teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,268 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # Function Version: 1.0
11
+ #
12
+ # This file contains helper functions for opensource wrapper and sklearn wrapper class.
13
+ #
14
+ # ##################################################################
15
+
16
+ import time
17
+ import functools
18
+ import uuid
19
+
20
+ from math import floor
21
+ from teradataml import TeradataMlException
22
+ from teradataml.common.messagecodes import MessageCodes
23
+ from teradataml.common.messages import Messages
24
+ from teradataml.common.aed_utils import AedUtils
25
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils
26
+ from teradataml.dataframe.dataframe import DataFrame, in_schema
27
+ from teradataml.common.utils import UtilFuncs
28
+ from teradataml.utils.validators import _Validators
29
+ from teradataml.dataframe.sql_interfaces import ColumnExpression
30
+
31
+ aed_utils = AedUtils()
32
+ df_utils = DataFrameUtils()
33
+
34
+ def _validate_fit_run(func):
35
+ """
36
+ Internal function to validate if the model is fitted before calling function specified
37
+ by "func" parameter.
38
+
39
+ PARAMETERS:
40
+ func - Specifies the function to be called if the model is fitted.
41
+
42
+ RETURNS:
43
+ function call
44
+
45
+ RAISES:
46
+ TeradataMlException if model is not fitted and function is called.
47
+ """
48
+ @functools.wraps(func)
49
+ def wrapper(self, *args, **kwargs):
50
+ func_name = kwargs["name"]
51
+ if not self._is_model_installed:
52
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FITTED,
53
+ func_name),
54
+ MessageCodes.MODEL_NOT_FITTED)
55
+ return func(self, *args, **kwargs)
56
+
57
+ return wrapper
58
+
59
+ def _generate_new_name(type=None, extension=None):
60
+ """
61
+ Internal function to generate new column name or file name.
62
+
63
+ PARAMETERS:
64
+ type - Specifies the type of the name to be generated.
65
+ Permitted Values: 'column', 'file'
66
+ extension - Specifies the extension to be added to the random file name.
67
+ Applicable only when type is file'
68
+
69
+ RETURNS:
70
+ New name as string
71
+
72
+ RAISES:
73
+ None
74
+ """
75
+ timestamp = time.time()
76
+ tmp = "{}{}".format(floor(timestamp / 1000000),
77
+ floor(timestamp % 1000000 * 1000000 +
78
+ int(str(uuid.uuid4().fields[-1])[:10])))
79
+ if type:
80
+ tmp = f"{type}_{tmp}_"
81
+ if extension:
82
+ tmp = f"{tmp}.{extension}"
83
+ return tmp
84
+
85
+ def _derive_df_and_required_columns(X=None, y=None, groups=None, kwargs={},
86
+ fit_partition_cols=None):
87
+ """
88
+ Internal function to get parent teradataml DataFrame from X, y and groups and corresponding
89
+ feature columns, label columns and group columns along with partition_columns passed
90
+ in kwargs.
91
+
92
+ PARAMETERS:
93
+ X - Specifies the teradataml DataFrame containing data related to feature columns.
94
+ y - Specifies the teradataml DataFrame containing data related to label columns.
95
+ groups - Specifies the teradataml DataFrame containing data related to group columns.
96
+ kwargs - Specifies the dictionary of arguments with keys:
97
+ - data
98
+ - feature_columns
99
+ - label_columns
100
+ - group_columns
101
+ - partition_columns
102
+ fit_partition_cols - Specifies the partition columns fitted to the model.
103
+
104
+ RETURNS:
105
+ parent DataFrame, feature columns, label columns, group columns, data partition columns
106
+
107
+ RAISES:
108
+ TeradataMlException if columns are not from the given DataFrame "data".
109
+ """
110
+ data = kwargs.get("data", None)
111
+ feature_columns = kwargs.get("feature_columns", None)
112
+ feature_columns = UtilFuncs._as_list(feature_columns) if feature_columns else []
113
+ label_columns = kwargs.get("label_columns", None)
114
+ label_columns = UtilFuncs._as_list(label_columns) if label_columns else []
115
+ group_columns = kwargs.get("group_columns", None)
116
+ group_columns = UtilFuncs._as_list(group_columns) if group_columns else []
117
+ partition_columns = kwargs.get("partition_columns", None)
118
+ if partition_columns:
119
+ partition_columns = UtilFuncs._as_list(partition_columns)
120
+ elif fit_partition_cols:
121
+ partition_columns = fit_partition_cols
122
+ else:
123
+ partition_columns = []
124
+
125
+ if X:
126
+ # If X is passed, then data, feature_columns, label_columns, group_columns are
127
+ # ignored and derived from X, y, groups arguments.
128
+ feature_columns = [col for col in X.columns if col not in partition_columns]
