teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,599 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class DWT2D:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
input_columns = None,
|
|
35
|
-
index_columns = None,
|
|
36
|
-
range = None,
|
|
37
|
-
wavelet = None,
|
|
38
|
-
wavelet_filter = None,
|
|
39
|
-
level = None,
|
|
40
|
-
extension_mode = "sym",
|
|
41
|
-
compact_output = True,
|
|
42
|
-
partition_columns = None,
|
|
43
|
-
data_sequence_column = None,
|
|
44
|
-
wavelet_filter_sequence_column = None):
|
|
45
|
-
"""
|
|
46
|
-
DESCRIPTION:
|
|
47
|
-
The DWT2D function implements the Mallat algorithm (an iterative
|
|
48
|
-
algorithm in the Discrete Wavelet Transform field) on 2-dimensional
|
|
49
|
-
matrices and applies wavelet transform on multiple sequences
|
|
50
|
-
simultaneously.
|
|
51
|
-
|
|
52
|
-
The input is a set of sequences. Typically, each sequence is a matrix
|
|
53
|
-
that contains a position in 2-dimensional space (y and x indexes or
|
|
54
|
-
coordinates) and its corresponding values. You specify the wavelet
|
|
55
|
-
name or wavelet filter teradataml DataFrame, transform level, and
|
|
56
|
-
(optionally) extension mode. The function returns the transformed
|
|
57
|
-
sequences in Hilbert space with the corresponding component
|
|
58
|
-
identifiers and indices. (The transformation is also called the
|
|
59
|
-
decomposition.)
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
PARAMETERS:
|
|
63
|
-
data:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
66
|
-
sequences to be transformed.
|
|
67
|
-
|
|
68
|
-
input_columns:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies the names of the columns in the input teradataml DataFrame
|
|
71
|
-
that contain the data to be transformed. These columns must contain
|
|
72
|
-
numeric values between -1e308 and 1e308. The function treats
|
|
73
|
-
NULL in columns as 0.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
index_columns:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the columns that contain the indexes of the input
|
|
79
|
-
sequences. This argument should have exactly two column names.
|
|
80
|
-
One column contains the x coordinates and the other
|
|
81
|
-
contains y coordinates.
|
|
82
|
-
Types: str OR list of Strings (str)
|
|
83
|
-
|
|
84
|
-
range:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies the start and end indexes of the input data, all of which
|
|
87
|
-
must be integers. The default values for each sequence are:
|
|
88
|
-
• starty: minimum y index
|
|
89
|
-
• startx: minimum x index
|
|
90
|
-
• endy: maximum y index
|
|
91
|
-
• endx: maximum x index.
|
|
92
|
-
The function treats any NULL value as 0.
|
|
93
|
-
The range can specify a maximum of 1,000,000 cells.
|
|
94
|
-
Types: str
|
|
95
|
-
|
|
96
|
-
wavelet:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies a wavelet filter name.
|
|
99
|
-
Wavelet Family Supported Wavelet Names (wavelet values)
|
|
100
|
-
Daubechies 'db1' or 'haar', 'db2', .... ,'db10'
|
|
101
|
-
Coiflets 'coif1', ... , 'coif5'
|
|
102
|
-
Symlets 'sym1', ... ,' sym10'
|
|
103
|
-
Discrete Meyer 'dmey'
|
|
104
|
-
Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5',
|
|
105
|
-
'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8',
|
|
106
|
-
'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',
|
|
107
|
-
'bior4.4', 'bior5.5'
|
|
108
|
-
Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5'
|
|
109
|
-
'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8',
|
|
110
|
-
'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7','rbio3.9',
|
|
111
|
-
'rbio4.4', 'rbio5.5'
|
|
112
|
-
Permitted values for wavelet are under column 'Supported Wavelet Names' above.
|
|
113
|
-
Types: str
|
|
114
|
-
|
|
115
|
-
wavelet_filter:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
118
|
-
coefficients of the wave filters.
