teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/LICENSE-3RD-PARTY.pdf
CHANGED
|
Binary file
|
teradataml/LICENSE.pdf
CHANGED
|
Binary file
|
teradataml/README.md
CHANGED
|
@@ -6,7 +6,7 @@ For community support, please visit the [Teradata Community](https://support.ter
|
|
|
6
6
|
|
|
7
7
|
For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
|
|
8
8
|
|
|
9
|
-
Copyright
|
|
9
|
+
Copyright 2024, Teradata. All Rights Reserved.
|
|
10
10
|
|
|
11
11
|
### Table of Contents
|
|
12
12
|
* [Release Notes](#release-notes)
|
|
@@ -16,6 +16,243 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
16
16
|
* [License](#license)
|
|
17
17
|
|
|
18
18
|
## Release Notes:
|
|
19
|
+
#### teradataml 20.00.00.00
|
|
20
|
+
* ##### New Features/Functionality
|
|
21
|
+
* ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
|
|
22
|
+
`OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
|
|
23
|
+
interface object through which exposed classes and functions of opensource packages can be accessed
|
|
24
|
+
with the same syntax and arguments.
|
|
25
|
+
The following functionality is added in the current release:
|
|
26
|
+
* `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
|
|
27
|
+
Example usage below:
|
|
28
|
+
```
|
|
29
|
+
from teradataml import td_sklearn, DataFrame
|
|
30
|
+
|
|
31
|
+
df_train = DataFrame("multi_model_classification")
|
|
32
|
+
|
|
33
|
+
feature_columns = ["col1", "col2", "col3", "col4"]
|
|
34
|
+
label_columns = ["label"]
|
|
35
|
+
part_columns = ["partition_column_1", "partition_column_2"]
|
|
36
|
+
|
|
37
|
+
linear_svc = td_sklearn.LinearSVC()
|
|
38
|
+
```
|
|
39
|
+
* `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
|
|
40
|
+
* Argument Support:
|
|
41
|
+
* `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
|
|
42
|
+
which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
|
|
43
|
+
teradataml DataFrames for arguments `X` and `y`.
|
|
44
|
+
```
|
|
45
|
+
df_x = df_train.select(feature_columns)
|
|
46
|
+
df_y = df_train.select(label_columns)
|
|
47
|
+
|
|
48
|
+
linear_svc = linear_svc.fit(X=df_x, y=df_y)
|
|
49
|
+
```
|
|
50
|
+
* `Additional support for data, feature_columns, label_columns and group_columns arguments` -
|
|
51
|
+
Apart from traditional arguments, OpenML supports additional arguments - `data`,
|
|
52
|
+
`feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
|
|
53
|
+
and `groups`.
|
|
54
|
+
```
|
|
55
|
+
linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
|
|
56
|
+
```
|
|
57
|
+
* `Support for classification and regression metrics` - Metrics functions for classification and
|
|
58
|
+
regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
|
|
59
|
+
in future releases.
|
|
60
|
+
* `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
|
|
61
|
+
only single model generation. However, OpenML supports both single model use case and distributed
|
|
62
|
+
(multi) model use case. For this, user has to additionally pass `partition_columns` argument to
|
|
63
|
+
existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
|
|
64
|
+
for multiple partitions, using the data in corresponding partition.
|
|
65
|
+
```
|
|
66
|
+
df_x_1 = df_train.select(feature_columns + part_columns)
|
|
67
|
+
linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
|
|
68
|
+
```
|
|
69
|
+
* `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
|
|
70
|
+
trained models. These models can be loaded later to perform operations like prediction, score etc. The
|
|
71
|
+
following functions are provided by OpenML:
|
|
72
|
+
* `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
|
|
73
|
+
* `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
|
|
74
|
+
* `td_sklearn.load()` - Used to load the saved models.
|
|
75
|
+
|
|
76
|
+
<br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
|
|
77
|
+
|
|
78
|
+
* ###### teradataml: AutoML - Automated end to end Machine Learning flow.
|
|
79
|
+
AutoML is an approach to automate the process of building, training, and validating machine learning models.
