teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,503 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.1
11
- # Function Version: 1.0
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Unpack:
31
-
32
- def __init__(self,
33
- data = None,
34
- input_column = None,
35
- output_columns = None,
36
- output_datatypes = None,
37
- delimiter = ",",
38
- column_length = None,
39
- regex = "(.*)",
40
- regex_set = 1,
41
- exception = False,
42
- data_order_column = None):
43
- """
44
- DESCRIPTION:
45
- The Unpack function unpacks data from a single packed column into
46
- multiple columns. The packed column is composed of multiple virtual
47
- columns, which become the output columns. To determine the virtual
48
- columns, the function must have either the delimiter that separates
49
- them in the packed column or their lengths.
50
-
51
- Note: This function is only available when teradataml is connected
52
- to Vantage 1.1 or later versions.
53
-
54
-
55
- PARAMETERS:
56
- data:
57
- Required Argument.
58
- Specifies the teradataml DataFrame containing the input attributes.
59
-
60
- data_order_column:
61
- Optional Argument.
62
- Specifies Order By columns for data.
63
- Values to this argument can be provided as a list, if multiple
64
- columns are used for ordering.
65
- Types: str OR list of Strings (str)
66
-
67
- input_column:
68
- Required Argument.
69
- Specifies the name of the input column that contains the packed
70
- data.
71
- Types: str
72
-
73
- output_columns:
74
- Required Argument.
75
- Specifies the names to give to the output columns, in the order in
76
- which the corresponding virtual columns appear in "input_column". If you
77
- specify fewer output column names than there are in virtual input
78
- columns, the function ignores the extra virtual input columns. That
79
- is, if the packed data contains x+y virtual columns and the
80
- output_columns argument specifies x output column names, the function
81
- assigns the names to the first x virtual columns and ignores the
82
- remaining y virtual columns.
83
- Types: str OR list of Strings (str)
84
-
85
- output_datatypes:
86
- Required Argument.
87
- Specifies the datatypes of the unpacked output columns. Supported
88
- output_datatypes are VARCHAR, int, float, TIME, DATE, and
89
- TIMESTAMP. If output_datatypes specifies only one value and
90
- output_columns specifies multiple columns, then the specified value
91
- applies to every output_column. If output_datatypes specifies
92
- multiple values, then it must specify a value for each output_column.
93
- The nth datatype corresponds to the nth output_column. The function
94
- can output only 16 VARCHAR columns.
95
- Types: str OR list of Strings (str)
96
-
97
- delimiter:
98
- Optional Argument.
99
- Specifies the delimiter (a string) that separates the virtual
100
- columns in the packed data. If the virtual columns are separated
101
- by a delimiter, then specify the delimiter with this argument;
102
- otherwise, specify the column_length argument. Do not specify
103
- both this argument and the column_length argument.
104
- Default Value: ","
105
- Types: str
106
-
107
- column_length:
108
- Optional Argument.
109
- Specifies the lengths of the virtual columns; therefore, to use
110
- this argument, you must know the length of each virtual column.
111
- If column_length specifies only one value and output_columns specifies
112
- multiple columns, then the specified value applies to every
113
- output_column.
114
- If column_length specifies multiple values, then it must specify
115
- a value for each output_column. The nth datatype corresponds to
116
- the nth output_column. However, the last value in column_length
117
- can be an asterisk (*), which represents a single virtual column
118
- that contains the remaining data.
119
- For example, if the first three virtual columns have the lengths
120
- 2, 1, and 3, and all remaining data belongs to the fourth virtual
121
- column, you can specify column_length ("2", "1", "3", *).
122
- If you specify this argument, you must omit the delimiter argument.
123
- Types: str OR list of Strings (str)
124
-
125
- regex:
126
- Optional Argument.
127
- Specifies a regular expression that describes a row of packed data,
128
- enabling the function to find the data values.
129
- A row of packed data contains one data value for each virtual column,
130
- but the row might also contain other information (such as the
131
- virtual column name). In the regex, each data value is enclosed
132
- in parentheses.
133
- For example, suppose that the packed data has two virtual columns,
134
- age and sex, and that one row of packed data is: age:34,sex:male.
135
- The regex that describes the row is ".*:(.*)". The ".*:" matches
136
- the virtual column names, age and sex, and the "(.*)" matches the
137
- values, 34 and male.
