teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,485 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.16
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class KMeans:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
centers = None,
|
|
35
|
-
iter_max = 10,
|
|
36
|
-
initial_seeds = None,
|
|
37
|
-
seed = None,
|
|
38
|
-
unpack_columns = False,
|
|
39
|
-
centroids_table = None,
|
|
40
|
-
threshold = 0.0395,
|
|
41
|
-
data_sequence_column = None,
|
|
42
|
-
centroids_table_sequence_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The KMeans function takes a data set and outputs the centroids of its
|
|
46
|
-
clusters and, optionally, the clusters themselves.
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
PARAMETERS:
|
|
50
|
-
data:
|
|
51
|
-
Required Argument.
|
|
52
|
-
Specifies the input teradataml DataFrame containing the list of
|
|
53
|
-
features by which we are clustering the data.
|
|
54
|
-
|
|
55
|
-
centers:
|
|
56
|
-
Optional Argument.
|
|
57
|
-
Specifies the number of clusters to generate from the data.
|
|
58
|
-
Note: With centers, the function uses a nondeterministic
|
|
59
|
-
algorithm and the function supports up to 1543 dimensions.
|
|
60
|
-
Types: int
|
|
61
|
-
|
|
62
|
-
iter_max:
|
|
63
|
-
Optional Argument.
|
|
64
|
-
Specifies the maximum number of iterations that the algorithm runs
|
|
65
|
-
before quitting if the convergence threshold has not been met.
|
|
66
|
-
Default Value: 10
|
|
67
|
-
Types: int
|
|
68
|
-
|
|
69
|
-
initial_seeds:
|
|
70
|
-
Optional Argument.
|
|
71
|
-
Specifies the initial seed means as strings of underscore-delimited
|
|
72
|
-
float values. For example, this clause initializes eight clusters in
|
|
73
|
-
eight-dimensional space: Means("50_50_50_50_50_50_50_50",
|
|
74
|
-
"150_150_150_150_150_150_150_150", "250_250_250_250_250_250_250_250",
|
|
75
|
-
"350_350_350_350_350_350_350_350", "450_450_450_450_450_450_450_450",
|
|
76
|
-
"550_550_550_550_550_550_550_550", "650_650_650_650_650_650_650_650",
|
|
77
|
-
"750_750_750_750_750_750_750_750") The dimensionality of the means
|
|
78
|
-
must match the dimensionality of the data (that is, each mean must
|
|
79
|
-
have n numbers in it, where n is the number of input columns minus
|
|
80
|
-
one). By default, the algorithm chooses the initial seed means
|
|
81
|
-
randomly.
|
|
82
|
-
Note: With initial_seeds, the function uses a deterministic
|
|
83
|
-
algorithm and the function supports up to 1596 dimensions.
|
|
84
|
-
Types: str OR list of Strings (str)
|
|
85
|
-
|
|
86
|
-
seed:
|
|
87
|
-
Optional Argument.
|
|
88
|
-
Sets a random seed for the algorithm.
|
|
89
|
-
Types: int
|
|
90
|
-
|
|
91
|
-
unpack_columns:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies whether the means for each centroid appear unpacked (that
|
|
94
|
-
is, in separate columns) in output DataFrame clusters_centroids.
|
|
95
|
-
By default, the function concatenates the means for the centroids
|
|
96
|
-
and outputs the result in a single VARCHAR column.
|
|
97
|
-
Default Value: False
|
|
98
|
-
Types: bool
|
|
99
|
-
|
|
100
|
-
centroids_table:
|
|
101
|
-
Optional Argument.
|
|
102
|
-
Specifies the teradataml DataFrame that contains the initial seed
|
|
103
|
-
means for the clusters. The schema of the centroids teradataml
|
|
104
|
-
DataFrame depends on the value of the unpack_columns argument.
|
|
105
|
-
Note: With centroids_table, the function uses a deterministic
|
|
106
|
-
algorithm and the function supports up to 1596 dimensions.
|
|
107
|
-
|
|
108
|
-
threshold:
|
|
109
|
-
Optional Argument.
|
|
110
|
-
Specifies the convergence threshold. When the centroids move by less
|
|
111
|
-
than this amount, the algorithm has converged.
