teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,79 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_cox_survival_mle",
3
- "function_r_name": "aa.cox.survfit",
4
- "function_alias_name": "CoxSurvival",
5
- "input_tables": [
6
- {
7
- "rName": "cox.model.table",
8
- "name": [
9
- "CoxLinearPredictorModelTable",
10
- "CoxLinearPreds"
11
- ],
12
- "useInR": true,
13
- "rOrderNum": 2
14
- },
15
- {
16
- "rName": "object",
17
- "name": [
18
- "CoxCoefModelTable",
19
- "CoxCoeffModel"
20
- ],
21
- "useInR": true,
22
- "rOrderNum": 1
23
- },
24
- {
25
- "rName": "predict.table",
26
- "name": [
27
- "PredictTable",
28
- "PredictorValues"
29
- ],
30
- "useInR": true,
31
- "rOrderNum": 3
32
- }
33
- ],
34
- "function_name": "CoxSurvFit",
35
- "function_tdml_name": "CoxSurvival",
36
- "output_tables": [{
37
- "rName": "survival.probability",
38
- "name": ["OutputTable"],
39
- "useInR": true,
40
- "rOrderNum": 100
41
- }],
42
- "argument_clauses": [
43
- {
44
- "allowsLists": true,
45
- "datatype": "COLUMN_NAMES",
46
- "rName": "predict.feature.columns",
47
- "name": ["PredictFeatureColumns"],
48
- "useInR": true,
49
- "rOrderNum": 5
50
- },
51
- {
52
- "allowsLists": true,
53
- "datatype": "COLUMN_NAMES",
54
- "rName": "accumulate",
55
- "name": ["Accumulate"],
56
- "useInR": true,
57
- "rOrderNum": 6
58
- },
59
- {
60
- "allowsLists": true,
61
- "datatype": "STRING",
62
- "rName": "predict.feature.names",
63
- "name": ["PredictFeatureNames"],
64
- "useInR": true,
65
- "rOrderNum": 4
66
- },
67
- {
68
- "allowsLists": true,
69
- "datatype": "COLUMN_NAMES",
70
- "rName": "sequence.column",
71
- "name": [
72
- "SequenceInputBy",
73
- "UniqueId"
74
- ],
75
- "useInR": true,
76
- "rOrderNum": 50
77
- }
78
- ]
79
- }
@@ -1,34 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_cumulative_mov_avg_mle",
3
- "function_r_name": "aa.cmavg",
4
- "function_alias_name": "CumulativeMovAvg",
5
- "input_tables": [{
6
- "rName": "data",
7
- "name": ["input"],
8
- "useInR": true,
9
- "rOrderNum": 1
10
- }],
11
- "function_name": "CMAVG",
12
- "function_tdml_name": "CumulativeMovAvg",
13
- "argument_clauses": [
14
- {
15
- "allowsLists": true,
16
- "datatype": "COLUMNS",
17
- "rName": "target.columns",
18
- "name": ["TargetColumns"],
19
- "useInR": true,
20
- "rOrderNum": 2
21
- },
22
- {
23
- "allowsLists": true,
24
- "datatype": "COLUMN_NAMES",
25
- "rName": "sequence.column",
26
- "name": [
27
- "SequenceInputBy",
28
- "UniqueId"
29
- ],
30
- "useInR": true,
31
- "rOrderNum": 50
32
- }
33
- ]
34
- }
@@ -1,167 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_forest_mle",
3
- "function_r_name": "aa.forest",
4
- "function_alias_name": "DecisionForest",
5
- "input_tables": [{
6
- "rName": "data",
7
- "name": ["InputTable"],
8
- "useInR": true,
9
- "rOrderNum": 1
10
- }],
11
- "function_name": "Forest_Drive",
12
- "function_tdml_name": "DecisionForest",
13
- "output_tables": [
