupervised_out = HMMSupervised(vertices = customer_loyalty,
|
|
178
|
-
vertices_partition_column = ["user_id", "seq_id"],
|
|
179
|
-
vertices_order_column = ["user_id", "seq_id", "purchase_date"],
|
|
180
|
-
model_key = "user_id",
|
|
181
|
-
sequence_key = "seq_id",
|
|
182
|
-
observed_key = "observation",
|
|
183
|
-
state_key = "loyalty_level"
|
|
184
|
-
)
|
|
185
|
-
|
|
186
|
-
# Print the results.
|
|
187
|
-
print(HMMSupervised_out.output_initialstate_table)
|
|
188
|
-
print(HMMSupervised_out.output_statetransition_table)
|
|
189
|
-
print(HMMSupervised_out.output_emission_table)
|
|
190
|
-
print(HMMSupervised_out.output)
|
|
191
|
-
|
|
192
|
-
"""
|
|
193
|
-
|
|
194
|
-
# Start the timer to get the build time
|
|
195
|
-
_start_time = time.time()
|
|
196
|
-
|
|
197
|
-
self.vertices = vertices
|
|
198
|
-
self.model_key = model_key
|
|
199
|
-
self.sequence_key = sequence_key
|
|
200
|
-
self.observed_key = observed_key
|
|
201
|
-
self.state_key = state_key
|
|
202
|
-
self.skip_key = skip_key
|
|
203
|
-
self.batch_size = batch_size
|
|
204
|
-
self.vertices_sequence_column = vertices_sequence_column
|
|
205
|
-
self.vertices_partition_column = vertices_partition_column
|
|
206
|
-
self.vertices_order_column = vertices_order_column
|
|
207
|
-
|
|
208
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
209
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
210
|
-
self.__aed_utils = AedUtils()
|
|
211
|
-
|
|
212
|
-
# Create argument information matrix to do parameter checking
|
|
213
|
-
self.__arg_info_matrix = []
|
|
214
|
-
self.__arg_info_matrix.append(["vertices", self.vertices, False, (DataFrame)])
|
|
215
|
-
self.__arg_info_matrix.append(["vertices_partition_column", self.vertices_partition_column, False, (str,list)])
|
|
216
|
-
self.__arg_info_matrix.append(["vertices_order_column", self.vertices_order_column, False, (str,list)])
|
|
217
|
-
self.__arg_info_matrix.append(["model_key", self.model_key, True, (str)])
|
|
218
|
-
self.__arg_info_matrix.append(["sequence_key", self.sequence_key, False, (str)])
|
|
219
|
-
self.__arg_info_matrix.append(["observed_key", self.observed_key, False, (str)])
|
|
220
|
-
self.__arg_info_matrix.append(["state_key", self.state_key, False, (str)])
|
|
221
|
-
self.__arg_info_matrix.append(["skip_key", self.skip_key, True, (str)])
|
|
222
|
-
self.__arg_info_matrix.append(["batch_size", self.batch_size, True, (int)])
|
|
223
|
-
self.__arg_info_matrix.append(["vertices_sequence_column", self.vertices_sequence_column, True, (str,list)])
|
|
224
|
-
|
|
225
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
226
|
-
# Perform the function validations
|
|
227
|
-
self.__validate()
|
|
228
|
-
# Generate the ML query
|
|
229
|
-
self.__form_tdml_query()
|
|
230
|
-
# Execute ML query
|
|
231
|
-
self.__execute()
|
|
232
|
-
# Get the prediction type
|
|
233
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
234
|
-
|
|
235
|
-
# End the timer to get the build time
|
|
236
|
-
_end_time = time.time()
|
|
237
|
-
|
|
238
|
-
# Calculate the build time
|
|
239
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
240
|
-
|
|
241
|
-
def __validate(self):
|
|
242
|
-
"""
|
|
243
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
244
|
-
arguments, input argument and table types. Also processes the
|
|
245
|
-
argument values.