|
|
119
|
-
|
|
120
|
-
level:
|
|
121
|
-
Required Argument.
|
|
122
|
-
Specifies the wavelet transform level. The value level must be an
|
|
123
|
-
integer in the range [1, 1000].
|
|
124
|
-
Types: int
|
|
125
|
-
|
|
126
|
-
extension_mode:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
Specifies the method for handling border distortion
|
|
129
|
-
Supported Extension Modes (extension_mode values):
|
|
130
|
-
• "sym" : Symmetrically replicate boundary values, mirroring
|
|
131
|
-
the points near the boundaries.
|
|
132
|
-
For example: 4 4 3 2 1 | 1 2 3 4 | 4 3 2 1 1
|
|
133
|
-
• "zpd" : Zero-pad boundary values with zero.
|
|
134
|
-
For example: 0 0 0 0 0 | 1 2 3 4 | 0 0 0 0 0
|
|
135
|
-
• "ppd" : Periodic extension, fill boundary values as the
|
|
136
|
-
input sequence is a periodic one.
|
|
137
|
-
For example: 4 1 2 3 4 | 1 2 3 4 | 1 2 3 4 1
|
|
138
|
-
Default Value: "sym"
|
|
139
|
-
Permitted Values: sym, zpd, ppd
|
|
140
|
-
Types: str
|
|
141
|
-
|
|
142
|
-
compact_output:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies whether to ignore (not output) rows in which all
|
|
145
|
-
coefficient values are very small (having an absolute value less
|
|
146
|
-
than 1e-12). For a sparse input matrix, ignoring such rows
|
|
147
|
-
reduces the output teradataml DataFrame size.
|
|
148
|
-
Default Value: True
|
|
149
|
-
Types: bool
|
|
150
|
-
|
|
151
|
-
partition_columns:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the names of the partition_columns, which identify the
|
|
154
|
-
sequences. Rows with the same partition_columns values belong to
|
|
155
|
-
the same sequence. If you specify multiple partition_columns,
|
|
156
|
-
then the function treats the first one as the distribute key of
|
|
157
|
-
the output and meta teradataml DataFrames. By default, all rows
|
|
158
|
-
belong to one sequence, and the function generates a distribute
|
|
159
|
-
key column named dwt_idrandom_name in both the output teradataml
|
|
160
|
-
DataFrame and the meta teradataml DataFrame. In both teradataml
|
|
161
|
-
DataFrames, every cell of dwt_idrandom_name has the value 1.
|
|
162
|
-
Types: str OR list of Strings (str)
|
|
163
|
-
|
|
164
|
-
data_sequence_column:
|
|
165
|
-
Optional Argument.
|
|
166
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
167
|
-
the input argument "data". The argument is used to asensure
|
|
168
|
-
deterministic results for functions which produce results that vary
|
|
169
|
-
from run to run.
|
|
170
|
-
Types: str OR list of Strings (str)
|
|
171
|
-
|
|
172
|
-
wavelet_filter_sequence_column:
|
|
173
|
-
Optional Argument.
|
|
174
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
175
|
-
the input argument "wavelet_filter". The argument is used to ensure
|
|
176
|
-
deterministic results for functions which produce results that vary
|
|
177
|
-
from run to run.
|
|
178
|
-
Types: str OR list of Strings (str)
|
|
179
|
-
|
|
180
|
-
RETURNS:
|
|
181
|
-
Instance of DWT2D.
|
|
182
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
183
|
-
references, such as DWT2DObj.<attribute_name>.
