teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,632 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Khurd (rohit.khurd@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.1
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NPath:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data1 = None,
|
|
34
|
-
mode = None,
|
|
35
|
-
pattern = None,
|
|
36
|
-
symbols = None,
|
|
37
|
-
result = None,
|
|
38
|
-
filter = None,
|
|
39
|
-
data2 = None,
|
|
40
|
-
data3 = None,
|
|
41
|
-
data1_partition_column = None,
|
|
42
|
-
data2_partition_column = None,
|
|
43
|
-
data3_partition_column = None,
|
|
44
|
-
data1_order_column = None,
|
|
45
|
-
data2_order_column = None,
|
|
46
|
-
data3_order_column = None):
|
|
47
|
-
"""
|
|
48
|
-
DESCRIPTION:
|
|
49
|
-
The nPath function scans a set of rows, looking for patterns that you
|
|
50
|
-
specify. For each set of input rows that matches the pattern, nPath
|
|
51
|
-
produces a single output row. The function provides a flexible
|
|
52
|
-
pattern-matching capability that lets you specify complex patterns in
|
|
53
|
-
the input data and define the values that are output for each matched
|
|
54
|
-
input set.
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
data1:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the input teradataml DataFrame containing the input data set.
|
|
61
|
-
|
|
62
|
-
data1_partition_column:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies Partition By columns for data1.
|
|
65
|
-
Values to this argument can be provided as a list, if multiple
|
|
66
|
-
columns are used for partition.
|
|
67
|
-
Types: str OR list of Strings (str)
|
|
68
|
-
|
|
69
|
-
data1_order_column:
|
|
70
|
-
Required Argument.
|
|
71
|
-
Specifies Order By columns for data1.
|
|
72
|
-
Values to this argument can be provided as a list, if multiple
|
|
73
|
-
columns are used for ordering.
|
|
74
|
-
Types: str OR list of Strings (str)
|
|
75
|
-
|
|
76
|
-
mode:
|
|
77
|
-
Required Argument.
|
|
78
|
-
Specifies the pattern-matching mode:
|
|
79
|
-
OVERLAPPING: The function finds every occurrence of the pattern in
|
|
80
|
-
the partition, regardless of whether it is part of a previously
|
|
81
|
-
found match. Therefore, one row can match multiple symbols in a
|
|
82
|
-
given matched pattern.
|
|
83
|
-
NONOVERLAPPING: The function begins the next pattern search at the
|
|
84
|
-
row that follows the last pattern match. This is the default
|
|
85
|
-
behavior of many commonly used pattern matching utilities, including
|
|
86
|
-
the UNIX grep utility.
|
|
87
|
-
Permitted Values: OVERLAPPING, NONOVERLAPPING
|
|
88
|
-
Types: str
|
|
89
|
-
|
|
90
|
-
pattern:
|
|
91
|
-
Required Argument.
|
|
92
|
-
Specifies the pattern for which the function searches. You compose
|
|
93
|
-
pattern with the symbols that you define in the symbols argument,
|
|
94
|
-
operators, and parentheses.
|
|
95
|
-
When patterns have multiple operators, the function applies
|
|
96
|
-
them in order of precedence, and applies operators of equal
|
|
97
|
-
precedence from left to right. To specify that a subpattern must
|
|
98
|
-
appear a specific number of times, use the Range-Matching
|
|
99
|
-
Feature.
|
|
100
|
-
The basic pattern operators in decreasing order of precedence
|
|
101
|
-
"pattern", "pattern.", "pattern?", "pattern*", "pattern+",
|
|
102
|
-
"pattern1.pattern2", "pattern1|pattern2", "^pattern", "pattern$"
|
|
103
|
-
To force the function to evaluate a subpattern first, enclose it in parentheses.