129
+ all_dfs = [X]
130
+ label_columns = []
131
+ group_columns = []
132
+ if y:
133
+ all_dfs.append(y)
134
+ label_columns = y.columns
135
+ if groups:
136
+ all_dfs.append(groups)
137
+ group_columns = groups.columns
138
+
139
+ data = df_utils._get_common_parent_df_from_dataframes(all_dfs)
140
+
141
+ if data:
142
+ # Execute node, if not executed already to get table name.
143
+ if aed_utils._aed_is_node_executed(data._nodeid):
144
+ _ = df_utils._execute_node_return_db_object_name(data._nodeid)
145
+
146
+ # Validate if columns in "feature_columns", "label_columns" are different or not.
147
+ if set(feature_columns).intersection(set(label_columns)):
148
+ raise TeradataMlException(Messages.get_message(MessageCodes.ARGS_WITH_SAME_COLUMNS,
149
+ "feature_columns/X DataFrame",
150
+ "label_columns/y DataFrame",
151
+ " not"),
152
+ MessageCodes.ARGS_WITH_SAME_COLUMNS)
153
+
154
+ return data, feature_columns, label_columns, group_columns, partition_columns
155
+
156
+ def _validate_df_query_type(df, node_query_type, arg_name):
157
+ """
158
+ Internal function to validate if the DataFrame's node type is same as the type specified.
159
+
160
+ PARAMETERS:
161
+ df - Specifies the teradataml DataFrame to be validated for node type.
162
+ node_query_type - Specifies the type of the node to be compared with.
163
+ arg_name - Specifies the name of the argument in which the node id is passed.
164
+
165
+ RETURNS:
166
+ None
167
+
168
+ RAISES:
169
+ TeradataMlException if node with given id is not same as the type specified.
170
+ """
171
+ if df and aed_utils._aed_get_node_query_type(df._nodeid) != node_query_type:
172
+ raise TeradataMlException(Messages.get_message(MessageCodes.NODE_NOT_GIVEN_TYPE,
173
+ arg_name, node_query_type),
174
+ MessageCodes.NODE_NOT_GIVEN_TYPE)
175
+
176
+ def _validate_opensource_func_args(X=None, y=None, groups=None, fit_partition_cols=None,
177
+ kwargs={}, skip_either_or_that=False):
178
+ """
179
+ Internal function to validate arguments passed to exposed opensource APIs.
180
+
181
+ PARAMETERS:
182
+ X - Specifies the teradataml DataFrame containing data related to feature columns.
183
+ y - Specifies the teradataml DataFrame containing data related to label columns.
184
+ groups - Specifies the teradataml DataFrame containing data related to group columns.
185
+ fit_partition_cols - Specifies the partition columns fitted to the model.
186
+ kwargs - Specifies the dictionary of arguments with keys:
187
+ - data
188
+ - feature_columns
189
+ - label_columns
190
+ - group_columns
191
+ - partition_columns
192
+ skip_either_or_that - Specifies whether to skip validation of either or that arguments.
193
+ RETURNS:
194
+ None
195
+
196
+ RAISES:
197
+ TeradataMlException if arguments' validations fail.
198
+ """
199
+ data = kwargs.get("data", None)
200
+ feature_columns = kwargs.get("feature_columns", None)
201
+ label_columns = kwargs.get("label_columns", None)
202
+ group_columns = kwargs.get("group_columns", None)
203
+ partition_columns = kwargs.get("partition_columns", None)
204
+
205
+ # Argument validations
206
+ arg_info_matrix = []
207
+ arg_info_matrix.append(["X", X, True, (DataFrame)])
208
+ arg_info_matrix.append(["y", y, True, (DataFrame)])
209
+ arg_info_matrix.append(["groups", groups, True, (DataFrame)])
210
+ arg_info_matrix.append(["partition_columns", partition_columns, True, (str, list)])
211
+ arg_info_matrix.append(["data", data, True, (DataFrame)])
212
+ arg_info_matrix.append(["feature_columns", feature_columns, True, (str, list)])
213
+ arg_info_matrix.append(["label_columns", label_columns, True, (str, list)])
214
+ arg_info_matrix.append(["group_columns", group_columns, True, (str, list)])
215
+
216
+ # Validate argument types
217
+ _Validators._validate_function_arguments(arg_info_matrix)
218
+
219
+ if not skip_either_or_that and not X and not data and not feature_columns:
220
+ raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
221
+ "X", "data and feature_columns"),
222
+ MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
223
+
224
+ if X:
225
+ # Validate if "X", "y" and "groups" are from select() call.
226
+ # Whether they are from same parent or not, will be validated while parent is being
227
+ # extracted.
228
+ if y or groups:
229
+ # If any one of "y" or "groups" exists, then "X" must be from select() call.
230
+ # Otherwise, it can be from any parent or direct DataFrame.
231
+ _validate_df_query_type(X, "select", "X")