|
|
112
|
-
Default Value: 0.0395
|
|
113
|
-
Types: float
|
|
114
|
-
|
|
115
|
-
data_sequence_column:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
118
|
-
the input argument "data". The argument is used to ensure
|
|
119
|
-
deterministic results for functions which produce results that vary
|
|
120
|
-
from run to run.
|
|
121
|
-
Types: str OR list of Strings (str)
|
|
122
|
-
|
|
123
|
-
centroids_table_sequence_column:
|
|
124
|
-
Optional Argument.
|
|
125
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
126
|
-
the input argument "centroids_table". The argument is used to ensure
|
|
127
|
-
deterministic results for functions which produce results that vary
|
|
128
|
-
from run to run.
|
|
129
|
-
Types: str OR list of Strings (str)
|
|
130
|
-
|
|
131
|
-
RETURNS:
|
|
132
|
-
Instance of KMeans.
|
|
133
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
134
|
-
references, such as KMeansObj.<attribute_name>.
|
|
135
|
-
Output teradataml DataFrame attribute names are:
|
|
136
|
-
1. clusters_centroids
|
|
137
|
-
2. clustered_output
|
|
138
|
-
3. output
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
RAISES:
|
|
142
|
-
TeradataMlException
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
EXAMPLES:
|
|
146
|
-
# Load the data to run the example.
|
|
147
|
-
load_example_data("KMeans","computers_train1")
|
|
148
|
-
|
|
149
|
-
# Create teradataml Dataframe.
|
|
150
|
-
computers_train1 = DataFrame.from_table("computers_train1")
|
|
151
|
-
|
|
152
|
-
# Example 1 -
|
|
153
|
-
kmeans_out = KMeans(data=computers_train1,
|
|
154
|
-
initial_seeds=['2249_51_408_8_14','2165_51_398_7_14.6','2182_51_404_7_14.6','2204_55_372_7.19_14.6','2419_44_222_6.6_14.3','2394_44.3_277_7.3_14.5','2326_43.6_301_7.11_14.3','2288_44_325_7_14.4'],
|
|
155
|
-
centers=8,
|
|
156
|
-
threshold=0.0395,
|
|
157
|
-
iter_max=10,
|
|
158
|
-
unpack_columns=False,
|
|
159
|
-
seed=10,
|
|
160
|
-
data_sequence_column='id'
|
|
161
|
-
)
|
|
162
|
-
# Print the result DataFrame
|
|
163
|
-
print(kmeans_out.clusters_centroids)
|
|
164
|
-
print(kmeans_out.clustered_output)
|
|
165
|
-
print(kmeans_out.output)
|
|
166
|
-
|
|
167
|
-
"""
|
|
168
|
-
|
|
169
|
-
# Start the timer to get the build time
|
|
170
|
-
_start_time = time.time()
|
|
171
|
-
|
|
172
|
-
self.data = data
|
|
173
|
-
self.centers = centers
|
|
174
|
-
self.iter_max = iter_max
|
|
175
|
-
self.initial_seeds = initial_seeds
|
|
176
|
-
self.seed = seed
|
|
177
|
-
self.unpack_columns = unpack_columns
|
|
178
|
-
self.centroids_table = centroids_table
|
|
179
|
-
self.threshold = threshold
|
|
180
|
-
self.data_sequence_column = data_sequence_column
|
|
181
|
-
self.centroids_table_sequence_column = centroids_table_sequence_column
|
|
182
|
-
|
|
183
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
184
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
185
|
-
self.__aed_utils = AedUtils()
|
|
186
|
-
|
|
187
|
-
# Create argument information matrix to do parameter checking
|
|
188
|
-
self.__arg_info_matrix = []
|
|
189
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
190
|
-
self.__arg_info_matrix.append(["centers", self.centers, True, (int)])
|
|
191
|
-
self.__arg_info_matrix.append(["iter_max", self.iter_max, True, (int)])
|
|
192
|
-
self.__arg_info_matrix.append(["initial_seeds", self.initial_seeds, True, (str,list)])
|
|
193
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
194
|
-
self.__arg_info_matrix.append(["unpack_columns", self.unpack_columns, True, (bool)])
|
|
195
|
-
self.__arg_info_matrix.append(["centroids_table", self.centroids_table, True, (DataFrame)])
|
|
196
|
-
self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
|
|
197
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
198
|
-
self.__arg_info_matrix.append(["centroids_table_sequence_column", self.centroids_table_sequence_column, True, (str,list)])
|
|
199
|
-
|
|
200
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
201
|
-
# Perform the function validations
|
|
202
|
-
self.__validate()
|
|
203
|
-
# Generate the ML query
|
|
204
|
-
self.__form_tdml_query()
|
|
205
|
-
# Execute ML query
|
|
206
|
-
self.__execute()
|
|
207
|
-
# Get the prediction type
|
|
208
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
209
|
-
|
|
210
|
-
# End the timer to get the build time
|
|
211
|
-
_end_time = time.time()
|
|
212
|
-
|
|
213
|
-
# Calculate the build time
|
|
214
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
215
|
-
|
|
216
|
-
def __validate(self):
|
|
217
|
-
"""
|
|
218
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
219
|
-
arguments, input argument and table types. Also processes the
|
|
220
|
-
argument values.
|
|
221
|
-
"""
|
|
222
|
-
|
|
223
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
224
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
225
|
-
|
|
226
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
227
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
228
|
-
|
|
229
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
230
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
231
|
-
self.__awu._validate_input_table_datatype(self.centroids_table, "centroids_table", None)
|
|
232
|
-
|
|
233
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
234
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
235
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
236
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
237
|
-
|
|
238
|
-
self.__awu._validate_input_columns_not_empty(self.centroids_table_sequence_column, "centroids_table_sequence_column")
|
|
239
|
-
self.__awu._validate_dataframe_has_argument_columns(self.centroids_table_sequence_column, "centroids_table_sequence_column", self.centroids_table, "centroids_table", False)
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
def __form_tdml_query(self):
|
|
243
|
-
"""
|
|
244
|
-
Function to generate the analytical function queries. The function defines
|
|
245
|
-
variables and list of arguments required to form the query.
|
|
246
|
-
"""
|
|
247
|
-
# Generate temp table names for output table parameters if any.
|
|
248
|
-
self.__clusters_centroids_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_kmeans0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
249
|
-
self.__clustered_output_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_kmeans1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
250
|
-
|
|
251
|
-
# Output table arguments list
|
|
252
|
-
self.__func_output_args_sql_names = ["OutputTable", "ClusteredOutput"]
|
|
253
|
-
self.__func_output_args = [self.__clusters_centroids_temp_tablename, self.__clustered_output_temp_tablename]
|
|
254
|
-
|
|
255
|
-
# Model Cataloging related attributes.
|
|
256
|
-
self._sql_specific_attributes = {}
|
|
257
|
-
self._sql_formula_attribute_mapper = {}
|
|
258
|
-
self._target_column = None
|
|
259
|
-
self._algorithm_name = None
|
|
260
|
-
|
|
261
|
-
# Generate lists for rest of the function arguments
|
|
262
|
-
self.__func_other_arg_sql_names = []
|
|
263
|
-
self.__func_other_args = []
|
|
264
|
-
self.__func_other_arg_json_datatypes = []
|
|
265
|
-
|
|
266
|
-
if self.initial_seeds is not None:
|
|
267
|
-
self.__func_other_arg_sql_names.append("InitialSeeds")
|
|
268
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.initial_seeds, "'"))
|
|
269
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
270
|
-
|
|
271
|
-
if self.centers is not None:
|
|
272
|
-
self.__func_other_arg_sql_names.append("NumClusters")
|
|
273
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.centers, "'"))
|
|
274
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
275
|
-
|
|
276
|
-
if self.threshold is not None and self.threshold != 0.0395:
|
|
277
|
-
self.__func_other_arg_sql_names.append("StopThreshold")
|
|
278
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
|
|
279
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
280
|
-
|
|
281
|
-
if self.iter_max is not None:
|
|
282
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
283
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iter_max, "'"))
|
|
284
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
285
|
-
|
|
286
|
-
if self.unpack_columns is not None and self.unpack_columns != False:
|
|
287
|
-
self.__func_other_arg_sql_names.append("UnpackColumns")
|
|
288
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.unpack_columns, "'"))
|
|
289
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
290
|
-
|
|
291
|
-
if self.seed is not None:
|
|
292
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
293
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
294
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
295
|
-
|
|
296
|
-
# Generate lists for rest of the function arguments
|
|
297
|
-
sequence_input_by_list = []
|
|
298
|
-
if self.data_sequence_column is not None:
|
|
299
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
300
|
-
|
|
301
|
-
if self.centroids_table_sequence_column is not None:
|
|
302
|
-
sequence_input_by_list.append("CentroidsTable:" + UtilFuncs._teradata_collapse_arglist(self.centroids_table_sequence_column, ""))
|
|
303
|
-
|
|
304
|
-
if len(sequence_input_by_list) > 0:
|
|
305
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
306
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
307
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
308
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
309
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
# Declare empty lists to hold input table information.
|
|
313
|
-
self.__func_input_arg_sql_names = []
|
|
314
|
-
self.__func_input_table_view_query = []
|
|
315
|
-
self.__func_input_dataframe_type = []
|
|
316
|
-
self.__func_input_distribution = []
|
|
317
|
-
self.__func_input_partition_by_cols = []
|
|
318
|
-
self.__func_input_order_by_cols = []
|
|
319
|
-
|
|
320
|
-
# Process data
|
|
321
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
322
|
-
self.__func_input_distribution.append("NONE")
|
|
323
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
324
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
325
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
326
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
327
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
328
|
-
|
|
329
|
-
# Process centroids_table
|
|
330
|
-
if self.centroids_table is not None:
|
|
331
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.centroids_table, False)
|
|
332
|
-
self.__func_input_distribution.append("NONE")
|
|
333
|
-
self.__func_input_arg_sql_names.append("CentroidsTable")
|
|
334
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
335
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
336
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
337
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
338
|
-
|
|
339
|
-
function_name = "KMeans"
|
|
340
|
-
# Create instance to generate SQLMR.
|
|
341
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
342
|
-
self.__func_input_arg_sql_names,
|
|
343
|
-
self.__func_input_table_view_query,
|
|
344
|
-
self.__func_input_dataframe_type,
|
|
345
|
-
self.__func_input_distribution,
|
|
346
|
-
self.__func_input_partition_by_cols,
|
|
347
|
-
self.__func_input_order_by_cols,
|
|
348
|
-
self.__func_other_arg_sql_names,
|
|
349
|
-
self.__func_other_args,
|
|
350
|
-
self.__func_other_arg_json_datatypes,
|
|
351
|
-
self.__func_output_args_sql_names,
|
|
352
|
-
self.__func_output_args,
|
|
353
|
-
engine="ENGINE_ML")
|
|
354
|
-
# Invoke call to SQL-MR generation.
|
|
355
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
356
|
-
|
|
357
|
-
# Print SQL-MR query if requested to do so.
|
|
358
|
-
if display.print_sqlmr_query:
|
|
359
|
-
print(self.sqlmr_query)
|
|
360
|
-
|
|
361
|
-
# Set the algorithm name for Model Cataloging.
|
|
362
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
363
|
-
|
|
364
|
-
def __execute(self):
|
|
365
|
-
"""
|
|
366
|
-
Function to execute SQL-MR queries.
|
|
367
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
368
|
-
"""
|
|
369
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
370
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
371
|
-
try:
|
|
372
|
-
# Generate the output.
|
|
373
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
374
|
-
except Exception as emsg:
|
|
375
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
376
|
-
|
|
377
|
-
# Update output table data frames.
|
|
378
|
-
self._mlresults = []
|
|
379
|
-
self.clusters_centroids = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__clusters_centroids_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__clusters_centroids_temp_tablename))
|
|
380
|
-
self.clustered_output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__clustered_output_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__clustered_output_temp_tablename))
|
|
381
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
382
|
-
self._mlresults.append(self.clusters_centroids)
|
|
383
|
-
self._mlresults.append(self.clustered_output)
|
|
384
|
-
self._mlresults.append(self.output)
|
|
385
|
-
|
|
386
|
-
def show_query(self):
|
|
387
|
-
"""
|
|
388
|
-
Function to return the underlying SQL query.
|
|
389
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
390
|
-
"""
|
|
391
|
-
return self.sqlmr_query
|
|
392
|
-
|
|
393
|
-
def get_prediction_type(self):
|
|
394
|
-
"""
|
|
395
|
-
Function to return the Prediction type of the algorithm.
|
|
396
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
397
|
-
as saved in the Model Catalog.
|
|
398
|
-
"""
|
|
399
|
-
return self._prediction_type
|
|
400
|
-
|
|
401
|
-
def get_target_column(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to return the Target Column of the algorithm.
|
|
404
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
405
|
-
as saved in the Model Catalog.
|
|
406
|
-
"""
|
|
407
|
-
return self._target_column
|
|
408
|
-
|
|
409
|
-
def get_build_time(self):
|
|
410
|
-
"""
|
|
411
|
-
Function to return the build time of the algorithm in seconds.
|
|
412
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
413
|
-
as saved in the Model Catalog.
|
|
414
|
-
"""
|
|
415
|
-
return self._build_time
|
|
416
|
-
|
|
417
|
-
def _get_algorithm_name(self):
|
|
418
|
-
"""
|
|
419
|
-
Function to return the name of the algorithm.
|
|
420
|
-
"""
|
|
421
|
-
return self._algorithm_name
|
|
422
|
-
|
|
423
|
-
def _get_sql_specific_attributes(self):
|
|
424
|
-
"""
|
|
425
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
426
|
-
"""
|
|
427
|
-
return self._sql_specific_attributes
|
|
428
|
-
|
|
429
|
-
@classmethod
|
|
430
|
-
def _from_model_catalog(cls,
|
|
431
|
-
clusters_centroids = None,
|
|
432
|
-
clustered_output = None,
|
|
433
|
-
output = None,
|
|
434
|
-
**kwargs):
|
|
435
|
-
"""
|
|
436
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
437
|
-
"""
|
|
438
|
-
kwargs.pop("clusters_centroids", None)
|
|
439
|
-
kwargs.pop("clustered_output", None)
|
|
440
|
-
kwargs.pop("output", None)
|
|
441
|
-
|
|
442
|
-
# Model Cataloging related attributes.
|
|
443
|
-
target_column = kwargs.pop("__target_column", None)
|
|
444
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
445
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
446
|
-
build_time = kwargs.pop("__build_time", None)
|
|
447
|
-
|
|
448
|
-
# Let's create an object of this class.
|
|
449
|
-
obj = cls(**kwargs)
|
|
450
|
-
obj.clusters_centroids = clusters_centroids
|
|
451
|
-
obj.clustered_output = clustered_output
|
|
452
|
-
obj.output = output
|
|
453
|
-
|
|
454
|
-
# Initialize the sqlmr_query class attribute.
|
|
455
|
-
obj.sqlmr_query = None
|
|
456
|
-
|
|
457
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
458
|
-
obj._sql_specific_attributes = None
|
|
459
|
-
obj._target_column = target_column
|
|
460
|
-
obj._prediction_type = prediction_type
|
|
461
|
-
obj._algorithm_name = algorithm_name
|
|
462
|
-
obj._build_time = build_time
|
|
463
|
-
|
|
464
|
-
# Update output table data frames.
|
|
465
|
-
obj._mlresults = []
|
|
466
|
-
obj.clusters_centroids = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.clusters_centroids), source_type="table", database_name=UtilFuncs._extract_db_name(obj.clusters_centroids))
|
|
467
|
-
obj.clustered_output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.clustered_output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.clustered_output))
|
|
468
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
469
|
-
obj._mlresults.append(obj.clusters_centroids)
|
|
470
|
-
obj._mlresults.append(obj.clustered_output)
|
|
471
|
-
obj._mlresults.append(obj.output)
|
|
472
|
-
return obj
|
|
473
|
-
|
|
474
|
-
def __repr__(self):
|
|
475
|
-
"""
|
|
476
|
-
Returns the string representation for a KMeans class instance.
|
|
477
|
-
"""
|
|
478
|
-
repr_string="############ STDOUT Output ############"
|
|
479
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
480
|
-
repr_string="{}\n\n\n############ clusters_centroids Output ############".format(repr_string)
|
|
481
|
-
repr_string = "{}\n\n{}".format(repr_string,self.clusters_centroids)
|
|
482
|
-
repr_string="{}\n\n\n############ clustered_output Output ############".format(repr_string)
|
|
483
|
-
repr_string = "{}\n\n{}".format(repr_string,self.clustered_output)
|
|
484
|
-
return repr_string
|
|
485
|
-
|