138
- To represent multiple data groups in regex, use multiple pairs
139
- of parentheses. By default, the last data group in regex represents
140
- the data value (other data groups are assumed to be virtual column
141
- names or unwanted data). If a different data group represents the
142
- data value, specify its group number with the regex_set argument.
143
- Default value matches the whole string (between delimiters,
144
- if any). When applied to the preceding sample row, the default
145
- regex causes the function to return "age:34" and "sex:male" as
146
- data values.
147
- Default Value: "(.*)"
148
- Types: str
149
-
150
- regex_set:
151
- Optional Argument.
152
- Specifies the ordinal number of the data group in regex that
153
- represents the data value in a virtual column. By default, the
154
- last data group in regex represents the data value.
155
- For example, suppose that regex is: "([a-zA-Z]*):(.*)". If
156
- group number is "1", then "([a-zA-Z]*)" represents the data value.
157
- If group number is "2", then "(.*)" represents the data value.
158
- Default Value: 1
159
- Types: int
160
-
161
- exception:
162
- Optional Argument.
163
- Specifies whether the function ignores rows that contain invalid
164
- data. By default, the function fails if it encounters a row with
165
- invalid data.
166
- Default Value: False
167
- Types: bool
168
-
169
- RETURNS:
170
- Instance of Unpack.
171
- Output teradataml DataFrames can be accessed using attribute
172
- references, such as UnpackObj.<attribute_name>.
173
- Output teradataml DataFrame attribute name is:
174
- result
175
-
176
-
177
- RAISES:
178
- TeradataMlException
179
-
180
-
181
- EXAMPLES:
182
- # Load the data to run the example.
183
- load_example_data("Unpack",["ville_tempdata","ville_tempdata1"])
184
-
185
- # Create teradataml DataFrame objects
186
- ville_tempdata1 = DataFrame.from_table("ville_tempdata1")
187
- ville_tempdata = DataFrame.from_table("ville_tempdata")
188
-
189
- # Example1 - Delimiter Separates Virtual Columns.
190
- # The input table, ville_tempdata, is a collection of temperature readings
191
- # for two cities, Nashville and Knoxville, in the state of Tennessee.
192
- # In the column of packed data, the delimiter comma (,) separates the virtual
193
- # columns.
194
- unpack_out1 = Unpack(data=ville_tempdata,
195
- input_column='packed_temp_data',
196
- output_columns=['city','state','temp_f'],
197
- output_datatypes=['varchar','varchar','real'],
198
- delimiter=',',
199
- regex='(.*)',
200
- regex_set=1,
201
- exception=True)
202
-
203
- # Print the results
204
- print(unpack_out1.result)
205
-
206
- # Example2 - No Delimiter Separates Virtual Columns.
207
- # The input, ville_tempdata1, contains same data as the previous example,
208
- # except that no delimiter separates the virtual columns in the packed data.
209
- # To enable the function to determine the virtual columns, the function call
210
- # specifes the column lengths.
211
- unpack_out2 = Unpack(data=ville_tempdata1,
212
- input_column='packed_temp_data',
213
- output_columns=['city','state','temp_f'],
214
- output_datatypes=['varchar','varchar','real'],
215
- column_length=['9','9','4'],
216
- regex='(.*)',
217
- regex_set=1,
218
- exception=True)
219
-
220
- # Print the results
221
- print(unpack_out2.result)
222
-
223
- """
224
-
225
- # Start the timer to get the build time
226
- _start_time = time.time()
227
-
228
- self.data = data
229
- self.input_column = input_column
230
- self.output_columns = output_columns
231
- self.output_datatypes = output_datatypes
232
- self.delimiter = delimiter
233
- self.column_length = column_length
234
- self.regex = regex
235
- self.regex_set = regex_set
236
- self.exception = exception
237
- self.data_order_column = data_order_column
238
-
239
- # Create TeradataPyWrapperUtils instance which contains validation functions.
