teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
Binary file
teradataml/LICENSE.pdf CHANGED
Binary file
teradataml/README.md CHANGED
@@ -6,7 +6,7 @@ For community support, please visit the [Teradata Community](https://support.ter
6
6
 
7
7
  For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
8
8
 
9
- Copyright 2023, Teradata. All Rights Reserved.
9
+ Copyright 2024, Teradata. All Rights Reserved.
10
10
 
11
11
  ### Table of Contents
12
12
  * [Release Notes](#release-notes)
@@ -16,6 +16,243 @@ Copyright 2023, Teradata. All Rights Reserved.
16
16
  * [License](#license)
17
17
 
18
18
  ## Release Notes:
19
+ #### teradataml 20.00.00.00
20
+ * ##### New Features/Functionality
21
+ * ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
22
+ `OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
23
+ interface object through which exposed classes and functions of opensource packages can be accessed
24
+ with the same syntax and arguments.
25
+ The following functionality is added in the current release:
26
+ * `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
27
+ Example usage below:
28
+ ```
29
+ from teradataml import td_sklearn, DataFrame
30
+
31
+ df_train = DataFrame("multi_model_classification")
32
+
33
+ feature_columns = ["col1", "col2", "col3", "col4"]
34
+ label_columns = ["label"]
35
+ part_columns = ["partition_column_1", "partition_column_2"]
36
+
37
+ linear_svc = td_sklearn.LinearSVC()
38
+ ```
39
+ * `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
40
+ * Argument Support:
41
+ * `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
42
+ which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
43
+ teradataml DataFrames for arguments `X` and `y`.
44
+ ```
45
+ df_x = df_train.select(feature_columns)
46
+ df_y = df_train.select(label_columns)
47
+
48
+ linear_svc = linear_svc.fit(X=df_x, y=df_y)
49
+ ```
50
+ * `Additional support for data, feature_columns, label_columns and group_columns arguments` -
51
+ Apart from traditional arguments, OpenML supports additional arguments - `data`,
52
+ `feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
53
+ and `groups`.
54
+ ```
55
+ linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
56
+ ```
57
+ * `Support for classification and regression metrics` - Metrics functions for classification and
58
+ regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
59
+ in future releases.
60
+ * `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
61
+ only single model generation. However, OpenML supports both single model use case and distributed
62
+ (multi) model use case. For this, user has to additionally pass `partition_columns` argument to
63
+ existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
64
+ for multiple partitions, using the data in corresponding partition.
65
+ ```
66
+ df_x_1 = df_train.select(feature_columns + part_columns)
67
+ linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
68
+ ```
69
+ * `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
70
+ trained models. These models can be loaded later to perform operations like prediction, score etc. The
71
+ following functions are provided by OpenML:
72
+ * `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
73
+ * `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
74
+ * `td_sklearn.load()` - Used to load the saved models.
75
+
76
+ <br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
77
+
78
+ * ###### teradataml: AutoML - Automated end to end Machine Learning flow.
79
+ AutoML is an approach to automate the process of building, training, and validating machine learning models.
80
+ It involves automation of various aspects of the machine learning workflow, such as feature exploration,
81
+ feature engineering, data preparation, model training and evaluation for given dataset.
82
+ teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
83
+ early stopping feature, model evaluation, model prediction, live logging, customization on default process.
84
+ * `AutoML`
85
+ AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
86
+ 'Binary Classification' and 'Multiclass Classification'.
87
+ * Methods of AutoML
88
+ * `__init__()` - Instantiate an object of AutoML with given parameters.
89
+ * `fit()` - Perform fit on specified data and target column.
90
+ * `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
91
+ selection method, and performance metrics.
92
+ * `leader()` - Show best performing model and its details such as feature
93
+ selection method, and performance metrics.
94
+ * `predict()` - Perform prediction on the data using the best model or the model of users
95
+ choice from the leaderboard.
96
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
97
+ run of AutoML.
98
+ * `AutoRegressor`
99
+ AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
100
+ * Methods of AutoRegressor
101
+ * `__init__()` - Instantiate an object of AutoRegressor with given parameters.
102
+ * `fit()` - Perform fit on specified data and target column.
103
+ * `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
104
+ selection method, and performance metrics.
105
+ * `leader()` - Show best performing model and its details such as feature
106
+ selection method, and performance metrics.
107
+ * `predict()` - Perform prediction on the data using the best model or the model of users
108
+ choice from the leaderboard.
109
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
110
+ run of AutoRegressor.
111
+ * `AutoClassifier`
112
+ AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
113
+ * Methods of AutoClassifier
114
+ * `__init__()` - Instantiate an object of AutoClassifier with given parameters.
115
+ * `fit()` - Perform fit on specified data and target column.
116
+ * `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
117
+ selection method, and performance metrics.
118
+ * `leader()` - Show best performing model and its details such as feature
119
+ selection method, and performance metrics.
120
+ * `predict()` - Perform prediction on the data using the best model or the model of users
121
+ choice from the leaderboard.
122
+ * `generate_custom_config()` - Generate custom config JSON file required for customized
123
+ run of AutoClassifier.
124
+
125
+ * ###### teradataml: DataFrame
126
+ * `fillna` - Replace the null values in a column with the value specified.
127
+ * Data Manipulation
128
+ * `cube()`- Analyzes data by grouping it into multiple dimensions.
129
+ * `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
130
+ * `replace()` - Replaces the values for columns.
131
+
132
+ * ###### teradataml: Script and Apply
133
+ * `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
134
+ environment in lake. The function is available in both Script and Apply.
135
+
136
+ * ###### teradataml: DataFrameColumn
137
+ * `fillna` - Replaces every occurrence of null value in column with the value specified.
138
+
139
+ * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
140
+ * _Date Time Functions_
141
+ * `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
142
+ * `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
143
+ * `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
144
+ * `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
145
+ * `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
146
+ * `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
147
+ * `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
148
+ * `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
149
+ * `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
150
+ * `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
151
+ * `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
152
+ * `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
153
+ * `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
154
+ * `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
155
+ * `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
156
+ * `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
157
+ * `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
158
+ * `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
159
+ * `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
160
+ * `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
161
+ * `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
162
+ * `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
163
+ * `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
164
+ * `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
165
+ * `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
166
+ * `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
167
+ * `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
168
+ * `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
169
+ * `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
170
+ * `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
171
+ * `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
172
+ * `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
173
+ * `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
174
+ * `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
175
+ * `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
176
+ * `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
177
+ * `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
178
+ * `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
179
+ * `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
180
+ * `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
181
+ * `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
182
+ * `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
183
+ * `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
184
+ * `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
185
+ * `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
186
+ * _String Functions_
187
+ * `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
188
+ * `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
189
+ * `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
190
+ * `DataFrameColumn.substr()` - Returns the substring from a string column.
191
+ * `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
192
+ * `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
193
+ * `DataFrameColumn.format()` - Function to format the values in column based on formatter.
194
+ * `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
195
+ * `DataFrameColumn.trim()` - Function trims the string values in the column.
196
+ * _Regular Arithmetic Functions_
197
+ * `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
198
+ * `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
199
+ * `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
200
+ * `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
201
+ * _Bit Byte Manipulation Functions_
202
+ * `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
203
+ * _Comparison Functions_
204
+ * `DataFrameColumn.greatest()` - Returns the greatest values from columns.
205
+ * `DataFrameColumn.least()` - Returns the least values from columns.
206
+ * Behaviour of `DataFrameColumn.replace()` is changed.
207
+ * Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
208
+ * Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
209
+
210
+ * ##### Bug Fixes
211
+ * Argument `url_encode` is no longer used in `create_context()` and is deprecated.
212
+ * **Important notes**
213
+ * Users do not need to encode password even if password contain special characters.
214
+ * Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
215
+ * `fillna()` in VAL transformation allows to replace NULL values with empty string.
216
+
217
+ * ##### Updates
218
+ * Support for following deprecated functionality is removed:
219
+ * ML Engine functions
220
+ * STO and APPLY sandbox feature support for testing the script.
221
+ * sandbox_container_utils is removed. Following methods can no longer be used:
222
+ * `setup_sandbox_env()`
223
+ * `copy_files_from_container()`
224
+ * `cleanup_sandbox_env()`
225
+ * Model Cataloging APIs can no longer be used:
226
+ * `describe_model()`
227
+ * `delete_model()`
228
+ * `list_models()`
229
+ * `publish_model()`
230
+ * `retrieve_model()`
231
+ * `save_model()`
232
+ * `DataFrame.join()`
233
+ * Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
234
+ * `DataFrame.describe()`
235
+ * New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
236
+ * `DataFrame.groupby()`
237
+ * Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
238
+ * `DataFrame.column.window()`
239
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
240
+ * `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
241
+ * `DataFrame.window()`
242
+ * Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
243
+
244
+ #### teradataml 17.20.00.07
245
+ * ##### New Features/Functionality
246
+ * ###### Open Analytics Framework (OpenAF) APIs:
247
+ * Manage all user environments.
248
+ * `create_env()`:
249
+ * new argument `conda_env` is added to create a conda environment.
250
+ * `list_user_envs()`:
251
+ * User can list conda environment(s) by using filter with new argument `conda_env`.
252
+ * Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
253
+ * ##### Bug Fixes
254
+ * `columns` argument for `FillNa` function is made optional.
255
+
19
256
  #### teradataml 17.20.00.06
20
257
  * ##### New Features/Functionality
21
258
  * ###### teradataml DataFrameColumn a.k.a. ColumnExpression
teradataml/__init__.py CHANGED
@@ -7,7 +7,6 @@ from teradataml.dbutils.filemgr import *
7
7
  from teradataml.dataframe.copy_to import *
8
8
  from teradataml.dataframe.fastload import fastload
9
9
  from teradataml.data.load_example_data import *
10
- from teradataml.catalog.model_cataloging import *
11
10
  from teradataml.catalog.byom import *
12
11
  from teradataml.dataframe.data_transfer import fastexport, read_csv
13
12
 