|
|
184
|
-
Output teradataml DataFrame attribute names are:
|
|
185
|
-
1. coefficient
|
|
186
|
-
2. meta_table
|
|
187
|
-
3. output
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
RAISES:
|
|
191
|
-
TeradataMlException
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
EXAMPLES:
|
|
195
|
-
# This example uses climate data in many cities in the states of
|
|
196
|
-
# California (CA), Texas (TX), and Washington (WA). The cities are
|
|
197
|
-
# represented by two-dimensional coordinates (latitude and
|
|
198
|
-
# longitude). The data are temperature (in degrees Fahrenheit),
|
|
199
|
-
# pressure (in Mbars), and dew point (in degrees Fahrenheit). The
|
|
200
|
-
# function generates a coefficient model teradataml DataFrame and a
|
|
201
|
-
# meta_table teradataml DataFrame, which are used as input to the
|
|
202
|
-
# function IDWT2D.
|
|
203
|
-
# The table 'wft_testing' contains wavelet filter information
|
|
204
|
-
# needed to generate coefficient model teradataml DataFrame and a
|
|
205
|
-
# meta_table teradataml DataFrame.
|
|
206
|
-
|
|
207
|
-
# Load example data.
|
|
208
|
-
load_example_data("dwt2d", ["twod_climate_data", "wft_testing"])
|
|
209
|
-
|
|
210
|
-
# Create teradataml DataFrame objects.
|
|
211
|
-
twod_climate_data = DataFrame.from_table("twod_climate_data")
|
|
212
|
-
wft_testing = DataFrame.from_table("wft_testing")
|
|
213
|
-
|
|
214
|
-
# Example 1 : Using 'db2' wavelet to apply DWT2D function on columns,
|
|
215
|
-
# "temp_f", "pressure_mbar" and "dewpoint_f" (of DataFrame
|
|
216
|
-
# 'twod_climate_data') partitioned by the column "state".
|
|
217
|
-
DWT2D_out = DWT2D(data = twod_climate_data,
|
|
218
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
219
|
-
index_columns = ["latitude","longitude"],
|
|
220
|
-
wavelet = "db2",
|
|
221
|
-
level = 2,
|
|
222
|
-
compact_output = True,
|
|
223
|
-
partition_columns = ["state"]
|
|
224
|
-
)
|
|
225
|
-
# Print the results
|
|
226
|
-
print(DWT2D_out.coefficient) # Prints coefficient DataFrame which stores
|
|
227
|
-
# the coefficients generated by the wavelet
|
|
228
|
-
# transform.
|
|
229
|
-
print(DWT2D_out.meta_table) # Prints meta_table DataFrame which stores
|
|
230
|
-
# the meta information for the wavelet
|
|
231
|
-
# transform.
|
|
232
|
-
print(DWT2D_out.output) # Prints output teradataml DataFrame.
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
# Example 2 : Using wavelet_filter DataFrame to apply DWT2D function
|
|
236
|
-
# on columns, "temp_f", "pressure_mbar" and "dewpoint_f" (of
|
|
237
|
-
# DataFrame 'twod_climate_data') partitioned by the column
|
|
238
|
-
# "state".
|
|
239
|
-
DWT2D_out = DWT2D(data = twod_climate_data,
|
|
240
|
-
input_columns = ["temp_f","pressure_mbar","dewpoint_f"],
|
|
241
|
-
wavelet_filter = wft_testing,
|
|
242
|
-
index_columns = ["latitude","longitude"],
|
|
243
|
-
level = 2,
|
|
244
|
-
partition_columns = "state",
|
|
245
|
-
wavelet_filter_sequence_column="filtername"
|
|
246
|
-
)
|
|
247
|
-
|
|
248
|
-
# Print the results
|
|
249
|
-
print(DWT2D_out.coefficient) # Prints coefficient DataFrame which stores
|
|
250
|
-
# the coefficients generated by the wavelet
|
|
251
|
-
# transform.
|
|
252
|
-
print(DWT2D_out.meta_table) # Prints meta_table DataFrame which stores
|
|
253
|
-
# the meta information for the wavelet
|
|
254
|
-
# transform.
|
|
255
|
-
print(DWT2D_out.output) # Prints output teradataml DataFrame.
