teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,632 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.1
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class NPath:
31
-
32
- def __init__(self,
33
- data1 = None,
34
- mode = None,
35
- pattern = None,
36
- symbols = None,
37
- result = None,
38
- filter = None,
39
- data2 = None,
40
- data3 = None,
41
- data1_partition_column = None,
42
- data2_partition_column = None,
43
- data3_partition_column = None,
44
- data1_order_column = None,
45
- data2_order_column = None,
46
- data3_order_column = None):
47
- """
48
- DESCRIPTION:
49
- The nPath function scans a set of rows, looking for patterns that you
50
- specify. For each set of input rows that matches the pattern, nPath
51
- produces a single output row. The function provides a flexible
52
- pattern-matching capability that lets you specify complex patterns in
53
- the input data and define the values that are output for each matched
54
- input set.
55
-
56
-
57
- PARAMETERS:
58
- data1:
59
- Required Argument.
60
- Specifies the input teradataml DataFrame containing the input data set.
61
-
62
- data1_partition_column:
63
- Required Argument.
64
- Specifies Partition By columns for data1.
65
- Values to this argument can be provided as a list, if multiple
66
- columns are used for partition.
67
- Types: str OR list of Strings (str)
68
-
69
- data1_order_column:
70
- Required Argument.
71
- Specifies Order By columns for data1.
72
- Values to this argument can be provided as a list, if multiple
73
- columns are used for ordering.
74
- Types: str OR list of Strings (str)
75
-
76
- mode:
77
- Required Argument.
78
- Specifies the pattern-matching mode:
79
- OVERLAPPING: The function finds every occurrence of the pattern in
80
- the partition, regardless of whether it is part of a previously
81
- found match. Therefore, one row can match multiple symbols in a
82
- given matched pattern.
83
- NONOVERLAPPING: The function begins the next pattern search at the
84
- row that follows the last pattern match. This is the default
85
- behavior of many commonly used pattern matching utilities, including
86
- the UNIX grep utility.
87
- Permitted Values: OVERLAPPING, NONOVERLAPPING
88
- Types: str
89
-
90
- pattern:
91
- Required Argument.
92
- Specifies the pattern for which the function searches. You compose
93
- pattern with the symbols that you define in the symbols argument,
94
- operators, and parentheses.
95
- When patterns have multiple operators, the function applies
96
- them in order of precedence, and applies operators of equal
97
- precedence from left to right. To specify that a subpattern must
98
- appear a specific number of times, use the Range-Matching
99
- Feature.
100
- The basic pattern operators in decreasing order of precedence
101
- "pattern", "pattern.", "pattern?", "pattern*", "pattern+",
102
- "pattern1.pattern2", "pattern1|pattern2", "^pattern", "pattern$"
103
- To force the function to evaluate a subpattern first, enclose it in parentheses.
104
- Example:
105
- ^A.(B|C)+.D?.X*.A$
106
- The preceding pattern definition matches any set of rows
107
- whose first row starts with the definition of symbol A,
108
- followed by a non-empty sequence of rows, each of which
109
- meets the definition of either symbol B or C, optionally
110
- followed by one row that meets the definition of symbol D,
111
- followed by any number of rows that meet the definition of
112
- symbol X, and ending with a row that ends with the definition of symbol A.
113
- You can use parentheses to define precedence rules. Parentheses are
114
- recommended for clarity, even where not strictly required.
115
- Types: str
116
-
117
- symbols:
118
- Required Argument.
119
- Defines the symbols that appear in the values of the pattern and
120
- result arguments. The col_expr is an expression whose value is a
121
- column name, symbol is any valid identifier, and symbol_predicate is
122
- a SQL predicate (often a column name).
123
- For example, the 'symbols' argument for analyzing website visits might
124
- look like this:
125
- Symbols
126
- (
127
- pagetype = "homepage" AS H,
128
- pagetype <> "homepage" AND pagetype <> "checkout" AS PP,
129
- pagetype = "checkout" AS CO
130
- )
131
- The symbol is case-insensitive; however, a symbol of one or two
132
- uppercase letters is easy to identify in patterns.