|
|
104
|
-
Example:
|
|
105
|
-
^A.(B|C)+.D?.X*.A$
|
|
106
|
-
The preceding pattern definition matches any set of rows
|
|
107
|
-
whose first row starts with the definition of symbol A,
|
|
108
|
-
followed by a non-empty sequence of rows, each of which
|
|
109
|
-
meets the definition of either symbol B or C, optionally
|
|
110
|
-
followed by one row that meets the definition of symbol D,
|
|
111
|
-
followed by any number of rows that meet the definition of
|
|
112
|
-
symbol X, and ending with a row that ends with the definition of symbol A.
|
|
113
|
-
You can use parentheses to define precedence rules. Parentheses are
|
|
114
|
-
recommended for clarity, even where not strictly required.
|
|
115
|
-
Types: str
|
|
116
|
-
|
|
117
|
-
symbols:
|
|
118
|
-
Required Argument.
|
|
119
|
-
Defines the symbols that appear in the values of the pattern and
|
|
120
|
-
result arguments. The col_expr is an expression whose value is a
|
|
121
|
-
column name, symbol is any valid identifier, and symbol_predicate is
|
|
122
|
-
a SQL predicate (often a column name).
|
|
123
|
-
For example, the 'symbols' argument for analyzing website visits might
|
|
124
|
-
look like this:
|
|
125
|
-
Symbols
|
|
126
|
-
(
|
|
127
|
-
pagetype = "homepage" AS H,
|
|
128
|
-
pagetype <> "homepage" AND pagetype <> "checkout" AS PP,
|
|
129
|
-
pagetype = "checkout" AS CO
|
|
130
|
-
)
|
|
131
|
-
The symbol is case-insensitive; however, a symbol of one or two
|
|
132
|
-
uppercase letters is easy to identify in patterns.
|
|
133
|
-
If col_expr represents a column that appears in multiple input
|
|
134
|
-
DataFrames, then you must qualify the ambiguous column name with
|
|
135
|
-
the SQL name corresponding to its teradataml DataFrame name.
|
|
136
|
-
For example:
|
|
137
|
-
Symbols
|
|
138
|
-
(
|
|
139
|
-
input1.pagetype = "homepage" AS H,
|
|
140
|
-
input1.pagetype = "thankyou" AS T,
|
|
141
|
-
input2.adname = "xmaspromo" AS X,
|
|
142
|
-
input2.adname = "realtorpromo" AS R
|
|
143
|
-
)
|
|
144
|
-
The mapping from teradataml DataFrame name to its corresponding SQL name
|
|
145
|
-
is as shown below:
|
|
146
|
-
* data1: input1
|
|
147
|
-
* data2: input2
|
|
148
|
-
* data3: input3
|
|
149
|
-
You can create symbol predicates that compare a row to a previous
|
|
150
|
-
or subsequent row, using a LAG or LEAD operator.
|
|
151
|
-
LAG Expression Syntax:
|
|
152
|
-
{ current_expr operator LAG (previous_expr, lag_rows [, default]) |
|
|
153
|
-
LAG (previous_expr, lag_rows [, default]) operator current_expr }
|
|
154
|
-
LAG and LEAD Expression Rules:
|
|
155
|
-
• A symbol definition can have multiple LAG and LEAD expressions.
|
|
156
|
-
• A symbol definition that has a LAG or LEAD expression cannot have an OR operator.
|
|
157
|
-
• If a symbol definition has a LAG or LEAD expression and the input
|
|
158
|
-
is not a table, you must create an alias of the input query.
|
|
159
|
-
Types: str OR list of Strings (str)
|
|
160
|
-
|
|
161
|
-
result:
|
|
162
|
-
Required Argument.
|
|
163
|
-
Defines the output columns. The col_expr is an expression whose value
|
|
164
|
-
is a column name; it specifies the values to retrieve from the
|
|
165
|
-
matched rows. The function applies aggregate function to these
|
|
166
|
-
values.
|
|
167
|
-
Supported aggregate functions:
|
|
168
|
-
• SQL aggregate functions are [AVG, COUNT, MAX, MIN, SUM].
|
|
169
|
-
• ML Engine nPath sequence aggregate functions.
|
|
170
|
-
The function evaluates this argument once for every matched pattern
|
|
171
|
-
in the partition (that is, it outputs one row for each pattern match).