|
|
256
|
-
|
|
257
|
-
"""
|
|
258
|
-
|
|
259
|
-
# Start the timer to get the build time
|
|
260
|
-
_start_time = time.time()
|
|
261
|
-
|
|
262
|
-
self.data = data
|
|
263
|
-
self.input_columns = input_columns
|
|
264
|
-
self.index_columns = index_columns
|
|
265
|
-
self.range = range
|
|
266
|
-
self.wavelet = wavelet
|
|
267
|
-
self.wavelet_filter = wavelet_filter
|
|
268
|
-
self.level = level
|
|
269
|
-
self.extension_mode = extension_mode
|
|
270
|
-
self.compact_output = compact_output
|
|
271
|
-
self.partition_columns = partition_columns
|
|
272
|
-
self.data_sequence_column = data_sequence_column
|
|
273
|
-
self.wavelet_filter_sequence_column = wavelet_filter_sequence_column
|
|
274
|
-
|
|
275
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
276
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
277
|
-
self.__aed_utils = AedUtils()
|
|
278
|
-
|
|
279
|
-
# Create argument information matrix to do parameter checking
|
|
280
|
-
self.__arg_info_matrix = []
|
|
281
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
282
|
-
self.__arg_info_matrix.append(["input_columns", self.input_columns, False, (str,list)])
|
|
283
|
-
self.__arg_info_matrix.append(["index_columns", self.index_columns, False, (str,list)])
|
|
284
|
-
self.__arg_info_matrix.append(["range", self.range, True, (str)])
|
|
285
|
-
self.__arg_info_matrix.append(["wavelet", self.wavelet, True, (str)])
|
|
286
|
-
self.__arg_info_matrix.append(["wavelet_filter", self.wavelet_filter, True, (DataFrame)])
|
|
287
|
-
self.__arg_info_matrix.append(["level", self.level, False, (int)])
|
|
288
|
-
self.__arg_info_matrix.append(["extension_mode", self.extension_mode, True, (str)])
|
|
289
|
-
self.__arg_info_matrix.append(["compact_output", self.compact_output, True, (bool)])
|
|
290
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
291
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
292
|
-
self.__arg_info_matrix.append(["wavelet_filter_sequence_column", self.wavelet_filter_sequence_column, True, (str,list)])
|
|
293
|
-
|
|
294
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
295
|
-
# Perform the function validations
|
|
296
|
-
self.__validate()
|
|
297
|
-
# Generate the ML query
|
|
298
|
-
self.__form_tdml_query()
|
|
299
|
-
# Execute ML query
|
|
300
|
-
self.__execute()
|
|
301
|
-
# Get the prediction type
|
|
302
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
303
|
-
|
|
304
|
-
# End the timer to get the build time
|
|
305
|
-
_end_time = time.time()
|
|
306
|
-
|
|
307
|
-
# Calculate the build time
|
|
308
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
309
|
-
|
|
310
|
-
def __validate(self):
|
|
311
|
-
"""
|
|
312
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
313
|
-
arguments, input argument and table types. Also processes the
|
|
314
|
-
argument values.
|
|
315
|
-
"""
|
|
316
|
-
|
|
317
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
318
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
319
|
-
|
|
320
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
321
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
322
|
-
|
|
323
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
324
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
325
|
-
self.__awu._validate_input_table_datatype(self.wavelet_filter, "wavelet_filter", None)
|
|
326
|
-
|
|
327
|
-
# Check for permitted values
|
|
328
|
-
extension_mode_permitted_values = ["SYM", "ZPD", "PPD"]
|
|
329
|
-
self.__awu._validate_permitted_values(self.extension_mode, extension_mode_permitted_values, "extension_mode")
|
|
330
|
-
|
|
331
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
332
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
333
|
-
self.__awu._validate_input_columns_not_empty(self.index_columns, "index_columns")
|
|
334
|
-
self.__awu._validate_dataframe_has_argument_columns(self.index_columns, "index_columns", self.data, "data", False)
|
|
335
|
-
|
|
336
|
-
self.__awu._validate_input_columns_not_empty(self.input_columns, "input_columns")
|
|
337
|
-
self.__awu._validate_dataframe_has_argument_columns(self.input_columns, "input_columns", self.data, "data", False)
|
|
338
|
-
|
|
339
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
340
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
341
|
-
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.wavelet_filter_sequence_column, "wavelet_filter_sequence_column", self.wavelet_filter, "wavelet_filter", False)
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
def __form_tdml_query(self):
|
|
350
|
-
"""
|
|
351
|
-
Function to generate the analytical function queries. The function defines
|
|
352
|
-
variables and list of arguments required to form the query.