232
+
233
+ _validate_df_query_type(y, "select", "y")
234
+ _validate_df_query_type(groups, "select", "groups")
235
+
236
+ # Validate if columns in "partition_columns" argument are present in "X".
237
+ _Validators._validate_column_exists_in_dataframe(columns=partition_columns,
238
+ metaexpr=X._metaexpr,
239
+ column_arg="partition_columns",
240
+ data_arg="X")
241
+
242
+ if fit_partition_cols and not partition_columns and \
243
+ not all([col in X.columns for col in fit_partition_cols]):
244
+ # Check if fitted partition columns are present in "X" if "partition_columns" is not
245
+ # not passed.
246
+ msg = Messages.get_message(MessageCodes.PARTITIONING_COLS_DIFFERENT, "X")
247
+ raise TeradataMlException(msg, MessageCodes.PARTITIONING_COLS_DIFFERENT)
248
+
249
+ if data and not X:
250
+ # Thse validations are required only when "X" is not passed because "data" is ignored when
251
+ # "X" is passed.
252
+
253
+ all_cols_list = [feature_columns, label_columns, group_columns, partition_columns]
254
+ arg_name_list = ["feature_columns", "label_columns", "group_columns", "partition_columns"]
255
+
256
+ for cols, arg_name in zip(all_cols_list, arg_name_list):
257
+ # Validate if columns in these arguments are present in "data".
258
+ _Validators._validate_column_exists_in_dataframe(columns=cols,
259
+ metaexpr=data._metaexpr,
260
+ column_arg=arg_name,
261
+ data_arg="data")
262
+
263
+ if fit_partition_cols and not partition_columns and \
264
+ not all([col in data.columns for col in fit_partition_cols]):
265
+ # Check if fitted partition columns are present in "data" if "partition_columns" is not
266
+ # not passed.
267
+ msg = Messages.get_message(MessageCodes.PARTITIONING_COLS_DIFFERENT, "data")
268
+ raise TeradataMlException(msg, MessageCodes.PARTITIONING_COLS_DIFFERENT)
@@ -0,0 +1,54 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # Function Version: 1.0
11
+ #
12
+ # This file contains constants needed for the opensource packages.
13
+ #
14
+ # ##################################################################
15
+
16
+ from enum import Enum
17
+ from teradataml import VARCHAR, BLOB
18
+ from dataclasses import dataclass, field
19
+ from typing import Any, Dict, Tuple, Optional, List
20
+
21
+
22
+ _MODULES = ["sklearn.calibration", "sklearn.cluster", "sklearn.compose", "sklearn.covariance",
23
+ "sklearn.decomposition", "sklearn.discriminant_analysis",
24
+ "sklearn.dummy", "sklearn.ensemble", "sklearn.feature_extraction", "sklearn.feature_selection",
25
+ "sklearn.gaussian_process", "sklearn.impute", "sklearn.isotonic", "sklearn.kernel_approximation",
26
+ "sklearn.kernel_ridge", "sklearn.linear_model", "sklearn.manifold", "sklearn.mixture",
27
+ "sklearn.model_selection", "sklearn.multiclass", "sklearn.multioutput", "sklearn.naive_bayes",
28
+ "sklearn.neighbors", "sklearn.neural_network", "sklearn.preprocessing", "sklearn.random_projection",
29
+ "sklearn.semi_supervised", "sklearn.svm", "sklearn.tree", "sklearn.pipeline", "sklearn.cross_decomposition",
30
+ "sklearn.gaussian_process.kernels", "sklearn.metrics"]
31
+
32
+ class OpenSourcePackage(Enum):
33
+ SKLEARN = "sklearn"
34
+
35
+ @classmethod
36
+ def values(cls):
37
+ return [item.value for item in cls]
38
+
39
+
40
+ @dataclass
41
+ class OpensourceModels:
42
+ """Dataclass for Opensource Models details."""
43
+ is_default_partition_value: bool # Whether partition value is default or not.
44
+ partition_file_prefix: str
45
+ model: Any # Either individual model or pandas dataframe of models with partition columns.
46
+ pos_args: Tuple[Any] = tuple() # Positional arguments used for model creation.
47
+ key_args: Dict[str, Any] = field(default_factory=dict) # Keyword arguments used for model creation.
48
+ fit_partition_columns_non_default: Optional[str] = None # Columns used for partitioning.
49
+
50
+ # Model table details used by opensource BYOM.
51
+ _OSML_MODELS_TABLE_NAME = "opensourceml_models"
52
+ _OSML_MODELS_PRIMARY_INDEX = "model_id"
53
+ _OSML_ADDITIONAL_COLUMN_TYPES = {"package": VARCHAR(128)} # sklearn or keras etc
54
+ _OSML_MODELS_TABLE_COLUMNS_TYPE_DICT = {"model_id": VARCHAR(128), "model": BLOB()}
@@ -3,7 +3,10 @@ from teradataml.common.messagecodes import MessageCodes
3
3
  from teradataml.common.messages import Messages
4
4
  from teradataml.options.configure import configure
5
5
  from teradataml.utils.internal_buffer import _InternalBuffer
6
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
6
7
 