@@ -16,7 +15,6 @@ from teradataml.dataframe.sql_functions import *
16
15
 
17
16
  # import Analytical Function to User's workspace.
18
17
  from teradataml.analytics.byom import *
19
- from teradataml.analytics.mle import *
20
18
  from teradataml.analytics.sqle import *
21
19
  from teradataml.analytics.table_operator import *
22
20
  from teradataml.analytics.uaf import *
@@ -45,7 +43,6 @@ __version__ = v.version
45
43
  # Import Table Operator to User's workspace.
46
44
  from teradataml.table_operators.Script import *
47
45
  from teradataml.table_operators.Apply import *
48
- from teradataml.table_operators.sandbox_container_util import *
49
46
 
50
47
  # Import Geospatial APIs, modules
51
48
  from teradataml.geospatial import *
@@ -58,3 +55,16 @@ from teradataml.scriptmgmt import *
58
55
 
59
56
  # Import utility functions.
60
57
  from teradataml.utils.utils import execute_sql, async_run_status
58
+
59
+ import os
60
+ _TDML_DIRECTORY = os.path.dirname(v.__file__)
61
+
62
+ from teradataml.opensource import *
63
+
64
+ # Import AutoML
65
+ from teradataml.automl import AutoML, AutoRegressor, AutoClassifier
66
+
67
+
68
+ # Configure app name and app version for querybands
69
+ from teradatasqlalchemy.telemetry.queryband import session_queryband
70
+ session_queryband.configure_queryband_parameters(app_name="TDML", app_version=__version__)
teradataml/_version.py CHANGED
@@ -8,4 +8,4 @@
8
8
  #
9
9
  # ##################################################################
10
10
 