|
|
353
|
-
"""
|
|
354
|
-
# Generate temp table names for output table parameters if any.
|
|
355
|
-
self.__coefficient_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt2d0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
356
|
-
self.__meta_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_dwt2d1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
357
|
-
|
|
358
|
-
# Output table arguments list
|
|
359
|
-
self.__func_output_args_sql_names = ["OutputTable", "MetaTable"]
|
|
360
|
-
self.__func_output_args = [self.__coefficient_temp_tablename, self.__meta_table_temp_tablename]
|
|
361
|
-
|
|
362
|
-
# Model Cataloging related attributes.
|
|
363
|
-
self._sql_specific_attributes = {}
|
|
364
|
-
self._sql_formula_attribute_mapper = {}
|
|
365
|
-
self._target_column = None
|
|
366
|
-
self._algorithm_name = None
|
|
367
|
-
|
|
368
|
-
# Generate lists for rest of the function arguments
|
|
369
|
-
self.__func_other_arg_sql_names = []
|
|
370
|
-
self.__func_other_args = []
|
|
371
|
-
self.__func_other_arg_json_datatypes = []
|
|
372
|
-
|
|
373
|
-
self.__func_other_arg_sql_names.append("IndexColumns")
|
|
374
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.index_columns, "\""), "'"))
|
|
375
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
376
|
-
|
|
377
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
378
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_columns, "\""), "'"))
|
|
379
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
380
|
-
|
|
381
|
-
if self.partition_columns is not None:
|
|
382
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
383
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
384
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
385
|
-
|
|
386
|
-
self.__func_other_arg_sql_names.append("WaveletTransformLevel")
|
|
387
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.level, "'"))
|
|
388
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
389
|
-
|
|
390
|
-
if self.range is not None:
|
|
391
|
-
self.__func_other_arg_sql_names.append("Range")
|
|
392
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.range, "'"))
|
|
393
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
394
|
-
|
|
395
|
-
if self.compact_output is not None and self.compact_output != True:
|
|
396
|
-
self.__func_other_arg_sql_names.append("CompactOutput")
|
|
397
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.compact_output, "'"))
|
|
398
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
399
|
-
|
|
400
|
-
if self.wavelet is not None:
|
|
401
|
-
self.__func_other_arg_sql_names.append("Wavelet")
|
|
402
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.wavelet, "'"))
|
|
403
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
404
|
-
|
|
405
|
-
if self.extension_mode is not None and self.extension_mode != "sym":
|
|
406
|
-
self.__func_other_arg_sql_names.append("ExtensionMode")
|
|
407
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.extension_mode, "'"))
|
|
408
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
409
|
-
|
|
410
|
-
# Generate lists for rest of the function arguments
|
|
411
|
-
sequence_input_by_list = []
|
|
412
|
-
if self.data_sequence_column is not None:
|
|
413
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
414
|
-
|
|
415
|
-
if self.wavelet_filter_sequence_column is not None:
|
|
416
|
-
sequence_input_by_list.append("WaveletFilterTable:" + UtilFuncs._teradata_collapse_arglist(self.wavelet_filter_sequence_column, ""))
|
|
417
|
-
|
|
418
|
-
if len(sequence_input_by_list) > 0:
|
|
419
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
420
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
421
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
422
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
423
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
# Declare empty lists to hold input table information.
|
|
427
|
-
self.__func_input_arg_sql_names = []
|
|
428
|
-
self.__func_input_table_view_query = []
|
|
429
|
-
self.__func_input_dataframe_type = []
|
|
430
|
-
self.__func_input_distribution = []
|
|
431
|
-
self.__func_input_partition_by_cols = []
|
|
432
|
-
self.__func_input_order_by_cols = []
|
|
433
|
-
|
|
434
|
-
# Process data
|
|
435
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
436
|
-
self.__func_input_distribution.append("NONE")
|
|
437
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
438
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
439
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
440
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
441
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
442
|
-
|
|
443
|
-
# Process wavelet_filter
|
|
444
|
-
if self.wavelet_filter is not None:
|
|
445
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.wavelet_filter, False)
|
|
446
|
-
self.__func_input_distribution.append("NONE")
|
|
447
|
-
self.__func_input_arg_sql_names.append("WaveletFilterTable")
|
|
448
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
449
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
450
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
451
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
452
|
-
|
|
453
|
-
function_name = "DWT2D"
|
|
454
|
-
# Create instance to generate SQLMR.
|
|
455
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
456
|
-
self.__func_input_arg_sql_names,
|
|
457
|
-
self.__func_input_table_view_query,
|
|
458
|
-
self.__func_input_dataframe_type,
|
|
459
|
-
self.__func_input_distribution,
|
|
460
|
-
self.__func_input_partition_by_cols,
|
|
461
|
-
self.__func_input_order_by_cols,
|
|
462
|
-
self.__func_other_arg_sql_names,
|
|
463
|
-
self.__func_other_args,
|
|
464
|
-
self.__func_other_arg_json_datatypes,
|
|
465
|
-
self.__func_output_args_sql_names,
|
|
466
|
-
self.__func_output_args,
|
|
467
|
-
engine="ENGINE_ML")
|
|
468
|
-
# Invoke call to SQL-MR generation.
|
|
469
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
470
|
-
|
|
471
|
-
# Print SQL-MR query if requested to do so.
|
|
472
|
-
if display.print_sqlmr_query:
|
|
473
|
-
print(self.sqlmr_query)
|
|
474
|
-
|
|
475
|
-
# Set the algorithm name for Model Cataloging.
|
|
476
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
477
|
-
|
|
478
|
-
def __execute(self):
|
|
479
|
-
"""
|
|
480
|
-
Function to execute SQL-MR queries.
|
|
481
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
482
|
-
"""
|
|
483
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
484
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
485
|
-
try:
|
|
486
|
-
# Generate the output.
|
|
487
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
488
|
-
except Exception as emsg:
|
|
489
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
490
|
-
|
|
491
|
-
# Update output table data frames.
|
|
492
|
-
self._mlresults = []
|
|
493
|
-
self.coefficient = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficient_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficient_temp_tablename))
|
|
494
|
-
self.meta_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__meta_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__meta_table_temp_tablename))
|
|
495
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
496
|
-
self._mlresults.append(self.coefficient)
|
|
497
|
-
self._mlresults.append(self.meta_table)
|
|
498
|
-
self._mlresults.append(self.output)
|
|
499
|
-
|
|
500
|
-
def show_query(self):
|
|
501
|
-
"""
|
|
502
|
-
Function to return the underlying SQL query.
|
|
503
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
504
|
-
"""
|
|
505
|
-
return self.sqlmr_query
|
|
506
|
-
|
|
507
|
-
def get_prediction_type(self):
|
|
508
|
-
"""
|
|
509
|
-
Function to return the Prediction type of the algorithm.
|
|
510
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
511
|
-
as saved in the Model Catalog.
|
|
512
|
-
"""
|
|
513
|
-
return self._prediction_type
|
|
514
|
-
|
|
515
|
-
def get_target_column(self):
|
|
516
|
-
"""
|
|
517
|
-
Function to return the Target Column of the algorithm.