|
|
80
|
+
It involves automation of various aspects of the machine learning workflow, such as feature exploration,
|
|
81
|
+
feature engineering, data preparation, model training and evaluation for given dataset.
|
|
82
|
+
teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
|
|
83
|
+
early stopping feature, model evaluation, model prediction, live logging, customization on default process.
|
|
84
|
+
* `AutoML`
|
|
85
|
+
AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
|
|
86
|
+
'Binary Classification' and 'Multiclass Classification'.
|
|
87
|
+
* Methods of AutoML
|
|
88
|
+
* `__init__()` - Instantiate an object of AutoML with given parameters.
|
|
89
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
90
|
+
* `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
|
|
91
|
+
selection method, and performance metrics.
|
|
92
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
93
|
+
selection method, and performance metrics.
|
|
94
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
95
|
+
choice from the leaderboard.
|
|
96
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
97
|
+
run of AutoML.
|
|
98
|
+
* `AutoRegressor`
|
|
99
|
+
AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
|
|
100
|
+
* Methods of AutoRegressor
|
|
101
|
+
* `__init__()` - Instantiate an object of AutoRegressor with given parameters.
|
|
102
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
103
|
+
* `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
|
|
104
|
+
selection method, and performance metrics.
|
|
105
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
106
|
+
selection method, and performance metrics.
|
|
107
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
108
|
+
choice from the leaderboard.
|
|
109
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
110
|
+
run of AutoRegressor.
|
|
111
|
+
* `AutoClassifier`
|
|
112
|
+
AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
|
|
113
|
+
* Methods of AutoClassifier
|
|
114
|
+
* `__init__()` - Instantiate an object of AutoClassifier with given parameters.
|
|
115
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
116
|
+
* `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
|
|
117
|
+
selection method, and performance metrics.
|
|
118
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
119
|
+
selection method, and performance metrics.
|
|
120
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
121
|
+
choice from the leaderboard.
|
|
122
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
123
|
+
run of AutoClassifier.
|
|
124
|
+
|
|
125
|
+
* ###### teradataml: DataFrame
|
|
126
|
+
* `fillna` - Replace the null values in a column with the value specified.
|
|
127
|
+
* Data Manipulation
|
|
128
|
+
* `cube()`- Analyzes data by grouping it into multiple dimensions.
|
|
129
|
+
* `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
|
|
130
|
+
* `replace()` - Replaces the values for columns.
|
|
131
|
+
|
|
132
|
+
* ###### teradataml: Script and Apply
|
|
133
|
+
* `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
|
|
134
|
+
environment in lake. The function is available in both Script and Apply.
|
|
135
|
+
|
|
136
|
+
* ###### teradataml: DataFrameColumn
|
|
137
|
+
* `fillna` - Replaces every occurrence of null value in column with the value specified.
|
|
138
|
+
|
|
139
|
+
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
140
|
+
* _Date Time Functions_
|
|
141
|
+
* `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
142
|
+
* `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
|
|
143
|
+
* `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
144
|
+
* `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
145
|
+
* `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
|
|
146
|
+
* `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
147
|
+
* `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
148
|
+
* `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
|
|
149
|
+
* `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
150
|
+
* `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
151
|
+
* `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
|
|
152
|
+
* `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
153
|
+
* `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
154
|
+
* `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
155
|
+
* `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
156
|
+
* `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
157
|
+
* `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
158
|
+
* `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
159
|
+
* `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
160
|
+
* `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
|
|
161
|
+
* `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
162
|
+
* `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
163
|
+
* `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
|
|
164
|
+
* `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
165
|
+
* `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
166
|
+
* `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
167
|
+
* `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
168
|
+
* `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
169
|
+
* `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
170
|
+
* `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
171
|
+
* `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
172
|
+
* `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
173
|
+
* `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
|
|
174
|
+
* `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
|
|
175
|
+
* `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
|
|
176
|
+
* `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
|
|
177
|
+
* `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
|
|
178
|
+
* `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
|
|
179
|
+
* `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
|
|
180
|
+
* `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
181
|
+
* `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
|
|
182
|
+
* `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
|
|
183
|
+
* `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
|
|
184
|
+
* `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
|
|
185
|
+
* `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
|
|
186
|
+
* _String Functions_
|
|
187
|
+
* `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
|
|
188
|
+
* `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
|
|
189
|
+
* `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
|
|
190
|
+
* `DataFrameColumn.substr()` - Returns the substring from a string column.
|
|
191
|
+
* `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
|
|
192
|
+
* `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
|
|
193
|
+
* `DataFrameColumn.format()` - Function to format the values in column based on formatter.
|
|
194
|
+
* `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
|
|
195
|
+
* `DataFrameColumn.trim()` - Function trims the string values in the column.
|
|
196
|
+
* _Regular Arithmetic Functions_
|
|
197
|
+
* `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
|
|
198
|
+
* `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
|
|
199
|
+
* `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
|
|
200
|
+
* `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
|
|
201
|
+
* _Bit Byte Manipulation Functions_
|
|
202
|
+
* `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
|
|
203
|
+
* _Comparison Functions_
|
|
204
|
+
* `DataFrameColumn.greatest()` - Returns the greatest values from columns.
|
|
205
|
+
* `DataFrameColumn.least()` - Returns the least values from columns.
|
|
206
|
+
* Behaviour of `DataFrameColumn.replace()` is changed.
|
|
207
|
+
* Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
|
|
208
|
+
* Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
|
|
209
|
+
|
|
210
|
+
* ##### Bug Fixes
|
|
211
|
+
* Argument `url_encode` is no longer used in `create_context()` and is deprecated.
|
|
212
|
+
* **Important notes**
|
|
213
|
+
* Users do not need to encode password even if password contain special characters.
|
|
214
|
+
* Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
|
|
215
|
+
* `fillna()` in VAL transformation allows to replace NULL values with empty string.
|
|
216
|
+
|
|
217
|
+
* ##### Updates
|
|
218
|
+
* Support for following deprecated functionality is removed:
|
|
219
|
+
* ML Engine functions
|
|
220
|
+
* STO and APPLY sandbox feature support for testing the script.
|
|
221
|
+
* sandbox_container_utils is removed. Following methods can no longer be used:
|
|
222
|
+
* `setup_sandbox_env()`
|
|
223
|
+
* `copy_files_from_container()`
|
|
224
|
+
* `cleanup_sandbox_env()`
|
|
225
|
+
* Model Cataloging APIs can no longer be used:
|
|
226
|
+
* `describe_model()`
|
|
227
|
+
* `delete_model()`
|
|
228
|
+
* `list_models()`
|
|
229
|
+
* `publish_model()`
|
|
230
|
+
* `retrieve_model()`
|
|
231
|
+
* `save_model()`
|
|
232
|
+
* `DataFrame.join()`
|
|
233
|
+
* Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
|
|
234
|
+
* `DataFrame.describe()`
|
|
235
|
+
* New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
|
|
236
|
+
* `DataFrame.groupby()`
|
|
237
|
+
* Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
|
|
238
|
+
* `DataFrame.column.window()`
|
|
239
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
240
|
+
* `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
|
|
241
|
+
* `DataFrame.window()`
|
|
242
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
243
|
+
|
|
244
|
+
#### teradataml 17.20.00.07
|
|
245
|
+
* ##### New Features/Functionality
|
|
246
|
+
* ###### Open Analytics Framework (OpenAF) APIs:
|
|
247
|
+
* Manage all user environments.
|
|
248
|
+
* `create_env()`:
|
|
249
|
+
* new argument `conda_env` is added to create a conda environment.
|
|
250
|
+
* `list_user_envs()`:
|
|
251
|
+
* User can list conda environment(s) by using filter with new argument `conda_env`.
|
|
252
|
+
* Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
|
|
253
|
+
* ##### Bug Fixes
|
|
254
|
+
* `columns` argument for `FillNa` function is made optional.
|
|
255
|
+
|
|
19
256
|
#### teradataml 17.20.00.06
|
|
20
257
|
* ##### New Features/Functionality
|
|
21
258
|
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
teradataml/__init__.py
CHANGED
|
@@ -7,7 +7,6 @@ from teradataml.dbutils.filemgr import *
|
|
|
7
7
|
from teradataml.dataframe.copy_to import *
|
|
8
8
|
from teradataml.dataframe.fastload import fastload
|
|
9
9
|
from teradataml.data.load_example_data import *
|
|
10
|
-
from teradataml.catalog.model_cataloging import *
|
|
11
10
|
from teradataml.catalog.byom import *
|
|
12
11
|
from teradataml.dataframe.data_transfer import fastexport, read_csv
|
|
13
12
|
|
|
@@ -16,7 +15,6 @@ from teradataml.dataframe.sql_functions import *
|
|
|
16
15
|
|
|
17
16
|
# import Analytical Function to User's workspace.
|
|
18
17
|
from teradataml.analytics.byom import *
|
|
19
|
-
from teradataml.analytics.mle import *
|
|
20
18
|
from teradataml.analytics.sqle import *
|
|
21
19
|
from teradataml.analytics.table_operator import *
|
|
22
20
|
from teradataml.analytics.uaf import *
|
|
@@ -45,7 +43,6 @@ __version__ = v.version
|
|
|
45
43
|
# Import Table Operator to User's workspace.
|
|
46
44
|
from teradataml.table_operators.Script import *
|
|
47
45
|
from teradataml.table_operators.Apply import *
|
|
48
|
-
from teradataml.table_operators.sandbox_container_util import *
|
|
49
46
|
|
|
50
47
|
# Import Geospatial APIs, modules
|
|
51
48
|
from teradataml.geospatial import *
|
|
@@ -58,3 +55,16 @@ from teradataml.scriptmgmt import *
|
|
|
58
55
|
|
|
59
56
|
# Import utility functions.
|
|
60
57
|
from teradataml.utils.utils import execute_sql, async_run_status
|
|
58
|
+
|
|
59
|
+
import os
|
|
60
|
+
_TDML_DIRECTORY = os.path.dirname(v.__file__)
|
|
61
|
+
|
|
62
|
+
from teradataml.opensource import *
|
|
63
|
+
|
|
64
|
+
# Import AutoML
|
|
65
|
+
from teradataml.automl import AutoML, AutoRegressor, AutoClassifier
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
# Configure app name and app version for querybands
|
|
69
|
+
from teradatasqlalchemy.telemetry.queryband import session_queryband
|
|
70
|
+
session_queryband.configure_queryband_parameters(app_name="TDML", app_version=__version__)
|
teradataml/_version.py
CHANGED
|
@@ -209,7 +209,7 @@ class FillNa(_Transformations):
|
|
|
209
209
|
Types: teradataml DataFrame, bool, int, str, float, datetime.date
|
|
210
210
|
|
|
211
211
|
columns:
|
|
212
|
-
|
|
212
|
+
Optional Argument.
|
|
213
213
|
Specifies the names of the columns.
|
|
214
214
|
Types: str or list of str
|
|
215
215
|
|
|
@@ -484,7 +484,7 @@ class FillNa(_Transformations):
|
|
|
484
484
|
>>>
|
|
485
485
|
"""
|
|
486
486
|
# Call super()
|
|
487
|
-
super().__init__(columns=columns, out_columns=out_columns, datatype=datatype, columns_optional=
|
|
487
|
+
super().__init__(columns=columns, out_columns=out_columns, datatype=datatype, columns_optional=True)
|
|
488
488
|
# Initialize style and value as data members.
|
|
489
489
|
self.style = style
|
|
490
490
|
self.value = value
|
|
@@ -557,8 +557,8 @@ class FillNa(_Transformations):
|
|
|
557
557
|
|
|
558
558
|
nullstyle_args = self.style.lower()
|
|
559
559
|
if self.style.upper() in ["LITERAL", "IMPUTED"]:
|
|
560
|
-
nullstyle_args = "{}, {}".format(self.style.lower(), self.value)
|
|
561
|
-
|
|
560
|
+
nullstyle_args = "{}, {}".format(self.style.lower(), '\'\'\'\'' if isinstance(self.value, str) and len(
|
|
561
|
+
self.value) == 0 else self.value)
|
|
562
562
|
return nullstyle_fmt.format(nullstyle_args)
|
|
563
563
|
|
|
564
564
|
def _val_sql_syntax(self):
|
teradataml/analytics/__init__.py
CHANGED
|
@@ -14,7 +14,6 @@ based on the json data and attach it to teradataml.
|
|
|
14
14
|
and function _get_executor_class_name, Internal function to get executor class name for function_type provided.
|
|
15
15
|
"""
|
|
16
16
|
from .byom import *
|
|
17
|
-
from .mle import *
|
|
18
17
|
from .sqle import *
|
|
19
18
|
from .table_operator import *
|
|
20
19
|
from .uaf import *
|
|
@@ -24,7 +23,6 @@ from .Transformations import Binning, Derive, OneHotEncoder, FillNa, LabelEncode
|
|
|
24
23
|
from teradataml.analytics.json_parser.utils import _get_json_data_from_tdml_repo, _process_paired_functions
|
|
25
24
|
from teradataml.analytics.analytic_function_executor import _SQLEFunctionExecutor, _TableOperatorExecutor,\
|
|
26
25
|
_UAFFunctionExecutor, _BYOMFunctionExecutor
|
|
27
|
-
import sys
|
|
28
26
|
from teradataml.common.constants import TeradataAnalyticFunctionTypes
|
|
29
27
|
|
|
30
28
|
|
|
@@ -29,6 +29,7 @@ from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
|
29
29
|
from teradataml.common.utils import UtilFuncs
|
|
30
30
|
from teradataml.context.context import _get_context_temp_databasename
|
|
31
31
|
from teradataml.table_operators.table_operator_query_generator import TableOperatorQueryGenerator
|
|
32
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
32
33
|
from teradataml.utils.dtypes import _ListOf
|
|
33
34
|
from teradataml.utils.validators import _Validators
|
|
34
35
|
|
|
@@ -150,6 +151,7 @@ class _AnlyticFunctionExecutor:
|
|
|
150
151
|
# Validate the function arguments.
|
|
151
152
|
_Validators._validate_function_arguments([argument_info])
|
|
152
153
|
|
|
154
|
+
@collect_queryband(attr="func_name")
|
|
153
155
|
def _execute_query(self, persist=False, volatile=False):
|
|
154
156
|
"""
|
|
155
157
|
DESCRIPTION:
|
|
@@ -1906,6 +1908,7 @@ class _UAFFunctionExecutor(_SQLEFunctionExecutor):
|
|
|
1906
1908
|
self.__process_individual_argument(output_fmt_argument,
|
|
1907
1909
|
**kwargs))
|
|
1908
1910
|
|
|
1911
|
+
@collect_queryband(attr="func_name")
|
|
1909
1912
|
def _execute_query(self, persist=False, volatile=None):
|
|
1910
1913
|
"""
|
|
1911
1914
|
DESCRIPTION:
|
|
@@ -551,26 +551,27 @@ class _KNNPredict:
|
|
|
551
551
|
|
|
552
552
|
res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
|
|
553
553
|
"""
|
|
554
|
-
# response_column is required when the model_type is classification or regression.
|
|
555
|
-
# accumulate is optional in case user specifies accumulate then consider the value specified by the user,
|
|
556
|
-
# else consider the value specified for response_column.
|
|
557
|
-
|
|
558
554
|
params = {"test_data": kwargs.get("test_data"),
|
|
559
555
|
"id_column": self.id_column,
|
|
560
|
-
"voting_weight": self.voting_weight,
|
|
561
|
-
"k": self.k,
|
|
562
|
-
"tolerance": self.tolerance,
|
|
563
|
-
"output_prob": self.output_prob,
|
|
564
|
-
"output_responses": self.output_responses,
|
|
565
|
-
"emit_neighbors": self.emit_neighbors,
|
|
566
|
-
"emit_distances": self.emit_distances,
|
|
567
556
|
"train_data": self.train_data,
|
|
568
557
|
"input_columns": self.input_columns,
|
|
569
|
-
"model_type": self.model_type,
|
|
570
558
|
"response_column": kwargs.get("response_column", self.response_column),
|
|
571
559
|
"accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
|
|
572
560
|
if getattr(self.obj, "accumulate") is None else self.accumulate)}
|
|
573
561
|
|
|
562
|
+
# KNN works in a different way. predict calls the same function with test data along with
|
|
563
|
+
# the arguments passed to the actual function. The above parameters are required
|
|
564
|
+
# arguments so we expect them to be available in output of KNN. However, the below
|
|
565
|
+
# ones are optional arguments. They can be available or not based on user input. So, before
|
|
566
|
+
# passing those to KNN again, check whether that argument is passed or not.
|
|
567
|
+
optional_args = ["model_type", "k", "voting_weight",
|
|
568
|
+
"tolerance", "output_prob", "output_responses",
|
|
569
|
+
"emit_neighbors", "emit_distances"]
|
|
570
|
+
|
|
571
|
+
for optional_arg in optional_args:
|
|
572
|
+
if hasattr(self, optional_arg):
|
|
573
|
+
params[optional_arg] = getattr(self, optional_arg)
|
|
574
|
+
|
|
574
575
|
return getattr(module, "KNN")(**params)
|
|
575
576
|
|
|
576
577
|
|
|
@@ -26,7 +26,6 @@ from teradataml.common.messagecodes import MessageCodes
|
|
|
26
26
|
from teradataml.common.constants import TeradataConstants
|
|
27
27
|
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
28
|
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.DecisionTree import DecisionTree
|
|
30
29
|
|
|
31
30
|
class DecisionTreePredict:
|
|
32
31
|
|
|
@@ -52,7 +51,7 @@ class DecisionTreePredict:
|
|
|
52
51
|
object:
|
|
53
52
|
Required Argument.
|
|
54
53
|
Specifies the name of the teradataml DataFrame containing the output
|
|
55
|
-
model from DecisionTree
|
|
54
|
+
model from DecisionTree.
|
|
56
55
|
|
|
57
56
|
object_order_column:
|
|
58
57
|
Optional Argument.
|
|
@@ -132,40 +131,28 @@ class DecisionTreePredict:
|
|
|
132
131
|
|
|
133
132
|
EXAMPLES:
|
|
134
133
|
# Load the data to run the example.
|
|
135
|
-
load_example_data("DecisionTreePredict", ["
|
|
136
|
-
"
|
|
137
|
-
"
|
|
138
|
-
|
|
134
|
+
load_example_data("DecisionTreePredict", ["iris_response_train",
|
|
135
|
+
"iris_attribute_test",
|
|
136
|
+
"iris_attribute_output"])
|
|
137
|
+
|
|
138
|
+
|
|
139
139
|
# Create teradataml DataFrame.
|
|
140
140
|
iris_attribute_test = DataFrame.from_table("iris_attribute_test")
|
|
141
|
-
iris_attribute_train = DataFrame.from_table("iris_attribute_train")
|
|
142
141
|
iris_response_train = DataFrame.from_table("iris_response_train")
|
|
143
|
-
|
|
142
|
+
iris_attribute_output = DataFrame.from_table("iris_attribute_output")
|
|
143
|
+
|
|
144
144
|
# Example 1 -
|
|
145
|
-
# First train the data, i.e., create a decision tree Model
|
|
146
|
-
td_decision_tree_out = DecisionTree(attribute_name_columns = 'attribute',
|
|
147
|
-
attribute_value_column = 'attrvalue',
|
|
148
|
-
id_columns = 'pid',
|
|
149
|
-
attribute_table = iris_attribute_train,
|
|
150
|
-
response_table = iris_response_train,
|
|
151
|
-
response_column = 'response',
|
|
152
|
-
approx_splits = True,
|
|
153
|
-
nodesize = 100,
|
|
154
|
-
max_depth = 5,
|
|
155
|
-
weighted = False,
|
|
156
|
-
split_measure = "gini",
|
|
157
|
-
output_response_probdist = False)
|
|
158
145
|
|
|
159
|
-
# Run predict on the output of decision tree
|
|
146
|
+
# Run predict on the output of decision tree in iris_attribute_output
|
|
160
147
|
decision_tree_predict_out = DecisionTreePredict(newdata=iris_attribute_test,
|
|
161
148
|
newdata_partition_column='pid',
|
|
162
|
-
object=
|
|
149
|
+
object=iris_attribute_output,
|
|
163
150
|
attr_table_groupby_columns='attribute',
|
|
164
151
|
attr_table_pid_columns='pid',
|
|
165
152
|
attr_table_val_column='attrvalue',
|
|
166
|
-
accumulate='
|
|
167
|
-
output_response_probdist=
|
|
168
|
-
output_responses=['
|
|
153
|
+
accumulate='attribute',
|
|
154
|
+
output_response_probdist=True,
|
|
155
|
+
output_responses=['1', '2', '3'])
|
|
169
156
|
|
|
170
157
|
# Print output dataframes
|
|
171
158
|
print(decision_tree_predict_out.result)
|
|
@@ -227,9 +214,7 @@ class DecisionTreePredict:
|
|
|
227
214
|
arguments, input argument and table types. Also processes the
|
|
228
215
|
argument values.
|
|
229
216
|
"""
|
|
230
|
-
|
|
231
|
-
self.object = self.object._mlresults[0]
|
|
232
|
-
|
|
217
|
+
|
|
233
218
|
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
234
219
|
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
235
220
|
|
|
@@ -238,7 +223,7 @@ class DecisionTreePredict:
|
|
|
238
223
|
|
|
239
224
|
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
240
225
|
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
241
|
-
self.__awu._validate_input_table_datatype(self.object, "object",
|
|
226
|
+
self.__awu._validate_input_table_datatype(self.object, "object", DataFrame)
|
|
242
227
|
|
|
243
228
|
# Check whether the input columns passed to the argument are not empty.
|
|
244
229
|
# Also check whether the input columns passed to the argument valid or not.
|
|
@@ -27,7 +27,6 @@ from teradataml.common.constants import TeradataConstants
|
|
|
27
27
|
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
28
|
from teradataml.options.display import display
|
|
29
29
|
from teradataml.common.formula import Formula
|
|
30
|
-
from teradataml.analytics.mle.NaiveBayes import NaiveBayes
|
|
31
30
|
|
|
32
31
|
class NaiveBayesPredict:
|
|
33
32
|
|
|
@@ -104,21 +103,20 @@ class NaiveBayesPredict:
|
|
|
104
103
|
|
|
105
104
|
EXAMPLES:
|
|
106
105
|
# Load the data to run the example
|
|
107
|
-
load_example_data("NaiveBayesPredict",["nb_iris_input_test"
|
|
108
|
-
|
|
106
|
+
load_example_data("NaiveBayesPredict",["nb_iris_input_test"])
|
|
107
|
+
load_example_data("teradataml","nbp_iris_model")
|
|
108
|
+
|
|
109
109
|
# Create teradataml DataFrame objects.
|
|
110
|
-
nb_iris_input_train = DataFrame.from_table("nb_iris_input_train")
|
|
111
110
|
nb_iris_input_test = DataFrame.from_table("nb_iris_input_test")
|
|
112
|
-
|
|
111
|
+
nbp_iris_model = DataFrame.from_table("nbp_iris_model")
|
|
112
|
+
|
|
113
113
|
# Example 1 -
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
data=nb_iris_input_train)
|
|
117
|
-
|
|
118
|
-
# Generate prediction using output of train function
|
|
114
|
+
|
|
115
|
+
# Generate prediction using output of train stored in nbp_iris_model.
|
|
119
116
|
naivebayes_predict_result = NaiveBayesPredict(newdata=nb_iris_input_test,
|
|
120
|
-
modeldata =
|
|
117
|
+
modeldata = nbp_iris_model,
|
|
121
118
|
id_col = "id",
|
|
119
|
+
formula="species ~ .",
|
|
122
120
|
responses = ["virginica","setosa","versicolor"]
|
|
123
121
|
)
|
|
124
122
|
|
|
@@ -174,14 +172,7 @@ class NaiveBayesPredict:
|
|
|
174
172
|
arguments, input argument and table types. Also processes the
|
|
175
173
|
argument values.