240
- self.__awu = AnalyticsWrapperUtils()
241
- self.__aed_utils = AedUtils()
242
-
243
- # Create argument information matrix to do parameter checking
244
- self.__arg_info_matrix = []
245
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
246
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
247
- self.__arg_info_matrix.append(["input_column", self.input_column, False, (str)])
248
- self.__arg_info_matrix.append(["output_columns", self.output_columns, False, (str,list)])
249
- self.__arg_info_matrix.append(["output_datatypes", self.output_datatypes, False, (str,list)])
250
- self.__arg_info_matrix.append(["delimiter", self.delimiter, True, (str)])
251
- self.__arg_info_matrix.append(["column_length", self.column_length, True, (str,list)])
252
- self.__arg_info_matrix.append(["regex", self.regex, True, (str)])
253
- self.__arg_info_matrix.append(["regex_set", self.regex_set, True, (int)])
254
- self.__arg_info_matrix.append(["exception", self.exception, True, (bool)])
255
-
256
- if inspect.stack()[1][3] != '_from_model_catalog':
257
- # Perform the function validations
258
- self.__validate()
259
- # Generate the ML query
260
- self.__form_tdml_query()
261
- # Execute ML query
262
- self.__execute()
263
- # Get the prediction type
264
- self._prediction_type = self.__awu._get_function_prediction_type(self)
265
-
266
- # End the timer to get the build time
267
- _end_time = time.time()
268
-
269
- # Calculate the build time
270
- self._build_time = (int)(_end_time - _start_time)
271
-
272
- def __validate(self):
273
- """
274
- Function to validate sqlmr function arguments, which verifies missing
275
- arguments, input argument and table types. Also processes the
276
- argument values.
277
- """
278
-
279
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
280
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
281
-
282
- # Make sure that a non-NULL value has been supplied correct type of argument
283
- self.__awu._validate_argument_types(self.__arg_info_matrix)
284
-
285
- # Check to make sure input table types are strings or data frame objects or of valid type.
286
- self.__awu._validate_input_table_datatype(self.data, "data", None)
287
-
288
- # Check whether the input columns passed to the argument are not empty.
289
- # Also check whether the input columns passed to the argument valid or not.
290
- self.__awu._validate_input_columns_not_empty(self.input_column, "input_column")
291
- self.__awu._validate_dataframe_has_argument_columns(self.input_column, "input_column", self.data, "data", False)
292
-
293
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
294
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
295
-
296
- # Validate that value passed to the output column argument is not empty.
297
- self.__awu._validate_input_columns_not_empty(self.output_columns, "output_columns")
298
-
299
- def __form_tdml_query(self):
300
- """
301
- Function to generate the analytical function queries. The function defines
302
- variables and list of arguments required to form the query.
303
- """
304
-
305
- # Output table arguments list
306
- self.__func_output_args_sql_names = []
307
- self.__func_output_args = []
308
-
309
- # Model Cataloging related attributes.
310
- self._sql_specific_attributes = {}
311
- self._sql_formula_attribute_mapper = {}
312
- self._target_column = None
313
- self._algorithm_name = None
314
-
315
- # Generate lists for rest of the function arguments
316
- self.__func_other_arg_sql_names = []
317
- self.__func_other_args = []
318
- self.__func_other_arg_json_datatypes = []
319
-
320
- self.__func_other_arg_sql_names.append("TargetColumn")
321
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.input_column, "'"))
322
- self.__func_other_arg_json_datatypes.append("COLUMNS")
323
-
324
- self.__func_other_arg_sql_names.append("OutputColumns")
325
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_columns, "'"))
326
- self.__func_other_arg_json_datatypes.append("STRING")
327
-
328
- self.__func_other_arg_sql_names.append("OutputDataTypes")
329
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_datatypes, "'"))
330
- self.__func_other_arg_json_datatypes.append("STRING")
331
-
332
- if self.delimiter is not None and self.delimiter != ",":
333
- self.__func_other_arg_sql_names.append("Delimiter")
334
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.delimiter, "'"))
335
- self.__func_other_arg_json_datatypes.append("STRING")
336
-
337
- if self.column_length is not None:
338
- self.__func_other_arg_sql_names.append("ColumnLength")
339
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.column_length, "'"))
340
- self.__func_other_arg_json_datatypes.append("STRING")
341
-
342
- if self.regex is not None and self.regex != "(.*)":
343
- self.__func_other_arg_sql_names.append("Regex")
344
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.regex, "'"))
345
- self.__func_other_arg_json_datatypes.append("STRING")
346
-
347
- if self.regex_set is not None and self.regex_set != 1:
348
- self.__func_other_arg_sql_names.append("RegexSet")
349
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.regex_set, "'"))
350
- self.__func_other_arg_json_datatypes.append("INTEGER")
351
-
352
- if self.exception is not None and self.exception != False:
353
- self.__func_other_arg_sql_names.append("IgnoreInvalid")
354
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.exception, "'"))
355
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
356
-
357
-
358
- # Declare empty lists to hold input table information.
