teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,503 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.1
|
|
11
|
-
# Function Version: 1.0
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Unpack:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
input_column = None,
|
|
35
|
-
output_columns = None,
|
|
36
|
-
output_datatypes = None,
|
|
37
|
-
delimiter = ",",
|
|
38
|
-
column_length = None,
|
|
39
|
-
regex = "(.*)",
|
|
40
|
-
regex_set = 1,
|
|
41
|
-
exception = False,
|
|
42
|
-
data_order_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The Unpack function unpacks data from a single packed column into
|
|
46
|
-
multiple columns. The packed column is composed of multiple virtual
|
|
47
|
-
columns, which become the output columns. To determine the virtual
|
|
48
|
-
columns, the function must have either the delimiter that separates
|
|
49
|
-
them in the packed column or their lengths.
|
|
50
|
-
|
|
51
|
-
Note: This function is only available when teradataml is connected
|
|
52
|
-
to Vantage 1.1 or later versions.
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
PARAMETERS:
|
|
56
|
-
data:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies the teradataml DataFrame containing the input attributes.
|
|
59
|
-
|
|
60
|
-
data_order_column:
|
|
61
|
-
Optional Argument.
|
|
62
|
-
Specifies Order By columns for data.
|
|
63
|
-
Values to this argument can be provided as a list, if multiple
|
|
64
|
-
columns are used for ordering.
|
|
65
|
-
Types: str OR list of Strings (str)
|
|
66
|
-
|
|
67
|
-
input_column:
|
|
68
|
-
Required Argument.
|
|
69
|
-
Specifies the name of the input column that contains the packed
|
|
70
|
-
data.
|
|
71
|
-
Types: str
|
|
72
|
-
|
|
73
|
-
output_columns:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the names to give to the output columns, in the order in
|
|
76
|
-
which the corresponding virtual columns appear in "input_column". If you
|
|
77
|
-
specify fewer output column names than there are in virtual input
|
|
78
|
-
columns, the function ignores the extra virtual input columns. That
|
|
79
|
-
is, if the packed data contains x+y virtual columns and the
|
|
80
|
-
output_columns argument specifies x output column names, the function
|
|
81
|
-
assigns the names to the first x virtual columns and ignores the
|
|
82
|
-
remaining y virtual columns.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
output_datatypes:
|
|
86
|
-
Required Argument.
|
|
87
|
-
Specifies the datatypes of the unpacked output columns. Supported
|
|
88
|
-
output_datatypes are VARCHAR, int, float, TIME, DATE, and
|
|
89
|
-
TIMESTAMP. If output_datatypes specifies only one value and
|
|
90
|
-
output_columns specifies multiple columns, then the specified value
|
|
91
|
-
applies to every output_column. If output_datatypes specifies
|
|
92
|
-
multiple values, then it must specify a value for each output_column.
|
|
93
|
-
The nth datatype corresponds to the nth output_column. The function
|
|
94
|
-
can output only 16 VARCHAR columns.
|
|
95
|
-
Types: str OR list of Strings (str)
|
|
96
|
-
|
|
97
|
-
delimiter:
|
|
98
|
-
Optional Argument.
|
|
99
|
-
Specifies the delimiter (a string) that separates the virtual
|
|
100
|
-
columns in the packed data. If the virtual columns are separated
|
|
101
|
-
by a delimiter, then specify the delimiter with this argument;
|
|
102
|
-
otherwise, specify the column_length argument. Do not specify
|
|
103
|
-
both this argument and the column_length argument.
|
|
104
|
-
Default Value: ","
|
|
105
|
-
Types: str
|
|
106
|
-
|
|
107
|
-
column_length:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the lengths of the virtual columns; therefore, to use
|
|
110
|
-
this argument, you must know the length of each virtual column.
|
|
111
|
-
If column_length specifies only one value and output_columns specifies
|
|
112
|
-
multiple columns, then the specified value applies to every
|
|
113
|
-
output_column.
|
|
114
|
-
If column_length specifies multiple values, then it must specify
|
|
115
|
-
a value for each output_column. The nth datatype corresponds to
|
|
116
|
-
the nth output_column. However, the last value in column_length
|
|
117
|
-
can be an asterisk (*), which represents a single virtual column
|
|
118
|
-
that contains the remaining data.
|
|
119
|
-
For example, if the first three virtual columns have the lengths
|
|
120
|
-
2, 1, and 3, and all remaining data belongs to the fourth virtual
|
|
121
|
-
column, you can specify column_length ("2", "1", "3", *).
|
|
122
|
-
If you specify this argument, you must omit the delimiter argument.
|
|
123
|
-
Types: str OR list of Strings (str)
|
|
124
|
-
|
|
125
|
-
regex:
|
|
126
|
-
Optional Argument.
|
|
127
|
-
Specifies a regular expression that describes a row of packed data,
|
|
128
|
-
enabling the function to find the data values.
|
|
129
|
-
A row of packed data contains one data value for each virtual column,
|
|
130
|
-
but the row might also contain other information (such as the
|
|
131
|
-
virtual column name). In the regex, each data value is enclosed
|
|
132
|
-
in parentheses.
|
|
133
|
-
For example, suppose that the packed data has two virtual columns,
|
|
134
|
-
age and sex, and that one row of packed data is: age:34,sex:male.
|
|
135
|
-
The regex that describes the row is ".*:(.*)". The ".*:" matches
|
|
136
|
-
the virtual column names, age and sex, and the "(.*)" matches the
|
|
137
|
-
values, 34 and male.
|
|
138
|
-
To represent multiple data groups in regex, use multiple pairs
|
|
139
|
-
of parentheses. By default, the last data group in regex represents
|
|
140
|
-
the data value (other data groups are assumed to be virtual column
|
|
141
|
-
names or unwanted data). If a different data group represents the
|
|
142
|
-
data value, specify its group number with the regex_set argument.
|
|
143
|
-
Default value matches the whole string (between delimiters,
|
|
144
|
-
if any). When applied to the preceding sample row, the default
|
|
145
|
-
regex causes the function to return "age:34" and "sex:male" as
|
|
146
|
-
data values.
|
|
147
|
-
Default Value: "(.*)"
|
|
148
|
-
Types: str
|
|
149
|
-
|
|
150
|
-
regex_set:
|
|
151
|
-
Optional Argument.
|
|
152
|
-
Specifies the ordinal number of the data group in regex that
|
|
153
|
-
represents the data value in a virtual column. By default, the
|
|
154
|
-
last data group in regex represents the data value.
|
|
155
|
-
For example, suppose that regex is: "([a-zA-Z]*):(.*)". If
|
|
156
|
-
group number is "1", then "([a-zA-Z]*)" represents the data value.
|
|
157
|
-
If group number is "2", then "(.*)" represents the data value.
|
|
158
|
-
Default Value: 1
|
|
159
|
-
Types: int
|
|
160
|
-
|
|
161
|
-
exception:
|
|
162
|
-
Optional Argument.
|
|
163
|
-
Specifies whether the function ignores rows that contain invalid
|
|
164
|
-
data. By default, the function fails if it encounters a row with
|
|
165
|
-
invalid data.
|
|
166
|
-
Default Value: False
|
|
167
|
-
Types: bool
|
|
168
|
-
|
|
169
|
-
RETURNS:
|
|
170
|
-
Instance of Unpack.
|
|
171
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
172
|
-
references, such as UnpackObj.<attribute_name>.
|
|
173
|
-
Output teradataml DataFrame attribute name is:
|
|
174
|
-
result
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
RAISES:
|
|
178
|
-
TeradataMlException
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
EXAMPLES:
|
|
182
|
-
# Load the data to run the example.
|
|
183
|
-
load_example_data("Unpack",["ville_tempdata","ville_tempdata1"])
|
|
184
|
-
|
|
185
|
-
# Create teradataml DataFrame objects
|
|
186
|
-
ville_tempdata1 = DataFrame.from_table("ville_tempdata1")
|
|
187
|
-
ville_tempdata = DataFrame.from_table("ville_tempdata")