11
- version = "17.20.00.06"
11
+ version = "20.00.00.00"
@@ -209,7 +209,7 @@ class FillNa(_Transformations):
209
209
  Types: teradataml DataFrame, bool, int, str, float, datetime.date
210
210
 
211
211
  columns:
212
- Required Argument.
212
+ Optional Argument.
213
213
  Specifies the names of the columns.
214
214
  Types: str or list of str
215
215
 
@@ -484,7 +484,7 @@ class FillNa(_Transformations):
484
484
  >>>
485
485
  """
486
486
  # Call super()
487
- super().__init__(columns=columns, out_columns=out_columns, datatype=datatype, columns_optional=False)
487
+ super().__init__(columns=columns, out_columns=out_columns, datatype=datatype, columns_optional=True)
488
488
  # Initialize style and value as data members.
489
489
  self.style = style
490
490
  self.value = value
@@ -557,8 +557,8 @@ class FillNa(_Transformations):
557
557
 
558
558
  nullstyle_args = self.style.lower()
559
559
  if self.style.upper() in ["LITERAL", "IMPUTED"]:
560
- nullstyle_args = "{}, {}".format(self.style.lower(), self.value)
561
-
560
+ nullstyle_args = "{}, {}".format(self.style.lower(), '\'\'\'\'' if isinstance(self.value, str) and len(
561
+ self.value) == 0 else self.value)
562
562
  return nullstyle_fmt.format(nullstyle_args)
563
563
 
564
564
  def _val_sql_syntax(self):
@@ -14,7 +14,6 @@ based on the json data and attach it to teradataml.
14
14
  and function _get_executor_class_name, Internal function to get executor class name for function_type provided.
15
15
  """
16
16
  from .byom import *
17
- from .mle import *
18
17
  from .sqle import *
19
18
  from .table_operator import *
20
19
  from .uaf import *
@@ -24,7 +23,6 @@ from .Transformations import Binning, Derive, OneHotEncoder, FillNa, LabelEncode
24
23
  from teradataml.analytics.json_parser.utils import _get_json_data_from_tdml_repo, _process_paired_functions
25
24
  from teradataml.analytics.analytic_function_executor import _SQLEFunctionExecutor, _TableOperatorExecutor,\
26
25
  _UAFFunctionExecutor, _BYOMFunctionExecutor
27
- import sys
28
26
  from teradataml.common.constants import TeradataAnalyticFunctionTypes
29
27
 
30
28
 
@@ -29,6 +29,7 @@ from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
29
29
  from teradataml.common.utils import UtilFuncs
30
30
  from teradataml.context.context import _get_context_temp_databasename
31
31
  from teradataml.table_operators.table_operator_query_generator import TableOperatorQueryGenerator
32
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
32
33
  from teradataml.utils.dtypes import _ListOf
33
34
  from teradataml.utils.validators import _Validators
34
35
 
@@ -150,6 +151,7 @@ class _AnlyticFunctionExecutor:
150
151
  # Validate the function arguments.
151
152
  _Validators._validate_function_arguments([argument_info])
152
153
 
154
+ @collect_queryband(attr="func_name")
153
155
  def _execute_query(self, persist=False, volatile=False):
154
156
  """
155
157
  DESCRIPTION:
@@ -1906,6 +1908,7 @@ class _UAFFunctionExecutor(_SQLEFunctionExecutor):
1906
1908
  self.__process_individual_argument(output_fmt_argument,
1907
1909
  **kwargs))
1908
1910
 
1911
+ @collect_queryband(attr="func_name")
1909
1912
  def _execute_query(self, persist=False, volatile=None):
1910
1913
  """
1911
1914
  DESCRIPTION:
@@ -551,26 +551,27 @@ class _KNNPredict:
551
551
 
