teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,477 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.3
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class ChangePointDetectionRT:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
value_column = None,
|
|
35
|
-
accumulate = None,
|
|
36
|
-
segmentation_method = "normal_distribution",
|
|
37
|
-
window_size = 10,
|
|
38
|
-
threshold = 10.0,
|
|
39
|
-
output_option = "CHANGEPOINT",
|
|
40
|
-
data_sequence_column = None,
|
|
41
|
-
data_partition_column = None,
|
|
42
|
-
data_order_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The ChangePointDetectionRT function detects change points in a
|
|
46
|
-
stochastic process or time series, using real-time change-point
|
|
47
|
-
detection, implemented with these algorithms:
|
|
48
|
-
• Search algorithm: sliding window
|
|
49
|
-
• Segmentation algorithm: normal distribution
|
|
50
|
-
|
|
51
|
-
Use this function when the input data cannot be stored in Teradata
|
|
52
|
-
Vantage memory, or when the application requires a real-time
|
|
53
|
-
response. If the input data can be stored in Teradata Vantage memory
|
|
54
|
-
and the application does not require a real-time response, use the
|
|
55
|
-
function ChangePointDetection.
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
data:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the teradataml DataFrame defining the input time series
|
|
61
|
-
data.
|
|
62
|
-
|
|
63
|
-
data_partition_column:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies Partition By columns for data. Values to this argument
|
|
66
|
-
can be provided as list, if multiple columns are used for
|
|
67
|
-
partitioning.
|
|
68
|
-
Types: str OR list of Strings (str)
|
|
69
|
-
|
|
70
|
-
data_order_column:
|
|
71
|
-
Required Argument.
|
|
72
|
-
Specifies Order By columns for data. Values to this argument can
|
|
73
|
-
be provided as list, if multiple columns are used for ordering.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
value_column:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
79
|
-
contains the time series data.
|
|
80
|
-
Types: str OR list of Strings (str)
|
|
81
|
-
|
|
82
|
-
accumulate:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies the names of the input teradataml DataFrame columns to
|
|
85
|
-
copy to the output teradataml DataFrame.
|
|
86
|
-
Tip: To identify change points in the output teradataml DataFrame,
|
|
87
|
-
specify the columns that appear in data_partition_column and
|
|
88
|
-
data_order_column.
|
|
89
|
-
Note:
|
|
90
|
-
'accumulate' argument is required when teradataml is connected to
|
|
91
|
-
Vantage version prior to 1.1.1.
|
|
92
|
-
Types: str OR list of Strings (str)
|
|
93
|
-
|
|
94
|
-
segmentation_method:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
Specifies the segmentation method, normal distribution (in each
|
|
97
|
-
segment, the data is in a normal distribution).
|
|
98
|
-
Default Value: normal_distribution
|
|
99
|
-
Permitted Values: normal_distribution
|
|
100
|
-
Types: str
|
|
101
|
-
|
|
102
|
-
window_size:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies the size of the sliding window. The ideal window size
|
|
105
|
-
depends heavily on the data. You might need to experiment with
|
|
106
|
-
this value.
|
|
107
|
-
Default Value: 10
|
|
108
|
-
Types: int
|
|
109
|
-
|
|
110
|
-
threshold:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
A double threshold value. Specifies a float value that the function
|
|
113
|
-
compares to ln(L1) - ln(L0). The definition of Log(L1) and Log(L0)
|
|
114
|
-
are in "Background". They are the logarithms of L1 and L0.
|
|
115
|
-
Default Value: 10.0
|
|
116
|
-
Types: float
|
|
117
|
-
|
|
118
|
-
output_option:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
Specifies the output teradataml DataFrame columns.
|
|
121
|
-
Default Value: CHANGEPOINT
|
|
122
|
-
Permitted Values: CHANGEPOINT, SEGMENT, VERBOSE
|
|
123
|
-
Types: str
|
|
124
|
-
|
|
125
|
-
data_sequence_column:
|
|
126
|
-
Optional Argument.
|
|
127
|
-
Specifies the list of column(s) that uniquely identifies each row
|
|
128
|
-
of the input argument "data". The argument is used to ensure
|
|
129
|
-
deterministic results for functions which produce results that vary
|
|
130
|
-
from run to run.
|
|
131
|
-
Types: str OR list of Strings (str)
|
|
132
|
-
|
|
133
|
-
RETURNS:
|
|
134
|
-
Instance of ChangePointDetectionRT.
|
|
135
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
136
|
-
references, such as ChangePointDetectionRTObj.<attribute_name>.