14
- {
15
- "rName": "predictive.model",
16
- "name": ["OutputTable"],
17
- "useInR": true,
18
- "rOrderNum": 100
19
- },
20
- {
21
- "rName": "monitor.table",
22
- "name": [
23
- "MonitorTable",
24
- "OutputMessageTable"
25
- ],
26
- "useInR": true,
27
- "rOrderNum": 101
28
- }
29
- ],
30
- "argument_clauses": [
31
- {
32
- "datatype": "COLUMN_NAMES",
33
- "rName": "response.column",
34
- "name": ["ResponseColumn"],
35
- "useInR": true,
36
- "rFormulaUsage": true,
37
- "rOrderNum": 0
38
- },
39
- {
40
- "allowsLists": true,
41
- "datatype": "COLUMN_NAMES",
42
- "rName": "numeric.inputs",
43
- "name": ["NumericInputs"],
44
- "useInR": true,
45
- "rFormulaUsage": true,
46
- "rOrderNum": -1
47
- },
48
- {
49
- "allowsLists": true,
50
- "datatype": "COLUMN_NAMES",
51
- "rName": "categorical.inputs",
52
- "name": ["CategoricalInputs"],
53
- "useInR": true,
54
- "rFormulaUsage": true,
55
- "rOrderNum": -2
56
- },
57
- {
58
- "datatype": "COLUMN_NAMES",
59
- "rName": "id.column",
60
- "name": ["IdColumn"],
61
- "useInR": true,
62
- "rOrderNum": 15
63
- },
64
- {
65
- "datatype": "STRING",
66
- "rName": "tree.type",
67
- "name": ["TreeType"],
68
- "useInR": true,
69
- "rOrderNum": 3
70
- },
71
- {
72
- "datatype": "INTEGER",
73
- "rName": "ntree",
74
- "name": ["NumTrees"],
75
- "useInR": true,
76
- "rOrderNum": 4
77
- },
78
- {
79
- "datatype": "INTEGER",
80
- "rName": "tree.size",
81
- "name": ["TreeSize"],
82
- "useInR": true,
83
- "rOrderNum": 5
84
- },
85
- {
86
- "datatype": "INTEGER",
87
- "rName": "nodesize",
88
- "name": ["MinNodeSize"],
89
- "useInR": true,
90
- "rOrderNum": 6
91
- },
92
- {
93
- "datatype": "DOUBLE",
94
- "rName": "variance",
95
- "name": ["Variance"],
96
- "useInR": true,
97
- "rOrderNum": 7
98
- },
99
- {
100
- "datatype": "INTEGER",
101
- "rName": "max.depth",
102
- "name": ["MaxDepth"],
103
- "useInR": true,
104
- "rOrderNum": 8
105
- },
106
- {
107
- "datatype": "INTEGER",
108
- "rName": "maxnum.categorical",
109
- "name": ["MaxNumCategoricalValues"],
110
- "useInR": true,
111
- "rOrderNum": 2
112
- },
113
- {
114
- "datatype": "BOOLEAN",
115
- "rName": "display.num.processed.rows",
116
- "name": ["DisplayNumProcessedRows"],
117
- "useInR": true,
118
- "rOrderNum": 13
119
- },
120
- {
121
- "datatype": "INTEGER",
122
- "rName": "mtry",
123
- "name": ["Mtry"],
124
- "useInR": true,
125
- "rOrderNum": 9
126
- },
127
- {
128
- "datatype": "LONG",
129
- "rName": "mtry.seed",
130
- "name": ["MtrySeed"],
131
- "useInR": true,
132
- "rOrderNum": 10
133
- },
134
- {
135
- "datatype": "LONG",
136
- "rName": "seed",
137
- "name": ["Seed"],
138
- "useInR": true,
139
- "rOrderNum": 11
140
- },
141
- {
142
- "datatype": "BOOLEAN",
143
- "rName": "outofbag",
144
- "name": ["OutOfBag"],
145
- "useInR": true,
146
- "rOrderNum": 12
147
- },
148
- {
149
- "datatype": "STRING",
150
- "rName": "categorical.encoding",
151
- "name": ["CategoricalEncoding"],
152
- "useInR": true,
153
- "rOrderNum": 14
154
- },
155
- {
156
- "allowsLists": true,
157
- "datatype": "COLUMN_NAMES",
158
- "rName": "sequence.column",
159
- "name": [
160
- "SequenceInputBy",
161
- "UniqueId"
162
- ],
163
- "useInR": true,
164
- "rOrderNum": 50
165
- }
166
- ]
167
- }
@@ -1,33 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_forest_evaluator_mle",
3
- "function_r_name": "aa.forest.evaluate",
4
- "function_alias_name": "DecisionForestEvaluator",
5
- "input_tables": [{
6
- "rName": "object",
7
- "name": ["input"],
8
- "useInR": true,
9
- "rOrderNum": 1
10
- }],
11
- "function_name": "Forest_Analyze",
12
- "function_tdml_name": "DecisionForestEvaluator",
13
- "argument_clauses": [
14
- {
15
- "datatype": "INTEGER",
16
- "rName": "num.levels",
17
- "name": ["NumLevels"],
18
- "useInR": true,
19
- "rOrderNum": 2
20
- },
21
- {
22
- "allowsLists": true,
23
- "datatype": "COLUMN_NAMES",
24
- "rName": "sequence.column",
25
- "name": [
26
- "SequenceInputBy",
27
- "UniqueId"
28
- ],
29
- "useInR": true,
30
- "rOrderNum": 50
31
- }
32
- ]
33
- }
@@ -1,74 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_forest_predict_mle",
3
- "function_r_name": "aa.forest.predict",
4
- "function_alias_name": "DecisionForestPredict",
5
- "input_tables": [
6
- {
7
- "rName": "newdata",
8
- "name": ["input"],
9
- "useInR": true,
10
- "rOrderNum": 2
11
- },
12
- {
13
- "rName": "object",
14
- "name": [
15
- "Model",
16
- "ModelTable"
17
- ],
18
- "useInR": true,
19
- "rOrderNum": 1
20
- }
21
- ],
22
- "function_name": "Forest_Predict",
23
- "function_tdml_name": "DecisionForestPredict",
24
- "argument_clauses": [
25
- {
26
- "datatype": "COLUMNS",
27
- "rName": "id.column",
28
- "name": ["IdColumn"],
29
- "useInR": true,
30
- "rOrderNum": 3
31
- },
32
- {
33
- "allowsLists": true,
34
- "datatype": "COLUMNS",
35
- "rName": "terms",
36
- "name": ["Accumulate"],
37
- "useInR": true,
38
- "rOrderNum": 5
39
- },
40
- {
41
- "datatype": "BOOLEAN",
42
- "rName": "detailed",
43
- "name": ["Detailed"],
44
- "useInR": true,
45
- "rOrderNum": 4
46
- },
47
- {
48
- "datatype": "BOOLEAN",
49
- "rName": "output.response.probdist ",
50
- "name": ["OutputProb"],
51
- "useInR": true,
52
- "rOrderNum": 6
53
- },
54
- {
55
- "allowsLists": true,
56
- "datatype": "STRING",
57
- "rName": "output.responses",
58
- "name": ["Responses"],
59
- "useInR": true,
60
- "rOrderNum": 7
61
- },
62
- {
63
- "allowsLists": true,
64
- "datatype": "COLUMN_NAMES",
65
- "rName": "sequence.column",
66
- "name": [
67
- "SequenceInputBy",
68
- "UniqueId"
69
- ],
70
- "useInR": true,
71
- "rOrderNum": 50
72
- }
73
- ]
74
- }
@@ -1,194 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_tree_mle",
3
- "function_r_name": "aa.single.tree.drive",
4
- "function_alias_name": "DecisionTree",
5
- "input_tables": [
6
- {
7
- "rName": "attribute.table",
8
- "name": [
9
- "AttributeTable",
10