|
|
518
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
519
|
-
as saved in the Model Catalog.
|
|
520
|
-
"""
|
|
521
|
-
return self._target_column
|
|
522
|
-
|
|
523
|
-
def get_build_time(self):
|
|
524
|
-
"""
|
|
525
|
-
Function to return the build time of the algorithm in seconds.
|
|
526
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
527
|
-
as saved in the Model Catalog.
|
|
528
|
-
"""
|
|
529
|
-
return self._build_time
|
|
530
|
-
|
|
531
|
-
def _get_algorithm_name(self):
|
|
532
|
-
"""
|
|
533
|
-
Function to return the name of the algorithm.
|
|
534
|
-
"""
|
|
535
|
-
return self._algorithm_name
|
|
536
|
-
|
|
537
|
-
def _get_sql_specific_attributes(self):
|
|
538
|
-
"""
|
|
539
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
540
|
-
"""
|
|
541
|
-
return self._sql_specific_attributes
|
|
542
|
-
|
|
543
|
-
@classmethod
|
|
544
|
-
def _from_model_catalog(cls,
|
|
545
|
-
coefficient = None,
|
|
546
|
-
meta_table = None,
|
|
547
|
-
output = None,
|
|
548
|
-
**kwargs):
|
|
549
|
-
"""
|
|
550
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
551
|
-
"""
|
|
552
|
-
kwargs.pop("coefficient", None)
|
|
553
|
-
kwargs.pop("meta_table", None)
|
|
554
|
-
kwargs.pop("output", None)
|
|
555
|
-
|
|
556
|
-
# Model Cataloging related attributes.
|
|
557
|
-
target_column = kwargs.pop("__target_column", None)
|
|
558
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
559
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
560
|
-
build_time = kwargs.pop("__build_time", None)
|
|
561
|
-
|
|
562
|
-
# Let's create an object of this class.
|
|
563
|
-
obj = cls(**kwargs)
|
|
564
|
-
obj.coefficient = coefficient
|
|
565
|
-
obj.meta_table = meta_table
|
|
566
|
-
obj.output = output
|
|
567
|
-
|
|
568
|
-
# Initialize the sqlmr_query class attribute.
|
|
569
|
-
obj.sqlmr_query = None
|
|
570
|
-
|
|
571
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
572
|
-
obj._sql_specific_attributes = None
|
|
573
|
-
obj._target_column = target_column
|
|
574
|
-
obj._prediction_type = prediction_type
|
|
575
|
-
obj._algorithm_name = algorithm_name
|
|
576
|
-
obj._build_time = build_time
|
|
577
|
-
|
|
578
|
-
# Update output table data frames.
|
|
579
|
-
obj._mlresults = []
|
|
580
|
-
obj.coefficient = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficient), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficient))
|
|
581
|
-
obj.meta_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.meta_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.meta_table))
|
|
582
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
583
|
-
obj._mlresults.append(obj.coefficient)
|
|
584
|
-
obj._mlresults.append(obj.meta_table)
|
|
585
|
-
obj._mlresults.append(obj.output)
|
|
586
|
-
return obj
|
|
587
|
-
|
|
588
|
-
def __repr__(self):
|
|
589
|
-
"""
|
|
590
|
-
Returns the string representation for a DWT2D class instance.
|
|
591
|
-
"""
|
|
592
|
-
repr_string="############ STDOUT Output ############"
|
|
593
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
594
|
-
repr_string="{}\n\n\n############ coefficient Output ############".format(repr_string)
|
|
595
|
-
repr_string = "{}\n\n{}".format(repr_string,self.coefficient)
|
|
596
|
-
repr_string="{}\n\n\n############ meta_table Output ############".format(repr_string)
|
|
597
|
-
repr_string = "{}\n\n{}".format(repr_string,self.meta_table)
|
|
598
|
-
return repr_string
|
|
599
|
-
|