|
|
176
174
|
"""
|
|
177
|
-
|
|
178
|
-
self.formula = self.modeldata.formula
|
|
179
|
-
self.modeldata = self.modeldata._mlresults[0]
|
|
180
|
-
else:
|
|
181
|
-
if self.formula is None:
|
|
182
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.MISSING_ARGS, "formula"),
|
|
183
|
-
MessageCodes.MISSING_ARGS)
|
|
184
|
-
|
|
175
|
+
|
|
185
176
|
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
186
177
|
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
187
178
|
|
|
@@ -190,7 +181,7 @@ class NaiveBayesPredict:
|
|
|
190
181
|
|
|
191
182
|
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
192
183
|
self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
|
|
193
|
-
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata",
|
|
184
|
+
self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", None)
|
|
194
185
|
|
|
195
186
|
# Check whether the input columns passed to the argument are not empty.
|
|
196
187
|
# Also check whether the input columns passed to the argument valid or not.
|
|
@@ -1,18 +1,5 @@
|
|
|
1
|
-
from teradataml.analytics.sqle.Antiselect import Antiselect
|
|
2
|
-
from teradataml.analytics.sqle.Attribution import Attribution
|
|
3
|
-
from teradataml.analytics.sqle.DecisionForestPredict import DecisionForestPredict
|
|
4
1
|
from teradataml.analytics.sqle.DecisionTreePredict import DecisionTreePredict
|
|
5
|
-
from teradataml.analytics.sqle.GLMPredict import GLMPredict
|
|
6
|
-
from teradataml.analytics.sqle.MovingAverage import MovingAverage
|
|
7
|
-
from teradataml.analytics.sqle.NGramSplitter import NGramSplitter
|
|
8
|
-
from teradataml.analytics.sqle.NPath import NPath
|
|
9
2
|
from teradataml.analytics.sqle.NaiveBayesPredict import NaiveBayesPredict
|
|
10
|
-
from teradataml.analytics.sqle.NaiveBayesTextClassifierPredict import NaiveBayesTextClassifierPredict
|
|
11
|
-
from teradataml.analytics.sqle.Pack import Pack
|
|
12
|
-
from teradataml.analytics.sqle.Sessionize import Sessionize
|
|
13
|
-
from teradataml.analytics.sqle.StringSimilarity import StringSimilarity
|
|
14
|
-
from teradataml.analytics.sqle.SVMSparsePredict import SVMSparsePredict
|
|
15
|
-
from teradataml.analytics.sqle.Unpack import Unpack
|
|
16
3
|
|
|
17
4
|
from teradataml.analytics.meta_class import _AnalyticFunction
|
|
18
5
|
from teradataml.analytics.meta_class import _common_init
|
teradataml/analytics/utils.py
CHANGED
|
@@ -264,6 +264,7 @@ def _display_functions(func_type_category_name_dict, func_types=None, search_key
|
|
|
264
264
|
|
|
265
265
|
# Check for type of 'type'. If str, convert it to list.
|
|
266
266
|
func_types = UtilFuncs._as_list(func_types)
|
|
267
|
+
func_types = list(map(lambda x: x.upper(), func_types))
|
|
267
268
|
|
|
268
269
|
# Map to store function types and corresponding type to be printed.
|
|
269
270
|
func_type_display_type_map = {"SQLE": "Analytics Database",
|
teradataml/analytics/valib.py
CHANGED
|
@@ -12,6 +12,8 @@ Library (VALIB) Function.
|
|
|
12
12
|
import time
|
|
13
13
|
import uuid
|
|
14
14
|
from math import floor
|
|
15
|
+
|
|
16
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
15
17
|
from teradataml.common import messages
|
|
16
18
|
from teradataml.common.constants import TeradataConstants, ValibConstants as VC
|
|
17
19
|
from teradataml.common.exceptions import TeradataMlException
|
|
@@ -230,6 +232,7 @@ class _VALIB():
|
|
|
230
232
|
self.__dyn_cls_data_members[out_var]._index_query_required = False
|
|
231
233
|
self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value].append(out_var)
|
|
232
234
|
|
|
235
|
+
@collect_queryband(attr="_VALIB__sql_func_name")
|
|
233
236
|
def __generate_execute_sp_query(self):
|
|
234
237
|
"""
|
|
235
238
|
DESCRIPTION:
|