552
552
  res = KNN_out.evaluate(test_data=computers_train1_encoded.result.iloc[10:])
553
553
  """
554
- # response_column is required when the model_type is classification or regression.
555
- # accumulate is optional in case user specifies accumulate then consider the value specified by the user,
556
- # else consider the value specified for response_column.
557
-
558
554
  params = {"test_data": kwargs.get("test_data"),
559
555
  "id_column": self.id_column,
560
- "voting_weight": self.voting_weight,
561
- "k": self.k,
562
- "tolerance": self.tolerance,
563
- "output_prob": self.output_prob,
564
- "output_responses": self.output_responses,
565
- "emit_neighbors": self.emit_neighbors,
566
- "emit_distances": self.emit_distances,
567
556
  "train_data": self.train_data,
568
557
  "input_columns": self.input_columns,
569
- "model_type": self.model_type,
570
558
  "response_column": kwargs.get("response_column", self.response_column),
571
559
  "accumulate": kwargs.get("accumulate", kwargs.get("response_column", self.response_column)
572
560
  if getattr(self.obj, "accumulate") is None else self.accumulate)}
573
561
 
562
+ # KNN works in a different way. predict calls the same function with test data along with
563
+ # the arguments passed to the actual function. The above parameters are required
564
+ # arguments so we expect them to be available in output of KNN. However, the below
565
+ # ones are optional arguments. They can be available or not based on user input. So, before
566
+ # passing those to KNN again, check whether that argument is passed or not.
567
+ optional_args = ["model_type", "k", "voting_weight",
568
+ "tolerance", "output_prob", "output_responses",
569
+ "emit_neighbors", "emit_distances"]
570
+
571
+ for optional_arg in optional_args:
572
+ if hasattr(self, optional_arg):
573
+ params[optional_arg] = getattr(self, optional_arg)
574
+
574
575
  return getattr(module, "KNN")(**params)
575
576
 
576
577
 
@@ -26,7 +26,6 @@ from teradataml.common.messagecodes import MessageCodes
26
26
  from teradataml.common.constants import TeradataConstants
27
27
  from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
28
  from teradataml.options.display import display
29
- from teradataml.analytics.mle.DecisionTree import DecisionTree
30
29
 
31
30
  class DecisionTreePredict:
32
31
 
@@ -52,7 +51,7 @@ class DecisionTreePredict:
52
51
  object:
53
52
  Required Argument.
54
53
  Specifies the name of the teradataml DataFrame containing the output
55
- model from DecisionTree or instance of DecisionTree.
54
+ model from DecisionTree.
56
55
 
57
56
  object_order_column:
58
57
  Optional Argument.
@@ -132,40 +131,28 @@ class DecisionTreePredict:
132
131
 
133
132
  EXAMPLES:
134
133
  # Load the data to run the example.
135
- load_example_data("DecisionTreePredict", ["iris_attribute_train",
136
- "iris_response_train",
137
- "iris_attribute_test"])
138
-
134
+ load_example_data("DecisionTreePredict", ["iris_response_train",
135
+ "iris_attribute_test",
136
+ "iris_attribute_output"])
137
+
138
+
139
139
  # Create teradataml DataFrame.
140
140
  iris_attribute_test = DataFrame.from_table("iris_attribute_test")
141
- iris_attribute_train = DataFrame.from_table("iris_attribute_train")
142
141
  iris_response_train = DataFrame.from_table("iris_response_train")
143
-
142
+ iris_attribute_output = DataFrame.from_table("iris_attribute_output")
143
+
144
144
  # Example 1 -
145
- # First train the data, i.e., create a decision tree Model
146
- td_decision_tree_out = DecisionTree(attribute_name_columns = 'attribute',
147
- attribute_value_column = 'attrvalue',
148
- id_columns = 'pid',
149
- attribute_table = iris_attribute_train,
150
- response_table = iris_response_train,
151
- response_column = 'response',
152
- approx_splits = True,
153
- nodesize = 100,
154
- max_depth = 5,
155
- weighted = False,
156
- split_measure = "gini",
157
- output_response_probdist = False)
158
145
 