|
|
172
|
-
Note:
|
|
173
|
-
For col_expr representing a column that appears in multiple input
|
|
174
|
-
DataFrames, you must qualify the ambiguous column name with the SQL
|
|
175
|
-
name corresponding to its teradataml DataFrame name. Please see the
|
|
176
|
-
description of the 'symbols' parameter for the mapping from teradataml
|
|
177
|
-
DataFrame name to the SQL name.
|
|
178
|
-
Types: str OR list of Strings (str)
|
|
179
|
-
|
|
180
|
-
filter:
|
|
181
|
-
Optional Argument.
|
|
182
|
-
Specifies filters to impose on the matched rows. The function
|
|
183
|
-
combines the filter expressions using the AND operator.
|
|
184
|
-
The filter_expression syntax is:
|
|
185
|
-
symbol_expression comparison_operator symbol_expression
|
|
186
|
-
The two symbol expressions must be type-compatible.
|
|
187
|
-
The symbol_expression syntax is:
|
|
188
|
-
{ FIRST | LAST }(column_with_expression OF [ANY](symbol[,...]))
|
|
189
|
-
The column_with_expression cannot contain the operator AND or OR, and
|
|
190
|
-
all its columns must come from the same input. If the function has
|
|
191
|
-
multiple inputs, then column_with_expression and symbol must come
|
|
192
|
-
from the same input.
|
|
193
|
-
The comparison_operator is either <, >, <=, >=, =, or <>.
|
|
194
|
-
Note:
|
|
195
|
-
For column_with_expression representing a column that appears in
|
|
196
|
-
multiple input DataFrames, you must qualify the ambiguous column name with
|
|
197
|
-
the SQL name corresponding to its teradataml DataFrame name. Please see
|
|
198
|
-
the description of the 'symbols' parameter for the mapping from teradataml
|
|
199
|
-
DataFrame name to the SQL name.
|
|
200
|
-
Types: str OR list of Strings (str)
|
|
201
|
-
|
|
202
|
-
data2:
|
|
203
|
-
Optional Argument.
|
|
204
|
-
Specifies the additional optional input teradataml DataFrame containing the input data set.
|
|
205
|
-
|
|
206
|
-
data2_partition_column:
|
|
207
|
-
Optional Argument.
|
|
208
|
-
Specifies Partition By columns for data2.
|
|
209
|
-
Values to this argument can be provided as a list, if multiple
|
|
210
|
-
columns are used for partition.
|
|
211
|
-
Types: str OR list of Strings (str)
|
|
212
|
-
|
|
213
|
-
data2_order_column:
|
|
214
|
-
Optional Argument.
|
|
215
|
-
Required when data2 teradataml DataFrame is used.
|
|
216
|
-
Specifies Order By columns for data2.
|
|
217
|
-
Values to this argument can be provided as a list, if multiple
|
|
218
|
-
columns are used for ordering.
|
|
219
|
-
Types: str OR list of Strings (str)
|
|
220
|
-
|
|
221
|
-
data3:
|
|
222
|
-
Optional Argument.
|
|
223
|
-
Specifies the additional optional input teradataml DataFrame containing the input data set.
|
|
224
|
-
|
|
225
|
-
data3_partition_column:
|
|
226
|
-
Optional Argument.
|
|
227
|
-
Specifies Partition By columns for data3.
|
|
228
|
-
Values to this argument can be provided as a list, if multiple
|
|
229
|
-
columns are used for partition.
|
|
230
|
-
Types: str OR list of Strings (str)
|
|
231
|
-
|
|
232
|
-
data3_order_column:
|
|
233
|
-
Optional Argument.
|
|
234
|
-
Required when data3 teradataml DataFrame is used.
|
|
235
|
-
Specifies Order By columns for data3.
|
|
236
|
-
Values to this argument can be provided as a list, if multiple
|
|
237
|
-
columns are used for ordering.
|
|
238
|
-
Types: str OR list of Strings (str)
|
|
239
|
-
|
|
240
|
-
RETURNS:
|
|
241
|
-
Instance of NPath.
|
|
242
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
243
|
-
references, such as NPathObj.<attribute_name>.
|
|
244
|
-
Output teradataml DataFrame attribute name is:
|
|
245
|
-
result
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
RAISES:
|
|
249
|
-
TeradataMlException
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
EXAMPLES:
|
|
253
|
-
# Load example data.
|
|
254
|
-
load_example_data("NPath",["impressions","clicks2", "tv_spots", "clickstream"])
|
|
255
|
-
|
|
256
|
-
# Create input teradataml dataframes.
|
|
257
|
-
impressions = DataFrame.from_table("impressions")
|
|
258
|
-
clicks2 = DataFrame.from_table("clicks2")
|
|
259
|
-
tv_spots = DataFrame.from_table("tv_spots")
|
|
260
|
-
clickstream = DataFrame.from_table("clickstream")
|
|
261
|
-
|
|
262
|
-
# Example1:
|
|
263
|
-
# We will try to search for pattern '(imp|tv_imp)*.click'
|
|
264
|
-
# in the provided data sets(imressions, clicks2, tv_spots).
|
|
265
|
-
# Run NPath function with the required patterns to get the rows which
|
|
266
|
-
# has specified pattern. rows that matches the pattern.
|
|
267
|
-
result = NPath(data1=impressions,
|
|
268
|
-
data1_partition_column='userid',
|
|
269
|
-
data1_order_column='ts',
|
|
270
|
-
data2=clicks2,
|
|
271
|
-
data2_partition_column='userid',
|
|
272
|
-
data2_order_column='ts',
|
|
273
|
-
data3=tv_spots,
|
|
274
|
-
data3_partition_column='ts',
|
|
275
|
-
data3_order_column='ts',
|
|
276
|
-
result=['COUNT(* of imp) as imp_cnt','COUNT(* of tv_imp) as tv_imp_cnt'],
|
|
277
|
-
mode='nonoverlapping',
|
|
278
|
-
pattern='(imp|tv_imp)*.click',
|
|
279
|
-
symbols=['true as imp','true as click','true as tv_imp'])
|
|
280
|
-
|
|
281
|
-
# Print the result dataframe.
|
|
282
|
-
print(result.result)
|
|
283
|
-
|
|
284
|
-
# Example2:
|
|
285
|
-
# We will try to search for pattern 'home.clickview*.checkout'
|
|
286
|
-
# in the provided data set clickstream.
|
|
287
|
-
# Run NPath function with the required patterns to get the rows which
|
|
288
|
-
# has specified pattern and filter the rows with the filter,
|
|
289
|
-
# where filter and result have ML Engine nPath sequence aggregate functions
|
|
290
|
-
# like 'FIRST', 'COUNT' and 'LAST'
|
|
291
|
-
result = NPath(data1=clickstream,
|
|
292
|
-
data1_partition_column='userid',
|
|
293
|
-
data1_order_column='clicktime',
|
|
294
|
-
result=['FIRST(userid of ANY(home, checkout, clickview)) AS userid',
|
|
295
|
-
'FIRST (sessionid of ANY(home, checkout, clickview)) AS sessioinid',
|
|
296
|
-
'COUNT (* of any(home, checkout, clickview)) AS cnt',
|
|
297
|
-
'FIRST (clicktime of ANY(home)) AS firsthome',
|
|
298
|
-
'LAST (clicktime of ANY(checkout)) AS lastcheckout'],
|
|
299
|
-
mode='nonoverlapping',
|
|
300
|
-
pattern='home.clickview*.checkout',
|
|
301
|
-
symbols=["pagetype='home' AS home",
|
|
302
|
-
"pagetype <> 'home' AND pagetype <> 'checkout' AS clickview",
|
|
303
|
-
"pagetype='checkout' AS checkout"],
|
|
304
|
-
filter = "FIRST (clicktime OF ANY (home)) <"
|
|
305
|
-
"FIRST (clicktime of any(checkout))"
|
|
306
|
-
)
|
|
307
|
-
|
|
308
|
-
# Print the result dataframe.
|
|
309
|
-
print(result.result)
|
|
310
|
-
|
|
311
|
-
"""
|
|
312
|
-
|
|
313
|
-
# Start the timer to get the build time
|
|
314
|
-
_start_time = time.time()
|
|
315
|
-
|
|
316
|
-
self.data1 = data1
|
|
317
|
-
self.mode = mode
|
|
318
|
-
self.pattern = pattern
|
|
319
|
-
self.symbols = symbols
|
|
320
|
-
self.result = result
|
|
321
|
-
self.filter = filter
|
|
322
|
-
self.data2 = data2
|
|
323
|
-
self.data3 = data3
|
|
324
|
-
self.data1_partition_column = data1_partition_column
|
|
325
|
-
self.data2_partition_column = data2_partition_column
|
|
326
|
-
self.data3_partition_column = data3_partition_column
|
|
327
|
-
self.data1_order_column = data1_order_column
|
|
328
|
-
self.data2_order_column = data2_order_column
|
|
329
|
-
self.data3_order_column = data3_order_column
|
|
330
|
-
|
|
331
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
332
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
333
|
-
self.__aed_utils = AedUtils()
|
|
334
|
-
|
|
335
|
-
# Create argument information matrix to do parameter checking
|
|
336
|
-
self.__arg_info_matrix = []
|
|
337
|
-
self.__arg_info_matrix.append(["data1", self.data1, False, (DataFrame)])
|
|
338
|
-
self.__arg_info_matrix.append(["data1_partition_column", self.data1_partition_column, False, (str,list)])
|
|
339
|
-
self.__arg_info_matrix.append(["data1_order_column", self.data1_order_column, False, (str,list)])
|
|
340
|
-
self.__arg_info_matrix.append(["mode", self.mode, False, (str)])
|
|
341
|
-
self.__arg_info_matrix.append(["pattern", self.pattern, False, (str)])
|
|
342
|
-
self.__arg_info_matrix.append(["symbols", self.symbols, False, (str,list)])
|
|
343
|
-
self.__arg_info_matrix.append(["result", self.result, False, (str,list)])
|
|
344
|
-
self.__arg_info_matrix.append(["filter", self.filter, True, (str,list)])
|
|
345
|
-
self.__arg_info_matrix.append(["data2", self.data2, True, (DataFrame)])
|
|
346
|
-
self.__arg_info_matrix.append(["data2_partition_column", self.data2_partition_column, True, (str,list)])
|
|
347
|
-
self.__arg_info_matrix.append(["data2_order_column", self.data2_order_column, self.data2 is None, (str,list)])
|
|
348
|
-
self.__arg_info_matrix.append(["data3", self.data3, True, (DataFrame)])
|
|
349
|
-
self.__arg_info_matrix.append(["data3_partition_column", self.data3_partition_column, True, (str,list)])
|
|
350
|
-
self.__arg_info_matrix.append(["data3_order_column", self.data3_order_column, self.data3 is None, (str,list)])
|
|
351
|
-
|
|
352
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
353
|
-
# Perform the function validations
|
|
354
|
-
self.__validate()
|
|
355
|
-
# Generate the ML query
|
|
356
|
-
self.__form_tdml_query()
|
|
357
|
-
# Execute ML query
|
|
358
|
-
self.__execute()
|
|
359
|
-
# Get the prediction type
|
|
360
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
361
|
-
|
|
362
|
-
# End the timer to get the build time
|
|
363
|
-
_end_time = time.time()
|
|
364
|
-
|
|
365
|
-
# Calculate the build time
|
|
366
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
367
|
-
|
|
368
|
-
def __validate(self):
|
|
369
|
-
"""
|
|
370
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
371
|
-
arguments, input argument and table types. Also processes the
|
|
372
|
-
argument values.
|
|
373
|
-
"""
|
|
374
|
-
|
|
375
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
376
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
377
|
-
|
|
378
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
379
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
380
|
-
|
|
381
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
382
|
-
self.__awu._validate_input_table_datatype(self.data1, "data1", None)
|
|
383
|
-
self.__awu._validate_input_table_datatype(self.data2, "data2", None)
|
|
384
|
-
self.__awu._validate_input_table_datatype(self.data3, "data3", None)
|
|
385
|
-
|
|
386
|
-
# Check for permitted values
|
|
387
|
-
mode_permitted_values = ["OVERLAPPING", "NONOVERLAPPING"]
|
|
388
|
-
self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
|
|
389
|
-
|
|
390
|
-
self.__awu._validate_input_columns_not_empty(self.data1_partition_column, "data1_partition_column")
|
|
391
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data1_partition_column, "data1_partition_column", self.data1, "data1", True)
|
|
392
|
-
|
|
393
|
-
self.__awu._validate_input_columns_not_empty(self.data2_partition_column, "data2_partition_column")
|
|
394
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data2_partition_column, "data2_partition_column", self.data2, "data2", True)
|
|
395
|
-
|
|
396
|
-
self.__awu._validate_input_columns_not_empty(self.data3_partition_column, "data3_partition_column")
|
|
397
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data3_partition_column, "data3_partition_column", self.data3, "data3", True)
|
|
398
|
-
|
|
399
|
-
self.__awu._validate_input_columns_not_empty(self.data1_order_column, "data1_order_column")
|
|
400
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data1_order_column, "data1_order_column", self.data1, "data1", False)
|
|
401
|
-
|
|
402
|
-
self.__awu._validate_input_columns_not_empty(self.data2_order_column, "data2_order_column")
|
|
403
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data2_order_column, "data2_order_column", self.data2, "data2", False)
|
|
404
|
-
|
|
405
|
-
self.__awu._validate_input_columns_not_empty(self.data3_order_column, "data3_order_column")
|
|
406
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data3_order_column, "data3_order_column", self.data3, "data3", False)
|
|
407
|
-
|
|
408
|
-
# Validate that value passed to the output column argument is not empty.
|
|
409
|
-
self.__awu._validate_input_columns_not_empty(self.result, "result")
|
|
410
|
-
|
|
411
|
-
def __form_tdml_query(self):
|
|
412
|
-
"""
|
|
413
|
-
Function to generate the analytical function queries. The function defines
|
|
414
|
-
variables and list of arguments required to form the query.
|
|
415
|
-
"""
|
|
416
|
-
|
|
417
|
-
# Output table arguments list
|
|
418
|
-
self.__func_output_args_sql_names = []
|
|
419
|
-
self.__func_output_args = []
|
|
420
|
-
|
|
421
|
-
# Model Cataloging related attributes.
|
|
422
|
-
self._sql_specific_attributes = {}
|
|
423
|
-
self._sql_formula_attribute_mapper = {}
|
|
424
|
-
self._target_column = None
|
|
425
|
-
self._algorithm_name = None
|
|
426
|
-
|
|
427
|
-
# Generate lists for rest of the function arguments
|
|
428
|
-
self.__func_other_arg_sql_names = []
|
|
429
|
-
self.__func_other_args = []
|
|
430
|
-
self.__func_other_arg_json_datatypes = []
|
|
431
|
-
|
|
432
|
-
self.__func_other_arg_sql_names.append("Mode")
|
|
433
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode, ""))
|
|
434
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
435
|
-
|
|
436
|
-
self.__func_other_arg_sql_names.append("Pattern")
|
|
437
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pattern, "'"))
|
|
438
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
439
|
-
|
|
440
|
-
self.__func_other_arg_sql_names.append("Symbols")
|
|
441
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.symbols, ""))
|
|
442
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
443
|
-
|
|
444
|
-
if self.filter is not None:
|
|
445
|
-
self.__func_other_arg_sql_names.append("Filter")
|
|
446
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.filter, ""))
|
|
447
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
448
|
-
|
|
449
|
-
self.__func_other_arg_sql_names.append("Result")
|
|
450
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.result, ""))