|
|
188
|
-
|
|
189
|
-
# Example1 - Delimiter Separates Virtual Columns.
|
|
190
|
-
# The input table, ville_tempdata, is a collection of temperature readings
|
|
191
|
-
# for two cities, Nashville and Knoxville, in the state of Tennessee.
|
|
192
|
-
# In the column of packed data, the delimiter comma (,) separates the virtual
|
|
193
|
-
# columns.
|
|
194
|
-
unpack_out1 = Unpack(data=ville_tempdata,
|
|
195
|
-
input_column='packed_temp_data',
|
|
196
|
-
output_columns=['city','state','temp_f'],
|
|
197
|
-
output_datatypes=['varchar','varchar','real'],
|
|
198
|
-
delimiter=',',
|
|
199
|
-
regex='(.*)',
|
|
200
|
-
regex_set=1,
|
|
201
|
-
exception=True)
|
|
202
|
-
|
|
203
|
-
# Print the results
|
|
204
|
-
print(unpack_out1.result)
|
|
205
|
-
|
|
206
|
-
# Example2 - No Delimiter Separates Virtual Columns.
|
|
207
|
-
# The input, ville_tempdata1, contains same data as the previous example,
|
|
208
|
-
# except that no delimiter separates the virtual columns in the packed data.
|
|
209
|
-
# To enable the function to determine the virtual columns, the function call
|
|
210
|
-
# specifes the column lengths.
|
|
211
|
-
unpack_out2 = Unpack(data=ville_tempdata1,
|
|
212
|
-
input_column='packed_temp_data',
|
|
213
|
-
output_columns=['city','state','temp_f'],
|
|
214
|
-
output_datatypes=['varchar','varchar','real'],
|
|
215
|
-
column_length=['9','9','4'],
|
|
216
|
-
regex='(.*)',
|
|
217
|
-
regex_set=1,
|
|
218
|
-
exception=True)
|
|
219
|
-
|
|
220
|
-
# Print the results
|
|
221
|
-
print(unpack_out2.result)
|
|
222
|
-
|
|
223
|
-
"""
|
|
224
|
-
|
|
225
|
-
# Start the timer to get the build time
|
|
226
|
-
_start_time = time.time()
|
|
227
|
-
|
|
228
|
-
self.data = data
|
|
229
|
-
self.input_column = input_column
|
|
230
|
-
self.output_columns = output_columns
|
|
231
|
-
self.output_datatypes = output_datatypes
|
|
232
|
-
self.delimiter = delimiter
|
|
233
|
-
self.column_length = column_length
|
|
234
|
-
self.regex = regex
|
|
235
|
-
self.regex_set = regex_set
|
|
236
|
-
self.exception = exception
|
|
237
|
-
self.data_order_column = data_order_column
|
|
238
|
-
|
|
239
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
240
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
241
|
-
self.__aed_utils = AedUtils()
|
|
242
|
-
|
|
243
|
-
# Create argument information matrix to do parameter checking
|
|
244
|
-
self.__arg_info_matrix = []
|
|
245
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
246
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
247
|
-
self.__arg_info_matrix.append(["input_column", self.input_column, False, (str)])
|
|
248
|
-
self.__arg_info_matrix.append(["output_columns", self.output_columns, False, (str,list)])
|
|
249
|
-
self.__arg_info_matrix.append(["output_datatypes", self.output_datatypes, False, (str,list)])
|
|
250
|
-
self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
|
|
251
|
-
self.__arg_info_matrix.append(["column_length", self.column_length, True, (str,list)])
|
|
252
|
-
self.__arg_info_matrix.append(["regex", self.regex, True, (str)])
|
|
253
|
-
self.__arg_info_matrix.append(["regex_set", self.regex_set, True, (int)])
|
|
254
|
-
self.__arg_info_matrix.append(["exception", self.exception, True, (bool)])
|
|
255
|
-
|
|
256
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
257
|
-
# Perform the function validations
|
|
258
|
-
self.__validate()
|
|
259
|
-
# Generate the ML query
|
|
260
|
-
self.__form_tdml_query()
|
|
261
|
-
# Execute ML query
|
|
262
|
-
self.__execute()
|
|
263
|
-
# Get the prediction type
|
|
264
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
265
|
-
|
|
266
|
-
# End the timer to get the build time
|
|
267
|
-
_end_time = time.time()
|
|
268
|
-
|
|
269
|
-
# Calculate the build time
|
|
270
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
271
|
-
|
|
272
|
-
def __validate(self):
|
|
273
|
-
"""
|
|
274
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
275
|
-
arguments, input argument and table types. Also processes the
|
|
276
|
-
argument values.