159
- # Run predict on the output of decision tree
146
+ # Run predict on the output of decision tree in iris_attribute_output
160
147
  decision_tree_predict_out = DecisionTreePredict(newdata=iris_attribute_test,
161
148
  newdata_partition_column='pid',
162
- object=td_decision_tree_out,
149
+ object=iris_attribute_output,
163
150
  attr_table_groupby_columns='attribute',
164
151
  attr_table_pid_columns='pid',
165
152
  attr_table_val_column='attrvalue',
166
- accumulate='pid',
167
- output_response_probdist=False,
168
- output_responses=['pid','attribute'])
153
+ accumulate='attribute',
154
+ output_response_probdist=True,
155
+ output_responses=['1', '2', '3'])
169
156
 
170
157
  # Print output dataframes
171
158
  print(decision_tree_predict_out.result)
@@ -227,9 +214,7 @@ class DecisionTreePredict:
227
214
  arguments, input argument and table types. Also processes the
228
215
  argument values.
229
216
  """
230
- if isinstance(self.object, DecisionTree):
231
- self.object = self.object._mlresults[0]
232
-
217
+
233
218
  # Make sure that a non-NULL value has been supplied for all mandatory arguments
234
219
  self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
235
220
 
@@ -238,7 +223,7 @@ class DecisionTreePredict:
238
223
 
239
224
  # Check to make sure input table types are strings or data frame objects or of valid type.
240
225
  self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
241
- self.__awu._validate_input_table_datatype(self.object, "object", DecisionTree)
226
+ self.__awu._validate_input_table_datatype(self.object, "object", DataFrame)
242
227
 
243
228
  # Check whether the input columns passed to the argument are not empty.
244
229
  # Also check whether the input columns passed to the argument valid or not.
@@ -27,7 +27,6 @@ from teradataml.common.constants import TeradataConstants
27
27
  from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
28
  from teradataml.options.display import display
29
29
  from teradataml.common.formula import Formula
30
- from teradataml.analytics.mle.NaiveBayes import NaiveBayes
31
30
 
32
31
  class NaiveBayesPredict:
33
32
 
@@ -104,21 +103,20 @@ class NaiveBayesPredict:
104
103
 
105
104
  EXAMPLES:
106
105
  # Load the data to run the example
107
- load_example_data("NaiveBayesPredict",["nb_iris_input_test","nb_iris_input_train"])
108
-
106
+ load_example_data("NaiveBayesPredict",["nb_iris_input_test"])
107
+ load_example_data("teradataml","nbp_iris_model")
108
+
109
109
  # Create teradataml DataFrame objects.
110
- nb_iris_input_train = DataFrame.from_table("nb_iris_input_train")
111
110
  nb_iris_input_test = DataFrame.from_table("nb_iris_input_test")
112
-
111
+ nbp_iris_model = DataFrame.from_table("nbp_iris_model")
112
+
113
113
  # Example 1 -
114
- # Run the train function
115
- naivebayes_train = NaiveBayes(formula="species ~ petal_length + sepal_width + petal_width + sepal_length",
116
- data=nb_iris_input_train)
117
-
118
- # Generate prediction using output of train function
114
+
115
+ # Generate prediction using output of train stored in nbp_iris_model.
119
116
  naivebayes_predict_result = NaiveBayesPredict(newdata=nb_iris_input_test,
120
- modeldata = naivebayes_train,
117
+ modeldata = nbp_iris_model,
121
118
  id_col = "id",
119
+ formula="species ~ .",
122
120
  responses = ["virginica","setosa","versicolor"]
123
121
  )
124
122
 