|
|
451
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
# Declare empty lists to hold input table information.
|
|
455
|
-
self.__func_input_arg_sql_names = []
|
|
456
|
-
self.__func_input_table_view_query = []
|
|
457
|
-
self.__func_input_dataframe_type = []
|
|
458
|
-
self.__func_input_distribution = []
|
|
459
|
-
self.__func_input_partition_by_cols = []
|
|
460
|
-
self.__func_input_order_by_cols = []
|
|
461
|
-
|
|
462
|
-
# Process data1
|
|
463
|
-
self.data1_partition_column = UtilFuncs._teradata_collapse_arglist(self.data1_partition_column, "\"")
|
|
464
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data1, False)
|
|
465
|
-
self.__func_input_distribution.append("FACT")
|
|
466
|
-
self.__func_input_arg_sql_names.append("input1")
|
|
467
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
468
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
469
|
-
self.__func_input_partition_by_cols.append(self.data1_partition_column)
|
|
470
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data1_order_column, "\""))
|
|
471
|
-
|
|
472
|
-
# Process data2
|
|
473
|
-
if self.data2 is not None:
|
|
474
|
-
data2_distribution = "DIMENSION"
|
|
475
|
-
if self.data2_partition_column is not None:
|
|
476
|
-
data2_distribution = "FACT"
|
|
477
|
-
data2_partition_column = UtilFuncs._teradata_collapse_arglist(self.data2_partition_column, "\"")
|
|
478
|
-
else:
|
|
479
|
-
data2_partition_column = "NA_character_"
|
|
480
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data2, False)
|
|
481
|
-
self.__func_input_distribution.append(data2_distribution)
|
|
482
|
-
self.__func_input_arg_sql_names.append("input2")
|
|
483
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
484
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
485
|
-
self.__func_input_partition_by_cols.append(data2_partition_column)
|
|
486
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data2_order_column, "\""))
|
|
487
|
-
|
|
488
|
-
# Process data3
|
|
489
|
-
if self.data3 is not None:
|
|
490
|
-
data3_distribution = "DIMENSION"
|
|
491
|
-
if self.data3_partition_column is not None:
|
|
492
|
-
data3_distribution = "FACT"
|
|
493
|
-
data3_partition_column = UtilFuncs._teradata_collapse_arglist(self.data3_partition_column, "\"")
|
|
494
|
-
else:
|
|
495
|
-
data3_partition_column = "NA_character_"
|
|
496
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data3, False)
|
|
497
|
-
self.__func_input_distribution.append(data3_distribution)
|
|
498
|
-
self.__func_input_arg_sql_names.append("input3")
|
|
499
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
500
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
501
|
-
self.__func_input_partition_by_cols.append(data3_partition_column)
|
|
502
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data3_order_column, "\""))
|
|
503
|
-
|
|
504
|
-
function_name = "nPath"
|
|
505
|
-
# Create instance to generate SQLMR.
|
|
506
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
507
|
-
self.__func_input_arg_sql_names,
|
|
508
|
-
self.__func_input_table_view_query,
|
|
509
|
-
self.__func_input_dataframe_type,
|
|
510
|
-
self.__func_input_distribution,
|
|
511
|
-
self.__func_input_partition_by_cols,
|
|
512
|
-
self.__func_input_order_by_cols,
|
|
513
|
-
self.__func_other_arg_sql_names,
|
|
514
|
-
self.__func_other_args,
|
|
515
|
-
self.__func_other_arg_json_datatypes,
|
|
516
|
-
self.__func_output_args_sql_names,
|
|
517
|
-
self.__func_output_args,
|
|
518
|
-
engine="ENGINE_SQL")
|
|
519
|
-
# Invoke call to SQL-MR generation.
|
|
520
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
521
|
-
|
|
522
|
-
# Print SQL-MR query if requested to do so.
|
|
523
|
-
if display.print_sqlmr_query:
|
|
524
|
-
print(self.sqlmr_query)
|
|
525
|
-
|
|
526
|
-
# Set the algorithm name for Model Cataloging.
|
|
527
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
528
|
-
|
|
529
|
-
def __execute(self):
|
|
530
|
-
"""
|
|
531
|
-
Function to execute SQL-MR queries.