133
- If col_expr represents a column that appears in multiple input
134
- DataFrames, then you must qualify the ambiguous column name with
135
- the SQL name corresponding to its teradataml DataFrame name.
136
- For example:
137
- Symbols
138
- (
139
- input1.pagetype = "homepage" AS H,
140
- input1.pagetype = "thankyou" AS T,
141
- input2.adname = "xmaspromo" AS X,
142
- input2.adname = "realtorpromo" AS R
143
- )
144
- The mapping from teradataml DataFrame name to its corresponding SQL name
145
- is as shown below:
146
- * data1: input1
147
- * data2: input2
148
- * data3: input3
149
- You can create symbol predicates that compare a row to a previous
150
- or subsequent row, using a LAG or LEAD operator.
151
- LAG Expression Syntax:
152
- { current_expr operator LAG (previous_expr, lag_rows [, default]) |
153
- LAG (previous_expr, lag_rows [, default]) operator current_expr }
154
- LAG and LEAD Expression Rules:
155
- • A symbol definition can have multiple LAG and LEAD expressions.
156
- • A symbol definition that has a LAG or LEAD expression cannot have an OR operator.
157
- • If a symbol definition has a LAG or LEAD expression and the input
158
- is not a table, you must create an alias of the input query.
159
- Types: str OR list of Strings (str)
160
-
161
- result:
162
- Required Argument.
163
- Defines the output columns. The col_expr is an expression whose value
164
- is a column name; it specifies the values to retrieve from the
165
- matched rows. The function applies aggregate function to these
166
- values.
167
- Supported aggregate functions:
168
- • SQL aggregate functions are [AVG, COUNT, MAX, MIN, SUM].
169
- • ML Engine nPath sequence aggregate functions.
170
- The function evaluates this argument once for every matched pattern
171
- in the partition (that is, it outputs one row for each pattern match).
172
- Note:
173
- For col_expr representing a column that appears in multiple input
174
- DataFrames, you must qualify the ambiguous column name with the SQL
175
- name corresponding to its teradataml DataFrame name. Please see the
176
- description of the 'symbols' parameter for the mapping from teradataml
177
- DataFrame name to the SQL name.
178
- Types: str OR list of Strings (str)
179
-
180
- filter:
181
- Optional Argument.
182
- Specifies filters to impose on the matched rows. The function
183
- combines the filter expressions using the AND operator.
184
- The filter_expression syntax is:
185
- symbol_expression comparison_operator symbol_expression
186
- The two symbol expressions must be type-compatible.
187
- The symbol_expression syntax is:
188
- { FIRST | LAST }(column_with_expression OF [ANY](symbol[,...]))
189
- The column_with_expression cannot contain the operator AND or OR, and
190
- all its columns must come from the same input. If the function has
191
- multiple inputs, then column_with_expression and symbol must come
192
- from the same input.
193
- The comparison_operator is either <, >, <=, >=, =, or <>.
194
- Note:
195
- For column_with_expression representing a column that appears in
196
- multiple input DataFrames, you must qualify the ambiguous column name with
197
- the SQL name corresponding to its teradataml DataFrame name. Please see
198
- the description of the 'symbols' parameter for the mapping from teradataml
199
- DataFrame name to the SQL name.
200
- Types: str OR list of Strings (str)
201
-
202
- data2:
203
- Optional Argument.
204
- Specifies the additional optional input teradataml DataFrame containing the input data set.
205
-
206
- data2_partition_column:
207
- Optional Argument.
208
- Specifies Partition By columns for data2.
209
- Values to this argument can be provided as a list, if multiple
210
- columns are used for partition.
211
- Types: str OR list of Strings (str)
212
-
213
- data2_order_column:
214
- Optional Argument.
215
- Required when data2 teradataml DataFrame is used.
216
- Specifies Order By columns for data2.
217
- Values to this argument can be provided as a list, if multiple
218
- columns are used for ordering.
219
- Types: str OR list of Strings (str)
220
-
221
- data3:
222
- Optional Argument.
223
- Specifies the additional optional input teradataml DataFrame containing the input data set.
224
-
225
- data3_partition_column:
226
- Optional Argument.
227
- Specifies Partition By columns for data3.
228
- Values to this argument can be provided as a list, if multiple
229
- columns are used for partition.
230
- Types: str OR list of Strings (str)
231
-
232
- data3_order_column:
233
- Optional Argument.
234
- Required when data3 teradataml DataFrame is used.
235
- Specifies Order By columns for data3.
236
- Values to this argument can be provided as a list, if multiple
237
- columns are used for ordering.
238
- Types: str OR list of Strings (str)
239
-
240
- RETURNS:
241
- Instance of NPath.
242
- Output teradataml DataFrames can be accessed using attribute
243
- references, such as NPathObj.<attribute_name>.
244
- Output teradataml DataFrame attribute name is:
245
- result
246
-
247
-
248
- RAISES:
249
- TeradataMlException
250
-
251
-
252
- EXAMPLES:
253
- # Load example data.
254
- load_example_data("NPath",["impressions","clicks2", "tv_spots", "clickstream"])
255
-
256
- # Create input teradataml dataframes.
257
- impressions = DataFrame.from_table("impressions")
258
- clicks2 = DataFrame.from_table("clicks2")
259
- tv_spots = DataFrame.from_table("tv_spots")
260
- clickstream = DataFrame.from_table("clickstream")
261
-
262
- # Example1:
263
- # We will try to search for pattern '(imp|tv_imp)*.click'
264
- # in the provided data sets(imressions, clicks2, tv_spots).
265
- # Run NPath function with the required patterns to get the rows which
266
- # has specified pattern. rows that matches the pattern.
267
- result = NPath(data1=impressions,
268
- data1_partition_column='userid',
269
- data1_order_column='ts',
270
- data2=clicks2,
271
- data2_partition_column='userid',
272
- data2_order_column='ts',
273
- data3=tv_spots,
274
- data3_partition_column='ts',
275
- data3_order_column='ts',
276
- result=['COUNT(* of imp) as imp_cnt','COUNT(* of tv_imp) as tv_imp_cnt'],
277
- mode='nonoverlapping',
278
- pattern='(imp|tv_imp)*.click',
279
- symbols=['true as imp','true as click','true as tv_imp'])
280
-
281
- # Print the result dataframe.
282
- print(result.result)
283
-
284
- # Example2:
285
- # We will try to search for pattern 'home.clickview*.checkout'
286
- # in the provided data set clickstream.
287
- # Run NPath function with the required patterns to get the rows which
288
- # has specified pattern and filter the rows with the filter,
289
- # where filter and result have ML Engine nPath sequence aggregate functions
290
- # like 'FIRST', 'COUNT' and 'LAST'
291
- result = NPath(data1=clickstream,
292
- data1_partition_column='userid',
293
- data1_order_column='clicktime',
294
- result=['FIRST(userid of ANY(home, checkout, clickview)) AS userid',
295
- 'FIRST (sessionid of ANY(home, checkout, clickview)) AS sessioinid',
296
- 'COUNT (* of any(home, checkout, clickview)) AS cnt',
297
- 'FIRST (clicktime of ANY(home)) AS firsthome',
298
- 'LAST (clicktime of ANY(checkout)) AS lastcheckout'],
299
- mode='nonoverlapping',
300
- pattern='home.clickview*.checkout',
301
- symbols=["pagetype='home' AS home",
302
- "pagetype <> 'home' AND pagetype <> 'checkout' AS clickview",
303
- "pagetype='checkout' AS checkout"],
304
- filter = "FIRST (clicktime OF ANY (home)) <"
305
- "FIRST (clicktime of any(checkout))"
306
- )
307
-
308
- # Print the result dataframe.
309
- print(result.result)
310
-
311
- """
312
-
313
- # Start the timer to get the build time
314
- _start_time = time.time()
315
-
316
- self.data1 = data1
317
- self.mode = mode
318
- self.pattern = pattern
319
- self.symbols = symbols
320
- self.result = result
321
- self.filter = filter
322
- self.data2 = data2
323
- self.data3 = data3
324
- self.data1_partition_column = data1_partition_column
325
- self.data2_partition_column = data2_partition_column
326
- self.data3_partition_column = data3_partition_column
327
- self.data1_order_column = data1_order_column
328
- self.data2_order_column = data2_order_column
329
- self.data3_order_column = data3_order_column
330
-
331
- # Create TeradataPyWrapperUtils instance which contains validation functions.
332
- self.__awu = AnalyticsWrapperUtils()
333
- self.__aed_utils = AedUtils()
334
-
335
- # Create argument information matrix to do parameter checking
336
- self.__arg_info_matrix = []
337
- self.__arg_info_matrix.append(["data1", self.data1, False, (DataFrame)])
338
- self.__arg_info_matrix.append(["data1_partition_column", self.data1_partition_column, False, (str,list)])
339
- self.__arg_info_matrix.append(["data1_order_column", self.data1_order_column, False, (str,list)])
340
- self.__arg_info_matrix.append(["mode", self.mode, False, (str)])
341
- self.__arg_info_matrix.append(["pattern", self.pattern, False, (str)])
342
- self.__arg_info_matrix.append(["symbols", self.symbols, False, (str,list)])
343
- self.__arg_info_matrix.append(["result", self.result, False, (str,list)])
344
- self.__arg_info_matrix.append(["filter", self.filter, True, (str,list)])
345
- self.__arg_info_matrix.append(["data2", self.data2, True, (DataFrame)])
346
- self.__arg_info_matrix.append(["data2_partition_column", self.data2_partition_column, True, (str,list)])
347
- self.__arg_info_matrix.append(["data2_order_column", self.data2_order_column, self.data2 is None, (str,list)])
348
- self.__arg_info_matrix.append(["data3", self.data3, True, (DataFrame)])
349
- self.__arg_info_matrix.append(["data3_partition_column", self.data3_partition_column, True, (str,list)])
350
- self.__arg_info_matrix.append(["data3_order_column", self.data3_order_column, self.data3 is None, (str,list)])
351
-
352
- if inspect.stack()[1][3] != '_from_model_catalog':
353
- # Perform the function validations
354
- self.__validate()
355
- # Generate the ML query
356
- self.__form_tdml_query()
357
- # Execute ML query
358
- self.__execute()
359
- # Get the prediction type
360
- self._prediction_type = self.__awu._get_function_prediction_type(self)
361
-
362
- # End the timer to get the build time
363
- _end_time = time.time()
364
-
365
- # Calculate the build time
366
- self._build_time = (int)(_end_time - _start_time)
367
-
368
- def __validate(self):
369
- """
370
- Function to validate sqlmr function arguments, which verifies missing
371
- arguments, input argument and table types. Also processes the
372
- argument values.
373
- """
374
-
375
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
376
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
377
-
378
- # Make sure that a non-NULL value has been supplied correct type of argument
379
- self.__awu._validate_argument_types(self.__arg_info_matrix)
380
-
381
- # Check to make sure input table types are strings or data frame objects or of valid type.
382
- self.__awu._validate_input_table_datatype(self.data1, "data1", None)
383
- self.__awu._validate_input_table_datatype(self.data2, "data2", None)
384
- self.__awu._validate_input_table_datatype(self.data3, "data3", None)
385
-
386
- # Check for permitted values
387
- mode_permitted_values = ["OVERLAPPING", "NONOVERLAPPING"]
388
- self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
389
-
390
- self.__awu._validate_input_columns_not_empty(self.data1_partition_column, "data1_partition_column")
391
- self.__awu._validate_dataframe_has_argument_columns(self.data1_partition_column, "data1_partition_column", self.data1, "data1", True)
392
-
393
- self.__awu._validate_input_columns_not_empty(self.data2_partition_column, "data2_partition_column")
394
- self.__awu._validate_dataframe_has_argument_columns(self.data2_partition_column, "data2_partition_column", self.data2, "data2", True)
395
-
396
- self.__awu._validate_input_columns_not_empty(self.data3_partition_column, "data3_partition_column")
397
- self.__awu._validate_dataframe_has_argument_columns(self.data3_partition_column, "data3_partition_column", self.data3, "data3", True)
398
-
399
- self.__awu._validate_input_columns_not_empty(self.data1_order_column, "data1_order_column")
400
- self.__awu._validate_dataframe_has_argument_columns(self.data1_order_column, "data1_order_column", self.data1, "data1", False)
401
-
402
- self.__awu._validate_input_columns_not_empty(self.data2_order_column, "data2_order_column")
403
- self.__awu._validate_dataframe_has_argument_columns(self.data2_order_column, "data2_order_column", self.data2, "data2", False)
404
-
405
- self.__awu._validate_input_columns_not_empty(self.data3_order_column, "data3_order_column")
406
- self.__awu._validate_dataframe_has_argument_columns(self.data3_order_column, "data3_order_column", self.data3, "data3", False)
407
-
408
- # Validate that value passed to the output column argument is not empty.
409
- self.__awu._validate_input_columns_not_empty(self.result, "result")
410
-
411
- def __form_tdml_query(self):
412
- """
413
- Function to generate the analytical function queries. The function defines
414
- variables and list of arguments required to form the query.
415
- """
416
-
417
- # Output table arguments list
418
- self.__func_output_args_sql_names = []
419
- self.__func_output_args = []
420
-
421
- # Model Cataloging related attributes.
422
- self._sql_specific_attributes = {}
423
- self._sql_formula_attribute_mapper = {}
424
- self._target_column = None
425
- self._algorithm_name = None
426
-
427
- # Generate lists for rest of the function arguments
428
- self.__func_other_arg_sql_names = []
429
- self.__func_other_args = []
430
- self.__func_other_arg_json_datatypes = []
431
-
432
- self.__func_other_arg_sql_names.append("Mode")
433
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode, ""))
434
- self.__func_other_arg_json_datatypes.append("STRING")
435
-
436
- self.__func_other_arg_sql_names.append("Pattern")
437
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pattern, "'"))
438
- self.__func_other_arg_json_datatypes.append("STRING")
439
-
440
- self.__func_other_arg_sql_names.append("Symbols")
441
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.symbols, ""))
442
- self.__func_other_arg_json_datatypes.append("STRING")
443
-
444
- if self.filter is not None:
445
- self.__func_other_arg_sql_names.append("Filter")
446
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.filter, ""))
447
- self.__func_other_arg_json_datatypes.append("STRING")
448
-
449
- self.__func_other_arg_sql_names.append("Result")
450
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.result, ""))
451
- self.__func_other_arg_json_datatypes.append("STRING")
452
-
453
-
454
- # Declare empty lists to hold input table information.
455
- self.__func_input_arg_sql_names = []
456
- self.__func_input_table_view_query = []
457
- self.__func_input_dataframe_type = []
458
- self.__func_input_distribution = []
459
- self.__func_input_partition_by_cols = []
460
- self.__func_input_order_by_cols = []
461
-
462
- # Process data1
463
- self.data1_partition_column = UtilFuncs._teradata_collapse_arglist(self.data1_partition_column, "\"")
464
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data1, False)
465
- self.__func_input_distribution.append("FACT")
466
- self.__func_input_arg_sql_names.append("input1")
467
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
468
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
469
- self.__func_input_partition_by_cols.append(self.data1_partition_column)
470
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data1_order_column, "\""))
471
-
472
- # Process data2
473
- if self.data2 is not None:
474
- data2_distribution = "DIMENSION"
475
- if self.data2_partition_column is not None:
476
- data2_distribution = "FACT"
477
- data2_partition_column = UtilFuncs._teradata_collapse_arglist(self.data2_partition_column, "\"")
478
- else:
479
- data2_partition_column = "NA_character_"
480
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data2, False)
481
- self.__func_input_distribution.append(data2_distribution)
482
- self.__func_input_arg_sql_names.append("input2")
483
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
484
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
485
- self.__func_input_partition_by_cols.append(data2_partition_column)
486
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data2_order_column, "\""))
487
-
488
- # Process data3
489
- if self.data3 is not None:
490
- data3_distribution = "DIMENSION"
491
- if self.data3_partition_column is not None:
492
- data3_distribution = "FACT"
493
- data3_partition_column = UtilFuncs._teradata_collapse_arglist(self.data3_partition_column, "\"")
494
- else:
495
- data3_partition_column = "NA_character_"
496
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data3, False)
497
- self.__func_input_distribution.append(data3_distribution)
498
- self.__func_input_arg_sql_names.append("input3")
499
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
500
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
501
- self.__func_input_partition_by_cols.append(data3_partition_column)
502
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data3_order_column, "\""))
503
-
504
- function_name = "nPath"
505
- # Create instance to generate SQLMR.