|
|
277
|
-
"""
|
|
278
|
-
|
|
279
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
280
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
281
|
-
|
|
282
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
283
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
284
|
-
|
|
285
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
286
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
287
|
-
|
|
288
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
289
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
290
|
-
self.__awu._validate_input_columns_not_empty(self.input_column, "input_column")
|
|
291
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_column, "input_column", self.data, "data", False)
|
|
292
|
-
|
|
293
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
294
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
295
|
-
|
|
296
|
-
# Validate that value passed to the output column argument is not empty.
|
|
297
|
-
self.__awu._validate_input_columns_not_empty(self.output_columns, "output_columns")
|
|
298
|
-
|
|
299
|
-
def __form_tdml_query(self):
|
|
300
|
-
"""
|
|
301
|
-
Function to generate the analytical function queries. The function defines
|
|
302
|
-
variables and list of arguments required to form the query.
|
|
303
|
-
"""
|
|
304
|
-
|
|
305
|
-
# Output table arguments list
|
|
306
|
-
self.__func_output_args_sql_names = []
|
|
307
|
-
self.__func_output_args = []
|
|
308
|
-
|
|
309
|
-
# Model Cataloging related attributes.
|
|
310
|
-
self._sql_specific_attributes = {}
|
|
311
|
-
self._sql_formula_attribute_mapper = {}
|
|
312
|
-
self._target_column = None
|
|
313
|
-
self._algorithm_name = None
|
|
314
|
-
|
|
315
|
-
# Generate lists for rest of the function arguments
|
|
316
|
-
self.__func_other_arg_sql_names = []
|
|
317
|
-
self.__func_other_args = []
|
|
318
|
-
self.__func_other_arg_json_datatypes = []
|
|
319
|
-
|
|
320
|
-
self.__func_other_arg_sql_names.append("TargetColumn")
|
|
321
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.input_column, "'"))
|
|
322
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
323
|
-
|
|
324
|
-
self.__func_other_arg_sql_names.append("OutputColumns")
|
|
325
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_columns, "'"))
|
|
326
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
327
|
-
|
|
328
|
-
self.__func_other_arg_sql_names.append("OutputDataTypes")
|
|
329
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_datatypes, "'"))
|
|
330
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
331
|
-
|
|
332
|
-
if self.delimiter is not None and self.delimiter != ",":
|
|
333
|
-
self.__func_other_arg_sql_names.append("Delimiter")
|
|
334
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
|
|
335
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
336
|
-
|
|
337
|
-
if self.column_length is not None:
|
|
338
|
-
self.__func_other_arg_sql_names.append("ColumnLength")
|
|
339
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.column_length, "'"))
|
|
340
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
341
|
-
|
|
342
|
-
if self.regex is not None and self.regex != "(.*)":
|
|
343
|
-
self.__func_other_arg_sql_names.append("Regex")
|
|
344
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.regex, "'"))
|
|
345
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
346
|
-
|
|
347
|
-
if self.regex_set is not None and self.regex_set != 1:
|
|
348
|
-
self.__func_other_arg_sql_names.append("RegexSet")
|
|
349
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.regex_set, "'"))
|
|
350
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
351
|
-
|
|
352
|
-
if self.exception is not None and self.exception != False:
|
|
353
|
-
self.__func_other_arg_sql_names.append("IgnoreInvalid")
|
|
354
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.exception, "'"))
|
|
355
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
# Declare empty lists to hold input table information.
|
|
359
|
-
self.__func_input_arg_sql_names = []
|
|
360
|
-
self.__func_input_table_view_query = []
|
|
361
|
-
self.__func_input_dataframe_type = []
|
|
362
|
-
self.__func_input_distribution = []
|
|
363
|
-
self.__func_input_partition_by_cols = []
|
|
364
|
-
self.__func_input_order_by_cols = []
|
|
365
|
-
|
|
366
|
-
# Process data
|
|
367
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
368
|
-
self.__func_input_distribution.append("FACT")
|
|
369
|
-
self.__func_input_arg_sql_names.append("input")
|
|
370
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
371
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
372
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
373
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
374
|
-
|
|
375
|
-
function_name = "Unpack"