|
|
246
|
-
"""
|
|
247
|
-
|
|
248
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
249
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
250
|
-
|
|
251
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
252
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
253
|
-
|
|
254
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
255
|
-
self.__awu._validate_input_table_datatype(self.vertices, "vertices", None)
|
|
256
|
-
|
|
257
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
258
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
259
|
-
self.__awu._validate_input_columns_not_empty(self.state_key, "state_key")
|
|
260
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_key, "state_key", self.vertices, "vertices", False)
|
|
261
|
-
|
|
262
|
-
self.__awu._validate_input_columns_not_empty(self.observed_key, "observed_key")
|
|
263
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observed_key, "observed_key", self.vertices, "vertices", False)
|
|
264
|
-
|
|
265
|
-
self.__awu._validate_input_columns_not_empty(self.sequence_key, "sequence_key")
|
|
266
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sequence_key, "sequence_key", self.vertices, "vertices", False)
|
|
267
|
-
|
|
268
|
-
self.__awu._validate_input_columns_not_empty(self.skip_key, "skip_key")
|
|
269
|
-
self.__awu._validate_dataframe_has_argument_columns(self.skip_key, "skip_key", self.vertices, "vertices", False)
|
|
270
|
-
|
|
271
|
-
self.__awu._validate_input_columns_not_empty(self.model_key, "model_key")
|
|
272
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_key, "model_key", self.vertices, "vertices", False)
|
|
273
|
-
|
|
274
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_sequence_column, "vertices_sequence_column")
|
|
275
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_sequence_column, "vertices_sequence_column", self.vertices, "vertices", False)
|
|
276
|
-
|
|
277
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_partition_column, "vertices_partition_column")
|
|
278
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_partition_column, "vertices_partition_column", self.vertices, "vertices", False)
|
|
279
|
-
|
|
280
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_order_column, "vertices_order_column")
|
|
281
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_order_column, "vertices_order_column", self.vertices, "vertices", False)
|
|
282
|
-
|
|
283
|
-
def __form_tdml_query(self):
|
|
284
|
-
"""
|
|
285
|
-
Function to generate the analytical function queries. The function defines
|
|
286
|
-
variables and list of arguments required to form the query.
|
|
287
|
-
"""
|
|
288
|
-
# Generate temp table names for output table parameters if any.
|
|
289
|
-
self.__output_initialstate_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmsupervised0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
290
|
-
self.__output_statetransition_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmsupervised1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
291
|
-
self.__output_emission_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_hmmsupervised2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
292
|
-
|
|
293
|
-
# Output table arguments list
|
|
294
|
-
self.__func_output_args_sql_names = ["InitStateTable", "StateTransitionTable", "EmissionTable"]
|
|
295
|
-
self.__func_output_args = [self.__output_initialstate_table_temp_tablename, self.__output_statetransition_table_temp_tablename, self.__output_emission_table_temp_tablename]
|
|
296
|
-
|
|
297
|
-
# Model Cataloging related attributes.
|
|
298
|
-
self._sql_specific_attributes = {}
|
|
299
|
-
self._sql_formula_attribute_mapper = {}
|
|
300
|
-
self._target_column = None
|
|
301
|
-
self._algorithm_name = None
|
|
302
|
-
|
|
303
|
-
# Generate lists for rest of the function arguments
|
|
304
|
-
self.__func_other_arg_sql_names = []
|
|
305
|
-
self.__func_other_args = []
|
|
306
|
-
self.__func_other_arg_json_datatypes = []
|
|
307
|
-
|
|
308
|
-
self.__func_other_arg_sql_names.append("StateColumn")
|
|
309
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_key, "\""), "'"))
|
|
310
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
311
|
-
|
|
312
|
-
self.__func_other_arg_sql_names.append("ObservationColumn")
|
|
313
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.observed_key, "\""), "'"))
|
|
314
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
315
|
-
|
|
316
|
-
self.__func_other_arg_sql_names.append("SeqColumn")
|
|
317
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_key, "\""), "'"))
|
|
318
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
319
|
-
|
|
320
|
-
if self.skip_key is not None:
|
|
321
|
-
self.__func_other_arg_sql_names.append("SkipColumn")
|
|
322
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.skip_key, "\""), "'"))
|
|
323
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
324
|
-
|
|
325
|
-
if self.model_key is not None:
|
|
326
|
-
self.__func_other_arg_sql_names.append("ModelColumn")
|
|
327
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_key, "\""), "'"))
|
|
328
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
329
|
-
|
|
330
|
-
if self.batch_size is not None:
|
|
331
|
-
self.__func_other_arg_sql_names.append("BatchSize")
|
|
332
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.batch_size, "'"))
|
|
333
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
334
|
-
|
|
335
|
-
# Generate lists for rest of the function arguments
|
|
336
|
-
sequence_input_by_list = []
|
|
337
|
-
if self.vertices_sequence_column is not None:
|
|
338
|
-
sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_sequence_column, ""))
|
|
339
|
-
|
|
340
|
-
if len(sequence_input_by_list) > 0:
|
|
341
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
342
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
343
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
344
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
345
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
# Declare empty lists to hold input table information.
|
|
349
|
-
self.__func_input_arg_sql_names = []
|
|
350
|
-
self.__func_input_table_view_query = []
|
|
351
|
-
self.__func_input_dataframe_type = []
|
|
352
|
-
self.__func_input_distribution = []
|
|
353
|
-
self.__func_input_partition_by_cols = []
|
|
354
|
-
self.__func_input_order_by_cols = []
|
|
355
|
-
|
|
356
|
-
# Process vertices
|
|
357
|
-
self.vertices_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_partition_column, "\"")
|
|
358
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices, False)
|
|
359
|
-
self.__func_input_distribution.append("FACT")
|
|
360
|
-
self.__func_input_arg_sql_names.append("vertices")
|
|
361
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
362
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
363
|
-
self.__func_input_partition_by_cols.append(self.vertices_partition_column)
|
|
364
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.vertices_order_column,"\""))
|
|
365
|
-
|
|
366
|
-
function_name = "HMMSupervised"
|
|
367
|
-
# Create instance to generate SQLMR.
|
|
368
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
369
|
-
self.__func_input_arg_sql_names,
|
|
370
|
-
self.__func_input_table_view_query,
|
|
371
|
-
self.__func_input_dataframe_type,
|
|
372
|
-
self.__func_input_distribution,
|
|
373
|
-
self.__func_input_partition_by_cols,
|
|
374
|
-
self.__func_input_order_by_cols,
|
|
375
|
-
self.__func_other_arg_sql_names,
|
|
376
|
-
self.__func_other_args,
|
|
377
|
-
self.__func_other_arg_json_datatypes,
|
|
378
|
-
self.__func_output_args_sql_names,
|
|
379
|
-
self.__func_output_args,
|
|
380
|
-
engine="ENGINE_ML")
|
|
381
|
-
# Invoke call to SQL-MR generation.
|
|
382
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
383
|
-
|
|
384
|
-
# Print SQL-MR query if requested to do so.
|
|
385
|
-
if display.print_sqlmr_query:
|
|
386
|
-
print(self.sqlmr_query)
|
|
387
|
-
|
|
388
|
-
# Set the algorithm name for Model Cataloging.
|
|
389
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
390
|
-
|
|
391
|
-
def __execute(self):
|
|
392
|
-
"""
|
|
393
|
-
Function to execute SQL-MR queries.
|
|
394
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
395
|
-
"""
|
|
396
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
397
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
398
|
-
try:
|
|
399
|
-
# Generate the output.
|
|
400
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
401
|
-
except Exception as emsg:
|
|
402
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
403
|
-
|
|
404
|
-
# Update output table data frames.
|
|
405
|
-
self._mlresults = []
|
|
406
|
-
self.output_initialstate_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_initialstate_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_initialstate_table_temp_tablename))
|
|
407
|
-
self.output_statetransition_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_statetransition_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_statetransition_table_temp_tablename))
|
|
408
|
-
self.output_emission_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_emission_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_emission_table_temp_tablename))
|
|
409
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
410
|
-
self._mlresults.append(self.output_initialstate_table)
|
|
411
|
-
self._mlresults.append(self.output_statetransition_table)
|
|
412
|
-
self._mlresults.append(self.output_emission_table)
|
|
413
|
-
self._mlresults.append(self.output)
|
|
414
|
-
|
|
415
|
-
def show_query(self):
|
|
416
|
-
"""
|
|
417
|
-
Function to return the underlying SQL query.
|
|
418
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
419
|
-
"""
|
|
420
|
-
return self.sqlmr_query
|
|
421
|
-
|
|
422
|
-
def get_prediction_type(self):
|
|
423
|
-
"""
|
|
424
|
-
Function to return the Prediction type of the algorithm.
|
|
425
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
426
|
-
as saved in the Model Catalog.
|
|
427
|
-
"""
|
|
428
|
-
return self._prediction_type
|
|
429
|
-
|
|
430
|
-
def get_target_column(self):
|
|
431
|
-
"""
|
|
432
|
-
Function to return the Target Column of the algorithm.
|
|
433
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
434
|
-
as saved in the Model Catalog.
|
|
435
|
-
"""
|
|
436
|
-
return self._target_column
|
|
437
|
-
|
|
438
|
-
def get_build_time(self):
|
|
439
|
-
"""
|
|
440
|
-
Function to return the build time of the algorithm in seconds.
|
|
441
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
442
|
-
as saved in the Model Catalog.
|
|
443
|
-
"""
|
|
444
|
-
return self._build_time
|
|
445
|
-
|
|
446
|
-
def _get_algorithm_name(self):
|
|
447
|
-
"""
|
|
448
|
-
Function to return the name of the algorithm.
|
|
449
|
-
"""
|
|
450
|
-
return self._algorithm_name
|
|
451
|
-
|
|
452
|
-
def _get_sql_specific_attributes(self):
|
|
453
|
-
"""
|
|
454
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
455
|
-
"""
|
|
456
|
-
return self._sql_specific_attributes
|
|
457
|
-
|
|
458
|
-
@classmethod
|
|
459
|
-
def _from_model_catalog(cls,
|
|
460
|
-
output_initialstate_table = None,
|
|
461
|
-
output_statetransition_table = None,
|
|
462
|
-
output_emission_table = None,
|
|
463
|
-
output = None,
|
|
464
|
-
**kwargs):
|
|
465
|
-
"""
|
|
466
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
467
|
-
"""
|
|
468
|
-
kwargs.pop("output_initialstate_table", None)
|
|
469
|
-
kwargs.pop("output_statetransition_table", None)
|
|
470
|
-
kwargs.pop("output_emission_table", None)
|
|
471
|
-
kwargs.pop("output", None)
|
|
472
|
-
|
|
473
|
-
# Model Cataloging related attributes.
|
|
474
|
-
target_column = kwargs.pop("__target_column", None)
|
|
475
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
476
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
477
|
-
build_time = kwargs.pop("__build_time", None)
|
|
478
|
-
|
|
479
|
-
# Let's create an object of this class.
|
|
480
|
-
obj = cls(**kwargs)
|
|
481
|
-
obj.output_initialstate_table = output_initialstate_table
|
|
482
|
-
obj.output_statetransition_table = output_statetransition_table
|
|
483
|
-
obj.output_emission_table = output_emission_table
|
|
484
|
-
obj.output = output
|
|
485
|
-
|
|
486
|
-
# Initialize the sqlmr_query class attribute.
|
|
487
|
-
obj.sqlmr_query = None
|
|
488
|
-
|
|
489
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
490
|
-
obj._sql_specific_attributes = None
|
|
491
|
-
obj._target_column = target_column
|
|
492
|
-
obj._prediction_type = prediction_type
|
|
493
|
-
obj._algorithm_name = algorithm_name
|
|
494
|
-
obj._build_time = build_time
|
|
495
|
-
|
|
496
|
-
# Update output table data frames.
|
|
497
|
-
obj._mlresults = []
|
|
498
|
-
obj.output_initialstate_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_initialstate_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_initialstate_table))
|
|
499
|
-
obj.output_statetransition_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_statetransition_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_statetransition_table))
|
|
500
|
-
obj.output_emission_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_emission_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_emission_table))
|
|
501
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
502
|
-
obj._mlresults.append(obj.output_initialstate_table)
|
|
503
|
-
obj._mlresults.append(obj.output_statetransition_table)
|
|
504
|
-
obj._mlresults.append(obj.output_emission_table)
|
|
505
|
-
obj._mlresults.append(obj.output)
|
|
506
|
-
return obj
|
|
507
|
-
|
|
508
|
-
def __repr__(self):
|
|
509
|
-
"""
|
|
510
|
-
Returns the string representation for a HMMSupervised class instance.
|
|
511
|
-
"""
|
|
512
|
-
repr_string="############ STDOUT Output ############"
|
|
513
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
514
|
-
repr_string="{}\n\n\n############ output_initialstate_table Output ############".format(repr_string)
|
|
515
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_initialstate_table)
|
|
516
|
-
repr_string="{}\n\n\n############ output_statetransition_table Output ############".format(repr_string)
|
|
517
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_statetransition_table)
|
|
518
|
-
repr_string="{}\n\n\n############ output_emission_table Output ############".format(repr_string)
|
|
519
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_emission_table)
|
|
520
|
-
return repr_string
|
|
521
|
-
|