8
+
9
+ @collect_queryband(queryband="StCnfgPrms")
7
10
  def set_config_params(**kwargs):
8
11
  """
9
12
  DESCRIPTION:
@@ -54,10 +57,6 @@ def set_config_params(**kwargs):
54
57
  are installed.
55
58
  Types: str
56
59
 
57
- sandbox_container_id:
58
- Specifies the id of sandbox container that will be used by Script.test_script() method.
59
- Types: string
60
-
61
60
  database_version:
62
61
  Specifies the database version of the system teradataml is connected to.
63
62
  Types: str
@@ -92,7 +91,6 @@ def set_config_params(**kwargs):
92
91
  ... certificate_file="cert.crt",
93
92
  ... default_varchar_size=512,
94
93
  ... val_install_location="VAL_USER",
95
- ... sandbox_container_id="bgf1233csdh123",
96
94
  ... read_nos_function_mapping="read_nos_fm",
97
95
  ... write_nos_function_mapping="write_nos_fm",
98
96
  ... indb_install_location="/opt/teradata/languages/Python")
@@ -105,7 +103,6 @@ def set_config_params(**kwargs):
105
103
  >>> configure.certificate_file="cert.crt"
106
104
  >>> configure.default_varchar_size=512
107
105
  >>> configure.val_install_location="VAL_USER"
108
- >>> configure.sandbox_container_id="bgf1233csdh123"
109
106
  >>> configure.read_nos_function_mapping="read_nos_fm"
110
107
  >>> configure.write_nos_function_mapping="write_nos_fm"
111
108
  >>> configure.indb_install_location="/opt/teradata/languages/Python"
@@ -50,7 +50,6 @@ class _Configure(_ConfigureSuper):
50
50
  vantage_version = _create_property('vantage_version')
51
51
  val_install_location = _create_property('VAL_install_location')
52
52
  byom_install_location = _create_property('BYOM_install_location')
53
- sandbox_container_id = _create_property('sandbox_container_id')
54
53
  temp_table_database = _create_property('temp_table_database')
55
54
  temp_view_database = _create_property('temp_view_database')
56
55
  read_nos_function_mapping = _create_property('read_nos_function_mapping')
@@ -58,14 +57,16 @@ class _Configure(_ConfigureSuper):
58
57
  cran_repositories = _create_property('cran_repositories')
59
58
  inline_plot = _create_property('inline_plot')
60
59
  indb_install_location = _create_property('indb_install_location')
60
+ openml_user_env = _create_property('openml_user_env')
61
61
 
62
62
  def __init__(self, default_varchar_size=1024, column_casesensitive_handler = False,
63
63
  vantage_version="vantage1.1", val_install_location=None,
64
- byom_install_location=None, sandbox_container_id=None,
65
- temp_table_database=None, temp_view_database=None, database_version=None,
64
+ byom_install_location=None, temp_table_database=None,
65
+ temp_view_database=None, database_version=None,
66
66
  read_nos_function_mapping="read_nos", write_nos_function_mapping="write_nos",
67
67
  cran_repositories=None, inline_plot=True,
68
- indb_install_location="/var/opt/teradata/languages/sles12sp3/Python/"):
68
+ indb_install_location="/var/opt/teradata/languages/sles12sp3/Python/",
69
+ openml_user_env=None):
69
70
 
70
71
  """
71
72
  PARAMETERS:
@@ -113,13 +114,6 @@ class _Configure(_ConfigureSuper):
113
114
  # when BYOM functions are installed in 'SYSLIB'.
114
115
  teradataml.options.configure.byom_install_location = "SYSLIB"
115
116
 
116
- sandbox_container_id:
117
- Specifies the id of sandbox container that will be used by test_script method.
118
- Types: string
119
- Example:
120
- # Set the sandbox_container_id.
121
- teradataml.options.configure.sandbox_container_id = '734rfjsls3'
122
-
123
117
  database_version:
124
118
  Specifies the actual database version of the system teradataml is connected to.
125
119
  Types: string
@@ -161,6 +155,14 @@ class _Configure(_ConfigureSuper):
161
155
  Example:
162
156
  # Set the installation location for older versions.
163
157
  teradataml.options.configure.indb_install_location = "/opt/teradata/languages/Python/"
158
+
159
+ openml_user_env:
160
+ Specifies the user environment to be used for OpenML.
161
+ Types: UserEnv
162
+ Example:
163
+ # Set the environment to be used for OpenML.
164
+ _env_name = "OpenAF" # Name of the user defined environment.
165
+ teradataml.options.configure.openml_user_env = get_env(_env_name)
164
166
  """
165
167
  super().__init__()
166
168
  super().__setattr__('default_varchar_size', default_varchar_size)
@@ -168,7 +170,6 @@ class _Configure(_ConfigureSuper):
168
170
  super().__setattr__('vantage_version', vantage_version)
169
171
  super().__setattr__('val_install_location', val_install_location)
170
172
  super().__setattr__('byom_install_location', byom_install_location)
171
- super().__setattr__('sandbox_container_id', sandbox_container_id)
172
173
  super().__setattr__('temp_table_database', temp_table_database)
173
174
  super().__setattr__('temp_view_database', temp_view_database)
174
175
  super().__setattr__('database_version', database_version)
@@ -177,6 +178,7 @@ class _Configure(_ConfigureSuper):
177
178
  super().__setattr__('cran_repositories', cran_repositories)
178
179
  super().__setattr__('inline_plot', True)
179
180
  super().__setattr__('indb_install_location', indb_install_location)
181
+ super().__setattr__('openml_user_env', openml_user_env)
180
182
 
181
183
  # internal configurations
182
184
  # These configurations are internal and should not be
@@ -185,11 +187,6 @@ class _Configure(_ConfigureSuper):
185
187
  # Internal parameter, that should be used while testing to validate whether
186
188
  # Garbage collection is being done or not.
187
189
  super().__setattr__('_validate_gc', False)
188
- # Internal parameter, that is used for checking if sto sandbox image exists on user's system
189
- super().__setattr__('_latest_sandbox_exists', False)
190
- # Internal parameter, that is used for checking whether a container was started by
191
- # teradataml.
192
- super().__setattr__('_container_started_by_teradataml', None)
193
190
  # Internal parameter, that is used for specifying the global model cataloging schema name which
194
191
  # will be used by the byom APIs.
195
192
  super().__setattr__('_byom_model_catalog_database', None)
@@ -246,7 +243,7 @@ class _Configure(_ConfigureSuper):
246
243
  "greater than or equal to"),
247
244
  MessageCodes.TDMLDF_POSITIVE_INT)
248
245
  elif name in ['column_casesensitive_handler', '_validate_metaexpression',
249
- '_validate_gc', '_latest_sandbox_exists', 'inline_plot']:
246
+ '_validate_gc', 'inline_plot']:
250
247
 
251
248
  if not isinstance(value, bool):
252
249
  raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, name,
@@ -307,8 +304,7 @@ class _Configure(_ConfigureSuper):
307
304
  if name == 'ues_url':
308
305
  value = value[: -1] if value.endswith("/") else value
309
306
 
310
- elif name in ['sandbox_container_id', '_container_started_by_teradataml',
311
- 'temp_table_database', 'temp_view_database',
307
+ elif name in ['temp_table_database', 'temp_view_database',
312
308
  "_byom_model_catalog_license_table", "_byom_model_catalog_license_database"]:
313
309
  if not isinstance(value, str) and not isinstance(value, type(None)):
314
310
  raise TeradataMlException(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, name,
@@ -328,6 +324,11 @@ class _Configure(_ConfigureSuper):
328
324
  raise TypeError(
329
325
  Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, name, 'str, list of str or None'))
330
326
 
327
+ elif name == 'openml_user_env':
328
+ from teradataml.scriptmgmt.UserEnv import UserEnv
329
+ if not isinstance(value, UserEnv) and not isinstance(value, type(None)):
330
+ raise TypeError(Messages.get_message(MessageCodes.UNSUPPORTED_DATATYPE, name, 'UserEnv or None'))
331
+
331
332
  super().__setattr__(name, value)
332
333
  else:
333
334
  raise AttributeError("'{}' object has no attribute '{}'".format(self.__class__.__name__, name))