- "AttributeTableName"
11
- ],
12
- "useInR": true,
13
- "rOrderNum": 5
14
- },
15
- {
16
- "rName": "data",
17
- "name": ["InputTable"],
18
- "useInR": true,
19
- "rOrderNum": 1
20
- },
21
- {
22
- "rName": "categorical.attribute.table",
23
- "name": [
24
- "CategoricalAttributeTable",
25
- "CategoricalAttributeTableName"
26
- ],
27
- "useInR": true,
28
- "rOrderNum": 8
29
- },
30
- {
31
- "rName": "response.table",
32
- "name": [
33
- "ResponseTable",
34
- "ResponseTableName"
35
- ],
36
- "useInR": true,
37
- "rOrderNum": 6
38
- },
39
- {
40
- "rName": "splits.table",
41
- "name": ["SplitsTable"],
42
- "useInR": true,
43
- "rOrderNum": 9
44
- }
45
- ],
46
- "function_name": "Single_Tree_Drive",
47
- "function_tdml_name": "DecisionTree",
48
- "output_tables": [
49
- {
50
- "rName": "model.table",
51
- "name": ["OutputTable"],
52
- "useInR": true,
53
- "rOrderNum": 100
54
- },
55
- {
56
- "rName": "intermediate.splits.table",
57
- "name": ["IntermediateSplitsTable"],
58
- "useInR": true,
59
- "rOrderNum": 101
60
- },
61
- {
62
- "rName": "final.response.tableto",
63
- "name": [
64
- "FinalResponseTable",
65
- "SaveFinalResponseTableTo"
66
- ],
67
- "useInR": true,
68
- "rOrderNum": 102
69
- }
70
- ],
71
- "argument_clauses": [
72
- {
73
- "allowsLists": true,
74
- "datatype": "COLUMN_NAMES",
75
- "rName": "attribute.name.columns",
76
- "name": ["AttributeNameColumns"],
77
- "useInR": true,
78
- "rOrderNum": 2
79
- },
80
- {
81
- "allowsLists": true,
82
- "datatype": "COLUMN_NAMES",
83
- "rName": "id.columns",
84
- "name": ["IdColumns"],
85
- "useInR": true,
86
- "rOrderNum": 4
87
- },
88
- {
89
- "datatype": "COLUMN_NAMES",
90
- "rName": "attribute.value.column",
91
- "name": ["AttributeValueColumn"],
92
- "useInR": true,
93
- "rOrderNum": 3
94
- },
95
- {
96
- "datatype": "COLUMN_NAMES",
97
- "rName": "response.column",
98
- "name": ["ResponseColumn"],
99
- "useInR": true,
100
- "rOrderNum": 7
101
- },
102
- {
103
- "datatype": "COLUMN_NAMES",
104
- "rName": "split.value",
105
- "name": ["SplitsValueColumn"],
106
- "useInR": true,
107
- "rOrderNum": 10
108
- },
109
- {
110
- "datatype": "COLUMN_NAMES",
111
- "rName": "weight.column",
112
- "name": ["WeightColumn"],
113
- "useInR": true,
114
- "rOrderNum": 16
115
- },
116
- {
117
- "datatype": "INTEGER",
118
- "rName": "num.splits",
119
- "name": ["NumSplits"],
120
- "useInR": true,
121
- "rOrderNum": 11
122
- },
123
- {
124
- "datatype": "BOOLEAN",
125
- "rName": "approx.splits",
126
- "name": ["ApproxSplits"],
127
- "useInR": true,
128
- "rOrderNum": 12
129
- },
130
- {
131
- "datatype": "INTEGER",
132
- "rName": "nodesize",
133
- "name": ["MinNodeSize"],
134
- "useInR": true,
135
- "rOrderNum": 13
136
- },
137
- {
138
- "datatype": "INTEGER",
139
- "rName": "max.depth",
140
- "name": ["MaxDepth"],
141
- "useInR": true,
142
- "rOrderNum": 14
143
- },
144
- {
145
- "datatype": "STRING",
146
- "rName": "split.measure",
147
- "name": ["SplitMeasure"],
148
- "useInR": true,
149
- "rOrderNum": 17
150
- },
151
- {
152
- "datatype": "BOOLEAN",
153
- "rName": "weighted",
154
- "name": ["Weighted"],
155
- "useInR": true,
156
- "rOrderNum": 15
157
- },
158
- {
159
- "datatype": "BOOLEAN",
160
- "rName": "output.response.probdist",
161
- "name": [
162
- "OutputProb",
163
- "OutputResponseProbDist"
164
- ],
165
- "useInR": true,
166
- "rOrderNum": 18
167
- },
168
- {
169
- "datatype": "STRING",
170
- "rName": "response.probdist.type",
171
- "name": ["ResponseProbDistType"],
172
- "useInR": true,
173
- "rOrderNum": 19
174
- },
175
- {
176
- "datatype": "STRING",
177
- "rName": "categorical.encoding",
178
- "name": ["CategoricalEncoding"],
179
- "useInR": true,
180
- "rOrderNum": 20
181
- },
182
- {
183
- "allowsLists": true,
184
- "datatype": "COLUMN_NAMES",
185
- "rName": "sequence.column",
186
- "name": [
187
- "SequenceInputBy",
188
- "UniqueId"
189
- ],
190
- "useInR": true,
191
- "rOrderNum": 50
192
- }
193
- ]
194
- }
@@ -1,86 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_decision_tree_predict_mle",
3
- "function_r_name": "aa.single.tree.predict",
4
- "function_alias_name": "DecisionTreePredict",
5
- "input_tables": [
6
- {
7
- "rName": "newdata",
8
- "name": ["AttributeTable"],
9
- "useInR": true,
10
- "rOrderNum": 2
11
- },
12
- {
13
- "rName": "object",
14
- "name": [
15
- "Model",
16
- "ModelTable"
17
- ],
18
- "useInR": true,
19
- "rOrderNum": 1
20
- }
21
- ],
22
- "function_name": "Single_Tree_Predict",
23
- "function_tdml_name": "DecisionTreePredict",
24
- "argument_clauses": [
25
- {
26
- "allowsLists": true,
27
- "datatype": "COLUMNS",
28
- "rName": "attr.table.groupby.columns",
29
- "name": ["AttrTableGroupbyColumns"],
30
- "useInR": true,
31
- "rOrderNum": 3
32
- },
33
- {
34
- "allowsLists": true,
35
- "datatype": "COLUMNS",
36
- "rName": "attr.table.pid.columns",
37
- "name": ["AttrTablePidColumns"],
38
- "useInR": true,
39
- "rOrderNum": 4
40
- },
41
- {
42
- "datatype": "COLUMNS",
43
- "rName": "attr.table.val.column",
44
- "name": ["AttrTableValColumn"],
45
- "useInR": true,
46
- "rOrderNum": 5
47
- },
48
- {
49
- "allowsLists": true,
50
- "datatype": "COLUMNS",
51
- "rName": "accumulate",
52
- "name": ["Accumulate"],
53
- "useInR": true,
54
- "rOrderNum": 7
55
- },
56
- {
57
- "datatype": "BOOLEAN",
58
- "rName": "output.response.probdist",
59
- "name": [
60
- "OutputProb",
61
- "OutputResponseProbDist"
62
- ],
63
- "useInR": true,
64
- "rOrderNum": 6
65
- },
66
- {
67
- "allowsLists": true,
68
- "datatype": "STRING",
69
- "rName": "output.responses",
70
- "name": ["Responses"],
71
- "useInR": true,
72
- "rOrderNum": 8
73
- },
74
- {
75
- "allowsLists": true,
76
- "datatype": "COLUMN_NAMES",
77
- "rName": "sequence.column",
78
- "name": [
79
- "SequenceInputBy",
80
- "UniqueId"
81
- ],
82
- "useInR": true,
83
- "rOrderNum": 50
84
- }
85
- ]
86
- }