|
|
137
|
-
Output teradataml DataFrame attribute name is:
|
|
138
|
-
result
|
|
139
|
-
|
|
140
|
-
RAISES:
|
|
141
|
-
TeradataMlException
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
EXAMPLES:
|
|
145
|
-
# Load example data.
|
|
146
|
-
load_example_data("changepointdetectionRT", "cpt")
|
|
147
|
-
|
|
148
|
-
# Provided example table, 'cpt' contains time series data in
|
|
149
|
-
# column 'val', each of which is identified by columns 'sid'
|
|
150
|
-
# and 'id'.
|
|
151
|
-
|
|
152
|
-
# Create teradataml DataFrame objects.
|
|
153
|
-
cpt = DataFrame.from_table('cpt')
|
|
154
|
-
|
|
155
|
-
# Example 1 : With default window_size, threshold, output_option
|
|
156
|
-
ChangePointDetectionRT_out = ChangePointDetectionRT(data = cpt,
|
|
157
|
-
value_column = "val",
|
|
158
|
-
data_partition_column = 'sid',
|
|
159
|
-
data_order_column = 'id',
|
|
160
|
-
accumulate = ["sid","id"]
|
|
161
|
-
)
|
|
162
|
-
# Print the results
|
|
163
|
-
print(ChangePointDetectionRT_out.result)
|
|
164
|
-
|
|
165
|
-
# Example 2 : With window_size 3, threshold 20, VERBOSE output
|
|
166
|
-
ChangePointDetectionRT_out = ChangePointDetectionRT(data = cpt,
|
|
167
|
-
value_column = "val",
|
|
168
|
-
data_partition_column = 'sid',
|
|
169
|
-
data_order_column = 'id',
|
|
170
|
-
accumulate = ["sid","id"],
|
|
171
|
-
window_size = 3,
|
|
172
|
-
threshold = 20.0,
|
|
173
|
-
output_option = "verbose"
|
|
174
|
-
)
|
|
175
|
-
# Print the results
|
|
176
|
-
print(ChangePointDetectionRT_out.result)
|
|
177
|
-
|
|
178
|
-
"""
|
|
179
|
-
|
|
180
|
-
# Start the timer to get the build time
|
|
181
|
-
_start_time = time.time()
|
|
182
|
-
|
|
183
|
-
self.data = data
|
|
184
|
-
self.value_column = value_column
|
|
185
|
-
self.accumulate = accumulate
|
|
186
|
-
self.segmentation_method = segmentation_method
|
|
187
|
-
self.window_size = window_size
|
|
188
|
-
self.threshold = threshold
|
|
189
|
-
self.output_option = output_option
|
|
190
|
-
self.data_sequence_column = data_sequence_column
|
|
191
|
-
self.data_partition_column = data_partition_column
|
|
192
|
-
self.data_order_column = data_order_column
|
|
193
|
-
|
|
194
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
195
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
196
|
-
self.__aed_utils = AedUtils()
|
|
197
|
-
|
|
198
|
-
# Create argument information matrix to do parameter checking
|
|
199
|
-
self.__arg_info_matrix = []
|
|
200
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
201
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
202
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
203
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
|
|
204
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
205
|
-
self.__arg_info_matrix.append(["segmentation_method", self.segmentation_method, True, (str)])
|
|
206
|
-
self.__arg_info_matrix.append(["window_size", self.window_size, True, (int)])
|
|
207
|
-
self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
|
|
208
|
-
self.__arg_info_matrix.append(["output_option", self.output_option, True, (str)])
|
|
209
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
210
|
-
|
|
211
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
212
|
-
# Perform the function validations
|
|
213
|
-
self.__validate()
|
|
214
|
-
# Generate the ML query
|
|
215
|
-
self.__form_tdml_query()
|
|
216
|
-
# Execute ML query
|
|
217
|
-
self.__execute()
|
|
218
|
-
# Get the prediction type
|
|
219
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
220
|
-
|
|
221
|
-
# End the timer to get the build time
|
|
222
|
-
_end_time = time.time()
|
|
223
|
-
|
|
224
|
-
# Calculate the build time
|
|
225
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
226
|
-
|
|
227
|
-
def __validate(self):
|
|
228
|
-
"""
|
|
229
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
230
|
-
arguments, input argument and table types. Also processes the
|
|
231
|
-
argument values.
|
|
232
|
-
"""
|
|
233
|
-
|
|
234
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
235
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
236
|
-
|
|
237
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
238
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
239
|
-
|
|
240
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
241
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
242
|
-
|
|
243
|
-
# Check for permitted values
|
|
244
|
-
segmentation_method_permitted_values = ["NORMAL_DISTRIBUTION"]
|
|
245
|
-
self.__awu._validate_permitted_values(self.segmentation_method, segmentation_method_permitted_values, "segmentation_method")
|
|
246
|
-
|
|
247
|
-
output_option_permitted_values = ["CHANGEPOINT", "SEGMENT", "VERBOSE"]
|
|
248
|
-
self.__awu._validate_permitted_values(self.output_option, output_option_permitted_values, "output_option")
|
|
249
|
-
|
|
250
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
251
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
252
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
253
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
|
|
254
|
-
|
|
255
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
256
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
257
|
-
|
|
258
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
259
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
260
|
-
|
|
261
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
262
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
263
|
-
|
|
264
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
265
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
def __form_tdml_query(self):
|
|
269
|
-
"""
|
|
270
|
-
Function to generate the analytical function queries. The function defines
|
|
271
|
-
variables and list of arguments required to form the query.
|
|
272
|
-
"""
|
|
273
|
-
|
|
274
|
-
# Output table arguments list
|
|
275
|
-
self.__func_output_args_sql_names = []
|
|
276
|
-
self.__func_output_args = []
|
|
277
|
-
|
|
278
|
-
# Model Cataloging related attributes.
|
|
279
|
-
self._sql_specific_attributes = {}
|
|
280
|
-
self._sql_formula_attribute_mapper = {}
|
|
281
|
-
self._target_column = None
|
|
282
|
-
self._algorithm_name = None
|
|
283
|
-
|
|
284
|
-
# Generate lists for rest of the function arguments
|
|
285
|
-
self.__func_other_arg_sql_names = []
|
|
286
|
-
self.__func_other_args = []
|
|
287
|
-
self.__func_other_arg_json_datatypes = []
|
|
288
|
-
|
|
289
|
-
self.__func_other_arg_sql_names.append("TargetColumn")
|
|
290
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
291
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
292
|
-
|
|
293
|
-
if self.accumulate is not None:
|
|
294
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
295
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
296
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
297
|
-
|
|
298
|
-
if self.segmentation_method is not None and self.segmentation_method != "normal_distribution":
|
|
299
|
-
self.__func_other_arg_sql_names.append("SegmentationMethod")
|
|
300
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.segmentation_method, "'"))
|
|
301
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
302
|
-
|
|
303
|
-
if self.window_size is not None and self.window_size != 10:
|
|
304
|
-
self.__func_other_arg_sql_names.append("WindowSize")
|
|
305
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, "'"))
|
|
306
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
307
|
-
|
|
308
|
-
if self.threshold is not None and self.threshold != 10.0:
|
|
309
|
-
self.__func_other_arg_sql_names.append("ChangePointThreshold")
|
|
310
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
|
|
311
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
312
|
-
|
|
313
|
-
if self.output_option is not None and self.output_option != "CHANGEPOINT":
|
|
314
|
-
self.__func_other_arg_sql_names.append("OutputType")
|
|
315
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_option, "'"))
|
|
316
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
317
|
-
|
|
318
|
-
# Generate lists for rest of the function arguments
|
|
319
|
-
sequence_input_by_list = []
|
|
320
|
-
if self.data_sequence_column is not None:
|
|
321
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
322
|
-
|
|
323
|
-
if len(sequence_input_by_list) > 0:
|
|
324
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
325
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
326
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
327
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
328
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
# Declare empty lists to hold input table information.
|
|
332
|
-
self.__func_input_arg_sql_names = []
|
|
333
|
-
self.__func_input_table_view_query = []
|
|
334
|
-
self.__func_input_dataframe_type = []
|
|
335
|
-
self.__func_input_distribution = []
|
|
336
|
-
self.__func_input_partition_by_cols = []
|
|
337
|
-
self.__func_input_order_by_cols = []
|
|
338
|
-
|
|
339
|
-
# Process data
|
|
340
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
341
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
342
|
-
self.__func_input_distribution.append("FACT")
|
|
343
|
-
self.__func_input_arg_sql_names.append("input")
|
|
344
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
345
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
346
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
347
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
348
|
-
|
|
349
|
-
function_name = "ChangePointDetectionRT"
|
|
350
|
-
# Create instance to generate SQLMR.
|
|
351
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
352
|
-
self.__func_input_arg_sql_names,
|
|
353
|
-
self.__func_input_table_view_query,
|
|
354
|
-
self.__func_input_dataframe_type,
|
|
355
|
-
self.__func_input_distribution,
|
|
356
|
-
self.__func_input_partition_by_cols,
|
|
357
|
-
self.__func_input_order_by_cols,
|
|
358
|
-
self.__func_other_arg_sql_names,
|
|
359
|
-
self.__func_other_args,
|
|
360
|
-
self.__func_other_arg_json_datatypes,
|
|
361
|
-
self.__func_output_args_sql_names,
|
|
362
|
-
self.__func_output_args,
|
|
363
|
-
engine="ENGINE_ML")
|
|
364
|
-
# Invoke call to SQL-MR generation.
|
|
365
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
366
|
-
|
|
367
|
-
# Print SQL-MR query if requested to do so.
|
|
368
|
-
if display.print_sqlmr_query:
|
|
369
|
-
print(self.sqlmr_query)
|
|
370
|
-
|
|
371
|
-
# Set the algorithm name for Model Cataloging.
|
|
372
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
373
|
-
|
|
374
|
-
def __execute(self):
|
|
375
|
-
"""
|
|
376
|
-
Function to execute SQL-MR queries.
|
|
377
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
378
|
-
"""
|
|
379
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
380
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
381
|
-
try:
|
|
382
|
-
# Generate the output.
|
|
383
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
384
|
-
except Exception as emsg:
|
|
385
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
386
|
-
|
|
387
|
-
# Update output table data frames.
|
|
388
|
-
self._mlresults = []
|
|
389
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
390
|
-
self._mlresults.append(self.result)
|
|
391
|
-
|
|
392
|
-
def show_query(self):
|
|
393
|
-
"""
|
|
394
|
-
Function to return the underlying SQL query.
|
|
395
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
396
|
-
"""
|
|
397
|
-
return self.sqlmr_query
|
|
398
|
-
|
|
399
|
-
def get_prediction_type(self):
|
|
400
|
-
"""
|
|
401
|
-
Function to return the Prediction type of the algorithm.
|
|
402
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
403
|
-
as saved in the Model Catalog.
|
|
404
|
-
"""
|
|
405
|
-
return self._prediction_type
|
|
406
|
-
|
|
407
|
-
def get_target_column(self):
|
|
408
|
-
"""
|
|
409
|
-
Function to return the Target Column of the algorithm.
|
|
410
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
411
|
-
as saved in the Model Catalog.
|
|
412
|
-
"""
|
|
413
|
-
return self._target_column
|
|
414
|
-
|
|
415
|
-
def get_build_time(self):
|
|
416
|
-
"""
|
|
417
|
-
Function to return the build time of the algorithm in seconds.
|
|
418
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
419
|
-
as saved in the Model Catalog.
|
|
420
|
-
"""
|
|
421
|
-
return self._build_time
|
|
422
|
-
|
|
423
|
-
def _get_algorithm_name(self):
|
|
424
|
-
"""
|
|
425
|
-
Function to return the name of the algorithm.
|
|
426
|
-
"""
|
|
427
|
-
return self._algorithm_name
|
|
428
|
-
|
|
429
|
-
def _get_sql_specific_attributes(self):
|
|
430
|
-
"""
|
|
431
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
432
|
-
"""
|
|
433
|
-
return self._sql_specific_attributes
|
|
434
|
-
|
|
435
|
-
@classmethod
|
|
436
|
-
def _from_model_catalog(cls,
|
|
437
|
-
result = None,
|
|
438
|
-
**kwargs):
|
|
439
|
-
"""
|
|
440
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
441
|
-
"""
|
|
442
|
-
kwargs.pop("result", None)
|
|
443
|
-
|
|
444
|
-
# Model Cataloging related attributes.
|
|
445
|
-
target_column = kwargs.pop("__target_column", None)
|
|
446
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
447
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
448
|
-
build_time = kwargs.pop("__build_time", None)
|
|
449
|
-
|
|
450
|
-
# Let's create an object of this class.
|
|
451
|
-
obj = cls(**kwargs)
|
|
452
|
-
obj.result = result
|
|
453
|
-
|
|
454
|
-
# Initialize the sqlmr_query class attribute.
|
|
455
|
-
obj.sqlmr_query = None
|
|
456
|
-
|
|
457
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
458
|
-
obj._sql_specific_attributes = None
|
|
459
|
-
obj._target_column = target_column
|
|
460
|
-
obj._prediction_type = prediction_type
|
|
461
|
-
obj._algorithm_name = algorithm_name
|
|
462
|
-
obj._build_time = build_time
|
|
463
|
-
|
|
464
|
-
# Update output table data frames.
|
|
465
|
-
obj._mlresults = []
|
|
466
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
467
|
-
obj._mlresults.append(obj.result)
|
|
468
|
-
return obj
|
|
469
|
-
|
|
470
|
-
def __repr__(self):
|
|
471
|
-
"""
|
|
472
|
-
Returns the string representation for a ChangePointDetectionRT class instance.
|
|
473
|
-
"""
|
|
474
|
-
repr_string="############ STDOUT Output ############"
|
|
475
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
476
|
-
return repr_string
|
|
477
|
-
|