|
|
376
|
-
# Create instance to generate SQLMR.
|
|
377
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
378
|
-
self.__func_input_arg_sql_names,
|
|
379
|
-
self.__func_input_table_view_query,
|
|
380
|
-
self.__func_input_dataframe_type,
|
|
381
|
-
self.__func_input_distribution,
|
|
382
|
-
self.__func_input_partition_by_cols,
|
|
383
|
-
self.__func_input_order_by_cols,
|
|
384
|
-
self.__func_other_arg_sql_names,
|
|
385
|
-
self.__func_other_args,
|
|
386
|
-
self.__func_other_arg_json_datatypes,
|
|
387
|
-
self.__func_output_args_sql_names,
|
|
388
|
-
self.__func_output_args,
|
|
389
|
-
engine="ENGINE_SQL")
|
|
390
|
-
# Invoke call to SQL-MR generation.
|
|
391
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
392
|
-
|
|
393
|
-
# Print SQL-MR query if requested to do so.
|
|
394
|
-
if display.print_sqlmr_query:
|
|
395
|
-
print(self.sqlmr_query)
|
|
396
|
-
|
|
397
|
-
# Set the algorithm name for Model Cataloging.
|
|
398
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
399
|
-
|
|
400
|
-
def __execute(self):
|
|
401
|
-
"""
|
|
402
|
-
Function to execute SQL-MR queries.
|
|
403
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
404
|
-
"""
|
|
405
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
406
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
407
|
-
try:
|
|
408
|
-
# Generate the output.
|
|
409
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
410
|
-
except Exception as emsg:
|
|
411
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
412
|
-
|
|
413
|
-
# Update output table data frames.
|
|
414
|
-
self._mlresults = []
|
|
415
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
416
|
-
self._mlresults.append(self.result)
|
|
417
|
-
|
|
418
|
-
def show_query(self):
|
|
419
|
-
"""
|
|
420
|
-
Function to return the underlying SQL query.
|
|
421
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
422
|
-
"""
|
|
423
|
-
return self.sqlmr_query
|
|
424
|
-
|
|
425
|
-
def get_prediction_type(self):
|
|
426
|
-
"""
|
|
427
|
-
Function to return the Prediction type of the algorithm.
|
|
428
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
429
|
-
as saved in the Model Catalog.
|
|
430
|
-
"""
|
|
431
|
-
return self._prediction_type
|
|
432
|
-
|
|
433
|
-
def get_target_column(self):
|
|
434
|
-
"""
|
|
435
|
-
Function to return the Target Column of the algorithm.
|
|
436
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
437
|
-
as saved in the Model Catalog.
|
|
438
|
-
"""
|
|
439
|
-
return self._target_column
|
|
440
|
-
|
|
441
|
-
def get_build_time(self):
|
|
442
|
-
"""
|
|
443
|
-
Function to return the build time of the algorithm in seconds.
|
|
444
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
445
|
-
as saved in the Model Catalog.
|
|
446
|
-
"""
|
|
447
|
-
return self._build_time
|
|
448
|
-
|
|
449
|
-
def _get_algorithm_name(self):
|
|
450
|
-
"""
|
|
451
|
-
Function to return the name of the algorithm.
|
|
452
|
-
"""
|
|
453
|
-
return self._algorithm_name
|
|
454
|
-
|
|
455
|
-
def _get_sql_specific_attributes(self):
|
|
456
|
-
"""
|
|
457
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
458
|
-
"""
|
|
459
|
-
return self._sql_specific_attributes
|
|
460
|
-
|
|
461
|
-
@classmethod
|
|
462
|
-
def _from_model_catalog(cls,
|
|
463
|
-
result = None,
|
|
464
|
-
**kwargs):
|
|
465
|
-
"""
|
|
466
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
467
|
-
"""
|
|
468
|
-
kwargs.pop("result", None)
|
|
469
|
-
|
|
470
|
-
# Model Cataloging related attributes.
|
|
471
|
-
target_column = kwargs.pop("__target_column", None)
|
|
472
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
473
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
474
|
-
build_time = kwargs.pop("__build_time", None)
|
|
475
|
-
|
|
476
|
-
# Let's create an object of this class.
|
|
477
|
-
obj = cls(**kwargs)
|
|
478
|
-
obj.result = result
|
|
479
|
-
|
|
480
|
-
# Initialize the sqlmr_query class attribute.
|
|
481
|
-
obj.sqlmr_query = None
|
|
482
|
-
|
|
483
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
484
|
-
obj._sql_specific_attributes = None
|
|
485
|
-
obj._target_column = target_column
|
|
486
|
-
obj._prediction_type = prediction_type
|
|
487
|
-
obj._algorithm_name = algorithm_name
|
|
488
|
-
obj._build_time = build_time
|
|
489
|
-
|
|
490
|
-
# Update output table data frames.
|
|
491
|
-
obj._mlresults = []
|
|
492
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
493
|
-
obj._mlresults.append(obj.result)
|
|
494
|
-
return obj
|
|
495
|
-
|
|
496
|
-
def __repr__(self):
|
|
497
|
-
"""
|
|
498
|
-
Returns the string representation for a Unpack class instance.
|
|
499
|
-
"""
|
|
500
|
-
repr_string="############ STDOUT Output ############"
|
|
501
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
502
|
-
return repr_string
|
|
503
|
-
|
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_antiselect_sqle",
|
|
3
|
-
"function_r_name": "aa.antiselect",
|
|
4
|
-
"function_alias_name": "Antiselect",
|
|
5
|
-
"input_tables": [{
|
|
6
|
-
"rName": "data",
|
|
7
|
-
"name": ["input"],
|
|
8
|
-
"useInR": true,
|
|
9
|
-
"rOrderNum": 1
|
|
10
|
-
}],
|
|
11
|
-
"function_name": "Antiselect",
|
|
12
|
-
"function_tdml_name": "Antiselect",
|
|
13
|
-
"argument_clauses": [{
|
|
14
|
-
"allowsLists": true,
|
|
15
|
-
"datatype": "COLUMNS",
|
|
16
|
-
"rName": "exclude",
|
|
17
|
-
"name": ["Exclude"],
|
|
18
|
-
"useInR": true,
|
|
19
|
-
"rOrderNum": 2
|
|
20
|
-
}]
|
|
21
|
-
}
|
|
@@ -1,92 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_attribution_sqle",
|
|
3
|
-
"function_r_name": "aa.attribution",
|
|
4
|
-
"function_alias_name": "Attribution",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "data",
|
|
8
|
-
"name": ["input"],
|
|
9
|
-
"useInR": true,
|
|
10
|
-
"rOrderNum": 1
|
|
11
|
-
},
|
|
12
|
-
{
|
|
13
|
-
"rName": "data.optional",
|
|
14
|
-
"name": ["input2"],
|
|
15
|
-
"useInR": true,
|
|
16
|
-
"rOrderNum": 2
|
|
17
|
-
},
|
|
18
|
-
{
|
|
19
|
-
"rName": "conversion.data",
|
|
20
|
-
"name": [
|
|
21
|
-
"ConversionEventTable",
|
|
22
|
-
"conversion"
|
|
23
|
-
],
|
|
24
|
-
"useInR": true,
|
|
25
|
-
"rOrderNum": 6
|
|
26
|
-
},
|
|
27
|
-
{
|
|
28
|
-
"rName": "excluding.data",
|
|
29
|
-
"name": [
|
|
30
|
-
"ExcludedEventTable",
|
|
31
|
-
"excluding"
|
|
32
|
-
],
|
|
33
|
-
"useInR": true,
|
|
34
|
-
"rOrderNum": 7
|
|
35
|
-
},
|
|
36
|
-
{
|
|
37
|
-
"rName": "optional.data",
|
|
38
|
-
"name": [
|
|
39
|
-
"OptionalEventTable",
|
|
40
|
-
"optional"
|
|
41
|
-
],
|
|
42
|
-
"useInR": true,
|
|
43
|
-
"rOrderNum": 8
|
|
44
|
-
},
|
|
45
|
-
{
|
|
46
|
-
"rName": "model1.type",
|
|
47
|
-
"name": [
|
|
48
|
-
"FirstModel",
|
|
49
|
-
"model1"
|
|
50
|
-
],
|
|
51
|
-
"useInR": true,
|
|
52
|
-
"rOrderNum": 9
|
|
53
|
-
},
|
|
54
|
-
{
|
|
55
|
-
"rName": "model2.type",
|
|
56
|
-
"name": [
|
|
57
|
-
"SecondModel",
|
|
58
|
-
"model2"
|
|
59
|
-
],
|
|
60
|
-
"useInR": true,
|
|
61
|
-
"rOrderNum": 10
|
|
62
|
-
}
|
|
63
|
-
],
|
|
64
|
-
"function_name": "Attribution",
|
|
65
|
-
"function_tdml_name": "Attribution",
|
|
66
|
-
"argument_clauses": [
|
|
67
|
-
{
|
|
68
|
-
"datatype": "COLUMNS",
|
|
69
|
-
"rName": "event.column",
|
|
70
|
-
"name": ["EventColumn"],
|
|
71
|
-
"useInR": true,
|
|
72
|
-
"rOrderNum": 11
|
|
73
|
-
},
|
|
74
|
-
{
|
|
75
|
-
"datatype": "COLUMNS",
|
|
76
|
-
"rName": "timestamp.column",
|
|
77
|
-
"name": [
|
|
78
|
-
"TimeColumn",
|
|
79
|
-
"TimestampColumn"
|
|
80
|
-
],
|
|
81
|
-
"useInR": true,
|
|
82
|
-
"rOrderNum": 12
|
|
83
|
-
},
|
|
84
|
-
{
|
|
85
|
-
"datatype": "STRING",
|
|
86
|
-
"rName": "window.size",
|
|
87
|
-
"name": ["WindowSize"],
|
|
88
|
-
"useInR": true,
|
|
89
|
-
"rOrderNum": 10
|
|
90
|
-
}
|
|
91
|
-
]
|
|
92
|
-
}
|
|
@@ -1,48 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"function_tdplyr_name": "td_decision_forest_predict_sqle",
|
|
3
|
-
"function_r_name": "aa.decision.forest.predict",
|
|
4
|
-
"function_alias_name": "DecisionForestPredict",
|
|
5
|
-
"input_tables": [
|
|
6
|
-
{
|
|
7
|
-
"rName": "newdata",
|
|
8
|
-
"name": ["input"],
|
|
9
|
-
"useInR": true,
|
|
10
|
-
"rOrderNum": 2
|
|
11
|
-
},
|
|
12
|
-
{
|
|
13
|
-
"rName": "object",
|
|
14
|
-
"name": [
|
|
15
|
-
"Model",
|
|
16
|
-
"ModelTable"
|
|
17
|
-
],
|
|
18
|
-
"useInR": true,
|
|
19
|
-
"rOrderNum": 1
|
|
20
|
-
}
|
|
21
|
-
],
|
|
22
|
-
"function_name": "DecisionForestPredict",
|
|
23
|
-
"function_tdml_name": "DecisionForestPredict",
|
|
24
|
-
"argument_clauses": [
|
|
25
|
-
{
|
|
26
|
-
"datatype": "COLUMNS",
|
|
27
|
-
"rName": "id.column",
|
|
28
|
-
"name": ["IdColumn"],
|
|
29
|
-
"useInR": true,
|
|
30
|
-
"rOrderNum": 3
|
|
31
|
-
},
|
|
32
|
-
{
|
|
33
|
-
"allowsLists": true,
|
|
34
|
-
"datatype": "COLUMNS",
|
|
35
|
-
"rName": "terms",
|
|
36
|
-
"name": ["Accumulate"],
|
|
37
|
-
"useInR": true,
|
|
38
|
-
"rOrderNum": 5
|
|
39
|
-
},
|
|
40
|
-
{
|
|
41
|
-
"datatype": "BOOLEAN",
|
|
42
|
-
"rName": "detailed",
|
|
43
|
-
"name": ["Detailed"],
|
|
44
|
-
"useInR": true,
|
|
45
|
-
"rOrderNum": 4
|
|
46
|
-
}
|
|
47
|
-
]
|
|
48
|
-
}
|