506
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
507
- self.__func_input_arg_sql_names,
508
- self.__func_input_table_view_query,
509
- self.__func_input_dataframe_type,
510
- self.__func_input_distribution,
511
- self.__func_input_partition_by_cols,
512
- self.__func_input_order_by_cols,
513
- self.__func_other_arg_sql_names,
514
- self.__func_other_args,
515
- self.__func_other_arg_json_datatypes,
516
- self.__func_output_args_sql_names,
517
- self.__func_output_args,
518
- engine="ENGINE_SQL")
519
- # Invoke call to SQL-MR generation.
520
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
521
-
522
- # Print SQL-MR query if requested to do so.
523
- if display.print_sqlmr_query:
524
- print(self.sqlmr_query)
525
-
526
- # Set the algorithm name for Model Cataloging.
527
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
528
-
529
- def __execute(self):
530
- """
531
- Function to execute SQL-MR queries.
532
- Create DataFrames for the required SQL-MR outputs.
533
- """
534
- # Generate STDOUT table name and add it to the output table list.
535
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
536
- try:
537
- # Generate the output.
538
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
539
- except Exception as emsg:
540
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
541
-
542
- # Update output table data frames.
543
- self._mlresults = []
544
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
545
- self._mlresults.append(self.result)
546
-
547
- def show_query(self):
548
- """
549
- Function to return the underlying SQL query.
550
- When model object is created using retrieve_model(), then None is returned.
551
- """
552
- return self.sqlmr_query
553
-
554
- def get_prediction_type(self):
555
- """
556
- Function to return the Prediction type of the algorithm.
557
- When model object is created using retrieve_model(), then the value returned is
558
- as saved in the Model Catalog.
559
- """
560
- return self._prediction_type
561
-
562
- def get_target_column(self):
563
- """
564
- Function to return the Target Column of the algorithm.
565
- When model object is created using retrieve_model(), then the value returned is
566
- as saved in the Model Catalog.
567
- """
568
- return self._target_column
569
-
570
- def get_build_time(self):
571
- """
572
- Function to return the build time of the algorithm in seconds.
573
- When model object is created using retrieve_model(), then the value returned is
574
- as saved in the Model Catalog.
575
- """
576
- return self._build_time
577
-
578
- def _get_algorithm_name(self):
579
- """
580
- Function to return the name of the algorithm.
581
- """
582
- return self._algorithm_name
583
-
584
- def _get_sql_specific_attributes(self):
585
- """
586
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
587
- """
588
- return self._sql_specific_attributes
589
-
590
- @classmethod
591
- def _from_model_catalog(cls,
592
- result = None,
593
- **kwargs):
594
- """
595
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
596
- """
597
- kwargs.pop("result", None)
598
-
599
- # Model Cataloging related attributes.
600
- target_column = kwargs.pop("__target_column", None)
601
- prediction_type = kwargs.pop("__prediction_type", None)
602
- algorithm_name = kwargs.pop("__algorithm_name", None)
603
- build_time = kwargs.pop("__build_time", None)
604
-
605
- # Let's create an object of this class.
606
- obj = cls(**kwargs)
607
- obj.result = result
608
-
609
- # Initialize the sqlmr_query class attribute.
610
- obj.sqlmr_query = None
611
-
612
- # Initialize the SQL specific Model Cataloging attributes.
613
- obj._sql_specific_attributes = None
614
- obj._target_column = target_column
615
- obj._prediction_type = prediction_type
616
- obj._algorithm_name = algorithm_name
617
- obj._build_time = build_time
618
-
619
- # Update output table data frames.
620
- obj._mlresults = []
621
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
622
- obj._mlresults.append(obj.result)
623
- return obj
624
-
625
- def __repr__(self):
626
- """
627
- Returns the string representation for a NPath class instance.
628
- """
629
- repr_string="############ STDOUT Output ############"
630
- repr_string = "{}\n\n{}".format(repr_string,self.result)
631
- return repr_string
632
-