359
- self.__func_input_arg_sql_names = []
360
- self.__func_input_table_view_query = []
361
- self.__func_input_dataframe_type = []
362
- self.__func_input_distribution = []
363
- self.__func_input_partition_by_cols = []
364
- self.__func_input_order_by_cols = []
365
-
366
- # Process data
367
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
368
- self.__func_input_distribution.append("FACT")
369
- self.__func_input_arg_sql_names.append("input")
370
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
371
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
372
- self.__func_input_partition_by_cols.append("ANY")
373
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
374
-
375
- function_name = "Unpack"
376
- # Create instance to generate SQLMR.
377
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
378
- self.__func_input_arg_sql_names,
379
- self.__func_input_table_view_query,
380
- self.__func_input_dataframe_type,
381
- self.__func_input_distribution,
382
- self.__func_input_partition_by_cols,
383
- self.__func_input_order_by_cols,
384
- self.__func_other_arg_sql_names,
385
- self.__func_other_args,
386
- self.__func_other_arg_json_datatypes,
387
- self.__func_output_args_sql_names,
388
- self.__func_output_args,
389
- engine="ENGINE_SQL")
390
- # Invoke call to SQL-MR generation.
391
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
392
-
393
- # Print SQL-MR query if requested to do so.
394
- if display.print_sqlmr_query:
395
- print(self.sqlmr_query)
396
-
397
- # Set the algorithm name for Model Cataloging.
398
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
399
-
400
- def __execute(self):
401
- """
402
- Function to execute SQL-MR queries.
403
- Create DataFrames for the required SQL-MR outputs.
404
- """
405
- # Generate STDOUT table name and add it to the output table list.
406
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
407
- try:
408
- # Generate the output.
409
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
410
- except Exception as emsg:
411
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
412
-
413
- # Update output table data frames.
414
- self._mlresults = []
415
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
416
- self._mlresults.append(self.result)
417
-
418
- def show_query(self):
419
- """
420
- Function to return the underlying SQL query.
421
- When model object is created using retrieve_model(), then None is returned.
422
- """
423
- return self.sqlmr_query
424
-
425
- def get_prediction_type(self):
426
- """
427
- Function to return the Prediction type of the algorithm.
428
- When model object is created using retrieve_model(), then the value returned is
429
- as saved in the Model Catalog.
430
- """
431
- return self._prediction_type
432
-
433
- def get_target_column(self):
434
- """
435
- Function to return the Target Column of the algorithm.
436
- When model object is created using retrieve_model(), then the value returned is
437
- as saved in the Model Catalog.
438
- """
439
- return self._target_column
440
-
441
- def get_build_time(self):
442
- """
443
- Function to return the build time of the algorithm in seconds.
444
- When model object is created using retrieve_model(), then the value returned is
445
- as saved in the Model Catalog.
446
- """
447
- return self._build_time
448
-
449
- def _get_algorithm_name(self):
450
- """
451
- Function to return the name of the algorithm.
452
- """
453
- return self._algorithm_name
454
-
455
- def _get_sql_specific_attributes(self):
456
- """
457
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
458
- """
459
- return self._sql_specific_attributes
460
-
461
- @classmethod
462
- def _from_model_catalog(cls,
463
- result = None,
464
- **kwargs):
465
- """
466
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
467
- """
468
- kwargs.pop("result", None)
469
-
470
- # Model Cataloging related attributes.
471
- target_column = kwargs.pop("__target_column", None)
472
- prediction_type = kwargs.pop("__prediction_type", None)
473
- algorithm_name = kwargs.pop("__algorithm_name", None)
474
- build_time = kwargs.pop("__build_time", None)
475
-
476
- # Let's create an object of this class.
477
- obj = cls(**kwargs)
478
- obj.result = result
479
-
480
- # Initialize the sqlmr_query class attribute.
481
- obj.sqlmr_query = None
482
-
483
- # Initialize the SQL specific Model Cataloging attributes.
484
- obj._sql_specific_attributes = None
485
- obj._target_column = target_column
486
- obj._prediction_type = prediction_type
487
- obj._algorithm_name = algorithm_name
488
- obj._build_time = build_time
489
-
490
- # Update output table data frames.
491
- obj._mlresults = []
492
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
493
- obj._mlresults.append(obj.result)
494
- return obj
495
-
496
- def __repr__(self):
497
- """
498
- Returns the string representation for a Unpack class instance.
499
- """
500
- repr_string="############ STDOUT Output ############"
501
- repr_string = "{}\n\n{}".format(repr_string,self.result)
502
- return repr_string
503
-
@@ -1,21 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_antiselect_sqle",
3
- "function_r_name": "aa.antiselect",
4
- "function_alias_name": "Antiselect",
5
- "input_tables": [{
6
- "rName": "data",
7
- "name": ["input"],
8
- "useInR": true,
9
- "rOrderNum": 1
10
- }],
11
- "function_name": "Antiselect",
12
- "function_tdml_name": "Antiselect",
13
- "argument_clauses": [{
14
- "allowsLists": true,
15
- "datatype": "COLUMNS",
16
- "rName": "exclude",
17
- "name": ["Exclude"],
18
- "useInR": true,
19
- "rOrderNum": 2
20
- }]
21
- }
@@ -1,92 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_attribution_sqle",
3
- "function_r_name": "aa.attribution",
4
- "function_alias_name": "Attribution",
5
- "input_tables": [
6
- {
7
- "rName": "data",
8
- "name": ["input"],
9
- "useInR": true,
10
- "rOrderNum": 1
11
- },
12
- {
13
- "rName": "data.optional",
14
- "name": ["input2"],
15
- "useInR": true,
16
- "rOrderNum": 2
17
- },
18
- {
19
- "rName": "conversion.data",
20
- "name": [
21
- "ConversionEventTable",
22
- "conversion"
23
- ],
24
- "useInR": true,
25
- "rOrderNum": 6
26
- },
27
- {
28
- "rName": "excluding.data",
29
- "name": [
30
- "ExcludedEventTable",
31
- "excluding"
32
- ],
33
- "useInR": true,
34
- "rOrderNum": 7
35
- },
36
- {
37
- "rName": "optional.data",
38
- "name": [
39
- "OptionalEventTable",
40
- "optional"
41
- ],
42
- "useInR": true,
43
- "rOrderNum": 8
44
- },
45
- {
46
- "rName": "model1.type",
47
- "name": [
48
- "FirstModel",
49
- "model1"
50
- ],
51
- "useInR": true,
52
- "rOrderNum": 9
53
- },
54
- {
55
- "rName": "model2.type",
56
- "name": [
57
- "SecondModel",
58
- "model2"
59
- ],
60
- "useInR": true,
61
- "rOrderNum": 10
62
- }
63
- ],
64
- "function_name": "Attribution",
65
- "function_tdml_name": "Attribution",
66
- "argument_clauses": [
67
- {
68
- "datatype": "COLUMNS",
69
- "rName": "event.column",
70
- "name": ["EventColumn"],
71
- "useInR": true,
72
- "rOrderNum": 11
73
- },
74
- {
75
- "datatype": "COLUMNS",
76
- "rName": "timestamp.column",
77
- "name": [
78
- "TimeColumn",
79
- "TimestampColumn"
80
- ],
81
- "useInR": true,
82
- "rOrderNum": 12
83
- },
84
- {
85
- "datatype": "STRING",
86
- "rName": "window.size",
87
- "name": ["WindowSize"],
88
- "useInR": true,
89
- "rOrderNum": 10
90
- }
91
- ]
92
- }
@@ -1,48 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_forest_predict_sqle",
3
- "function_r_name": "aa.decision.forest.predict",
4
- "function_alias_name": "DecisionForestPredict",
5
- "input_tables": [
6
- {
7
- "rName": "newdata",
8
- "name": ["input"],
9
- "useInR": true,
10
- "rOrderNum": 2
11
- },
12
- {
13
- "rName": "object",
14
- "name": [
15
- "Model",
16
- "ModelTable"
17
- ],
18
- "useInR": true,
19
- "rOrderNum": 1
20
- }
21
- ],
22
- "function_name": "DecisionForestPredict",
23
- "function_tdml_name": "DecisionForestPredict",
24
- "argument_clauses": [
25
- {
26
- "datatype": "COLUMNS",
27
- "rName": "id.column",
28
- "name": ["IdColumn"],
29
- "useInR": true,
30
- "rOrderNum": 3
31
- },
32
- {
33
- "allowsLists": true,
34
- "datatype": "COLUMNS",
35
- "rName": "terms",
36
- "name": ["Accumulate"],
37
- "useInR": true,
38
- "rOrderNum": 5
39
- },
40
- {
41
- "datatype": "BOOLEAN",
42
- "rName": "detailed",
43
- "name": ["Detailed"],
44
- "useInR": true,
45
- "rOrderNum": 4
46
- }
47
- ]
48
- }