|
|
532
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
533
|
-
"""
|
|
534
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
535
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
536
|
-
try:
|
|
537
|
-
# Generate the output.
|
|
538
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
539
|
-
except Exception as emsg:
|
|
540
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
541
|
-
|
|
542
|
-
# Update output table data frames.
|
|
543
|
-
self._mlresults = []
|
|
544
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
545
|
-
self._mlresults.append(self.result)
|
|
546
|
-
|
|
547
|
-
def show_query(self):
|
|
548
|
-
"""
|
|
549
|
-
Function to return the underlying SQL query.
|
|
550
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
551
|
-
"""
|
|
552
|
-
return self.sqlmr_query
|
|
553
|
-
|
|
554
|
-
def get_prediction_type(self):
|
|
555
|
-
"""
|
|
556
|
-
Function to return the Prediction type of the algorithm.
|
|
557
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
558
|
-
as saved in the Model Catalog.
|
|
559
|
-
"""
|
|
560
|
-
return self._prediction_type
|
|
561
|
-
|
|
562
|
-
def get_target_column(self):
|
|
563
|
-
"""
|
|
564
|
-
Function to return the Target Column of the algorithm.
|
|
565
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
566
|
-
as saved in the Model Catalog.
|
|
567
|
-
"""
|
|
568
|
-
return self._target_column
|
|
569
|
-
|
|
570
|
-
def get_build_time(self):
|
|
571
|
-
"""
|
|
572
|
-
Function to return the build time of the algorithm in seconds.
|
|
573
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
574
|
-
as saved in the Model Catalog.
|
|
575
|
-
"""
|
|
576
|
-
return self._build_time
|
|
577
|
-
|
|
578
|
-
def _get_algorithm_name(self):
|
|
579
|
-
"""
|
|
580
|
-
Function to return the name of the algorithm.
|
|
581
|
-
"""
|
|
582
|
-
return self._algorithm_name
|
|
583
|
-
|
|
584
|
-
def _get_sql_specific_attributes(self):
|
|
585
|
-
"""
|
|
586
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
587
|
-
"""
|
|
588
|
-
return self._sql_specific_attributes
|
|
589
|
-
|
|
590
|
-
@classmethod
|
|
591
|
-
def _from_model_catalog(cls,
|
|
592
|
-
result = None,
|
|
593
|
-
**kwargs):
|
|
594
|
-
"""
|
|
595
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
596
|
-
"""
|
|
597
|
-
kwargs.pop("result", None)
|
|
598
|
-
|
|
599
|
-
# Model Cataloging related attributes.
|
|
600
|
-
target_column = kwargs.pop("__target_column", None)
|
|
601
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
602
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
603
|
-
build_time = kwargs.pop("__build_time", None)
|
|
604
|
-
|
|
605
|
-
# Let's create an object of this class.
|
|
606
|
-
obj = cls(**kwargs)
|
|
607
|
-
obj.result = result
|
|
608
|
-
|
|
609
|
-
# Initialize the sqlmr_query class attribute.
|
|
610
|
-
obj.sqlmr_query = None
|
|
611
|
-
|
|
612
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
613
|
-
obj._sql_specific_attributes = None
|
|
614
|
-
obj._target_column = target_column
|
|
615
|
-
obj._prediction_type = prediction_type
|
|
616
|
-
obj._algorithm_name = algorithm_name
|
|
617
|
-
obj._build_time = build_time
|
|
618
|
-
|
|
619
|
-
# Update output table data frames.
|
|
620
|
-
obj._mlresults = []
|
|
621
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
622
|
-
obj._mlresults.append(obj.result)
|
|
623
|
-
return obj
|
|
624
|
-
|
|
625
|
-
def __repr__(self):
|
|
626
|
-
"""
|
|
627
|
-
Returns the string representation for a NPath class instance.
|
|
628
|
-
"""
|
|
629
|
-
repr_string="############ STDOUT Output ############"
|
|
630
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
631
|
-
return repr_string
|
|
632
|
-
|