@@ -174,14 +172,7 @@ class NaiveBayesPredict:
174
172
  arguments, input argument and table types. Also processes the
175
173
  argument values.
176
174
  """
177
- if isinstance(self.modeldata, NaiveBayes):
178
- self.formula = self.modeldata.formula
179
- self.modeldata = self.modeldata._mlresults[0]
180
- else:
181
- if self.formula is None:
182
- raise TeradataMlException(Messages.get_message(MessageCodes.MISSING_ARGS, "formula"),
183
- MessageCodes.MISSING_ARGS)
184
-
175
+
185
176
  # Make sure that a non-NULL value has been supplied for all mandatory arguments
186
177
  self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
187
178
 
@@ -190,7 +181,7 @@ class NaiveBayesPredict:
190
181
 
191
182
  # Check to make sure input table types are strings or data frame objects or of valid type.
192
183
  self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
193
- self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", NaiveBayes)
184
+ self.__awu._validate_input_table_datatype(self.modeldata, "modeldata", None)
194
185
 
195
186
  # Check whether the input columns passed to the argument are not empty.
196
187
  # Also check whether the input columns passed to the argument valid or not.
@@ -1,18 +1,5 @@
1
- from teradataml.analytics.sqle.Antiselect import Antiselect
2
- from teradataml.analytics.sqle.Attribution import Attribution
3
- from teradataml.analytics.sqle.DecisionForestPredict import DecisionForestPredict
4
1
  from teradataml.analytics.sqle.DecisionTreePredict import DecisionTreePredict
5
- from teradataml.analytics.sqle.GLMPredict import GLMPredict
6
- from teradataml.analytics.sqle.MovingAverage import MovingAverage
7
- from teradataml.analytics.sqle.NGramSplitter import NGramSplitter
8
- from teradataml.analytics.sqle.NPath import NPath
9
2
  from teradataml.analytics.sqle.NaiveBayesPredict import NaiveBayesPredict
10
- from teradataml.analytics.sqle.NaiveBayesTextClassifierPredict import NaiveBayesTextClassifierPredict
11
- from teradataml.analytics.sqle.Pack import Pack
12
- from teradataml.analytics.sqle.Sessionize import Sessionize
13
- from teradataml.analytics.sqle.StringSimilarity import StringSimilarity
14
- from teradataml.analytics.sqle.SVMSparsePredict import SVMSparsePredict
15
- from teradataml.analytics.sqle.Unpack import Unpack
16
3
 
17
4
  from teradataml.analytics.meta_class import _AnalyticFunction
18
5
  from teradataml.analytics.meta_class import _common_init
@@ -264,6 +264,7 @@ def _display_functions(func_type_category_name_dict, func_types=None, search_key
264
264
 
265
265
  # Check for type of 'type'. If str, convert it to list.
266
266
  func_types = UtilFuncs._as_list(func_types)
267
+ func_types = list(map(lambda x: x.upper(), func_types))
267
268
 
268
269
  # Map to store function types and corresponding type to be printed.
269
270
  func_type_display_type_map = {"SQLE": "Analytics Database",
@@ -12,6 +12,8 @@ Library (VALIB) Function.
12
12
  import time
13
13
  import uuid
14
14
  from math import floor
15
+
16
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
15
17
  from teradataml.common import messages
16
18
  from teradataml.common.constants import TeradataConstants, ValibConstants as VC
17
19
  from teradataml.common.exceptions import TeradataMlException
@@ -230,6 +232,7 @@ class _VALIB():
230
232
  self.__dyn_cls_data_members[out_var]._index_query_required = False
231
233
  self.__dyn_cls_data_members[VC.OUTPUT_DATAFRAME_RESULTS.value].append(out_var)
232
234
 
235
+ @collect_queryband(attr="_VALIB__sql_func_name")
233
236
  def __generate_execute_sp_query(self):
234
237
  """
235
238
  DESCRIPTION: