teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,603 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.0
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Attribution:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
data_optional = None,
|
|
35
|
-
conversion_data = None,
|
|
36
|
-
excluding_data = None,
|
|
37
|
-
optional_data = None,
|
|
38
|
-
model1_type = None,
|
|
39
|
-
model2_type = None,
|
|
40
|
-
event_column = None,
|
|
41
|
-
timestamp_column = None,
|
|
42
|
-
window_size = None,
|
|
43
|
-
data_partition_column = None,
|
|
44
|
-
data_optional_partition_column = None,
|
|
45
|
-
data_order_column = None,
|
|
46
|
-
data_optional_order_column = None,
|
|
47
|
-
conversion_data_order_column = None,
|
|
48
|
-
excluding_data_order_column = None,
|
|
49
|
-
optional_data_order_column = None,
|
|
50
|
-
model1_type_order_column = None,
|
|
51
|
-
model2_type_order_column = None):
|
|
52
|
-
"""
|
|
53
|
-
DESCRIPTION:
|
|
54
|
-
The Attribution function is used in web page analysis, where it lets
|
|
55
|
-
companies assign weights to pages before certain events, such as
|
|
56
|
-
buying a product.
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
PARAMETERS:
|
|
60
|
-
data:
|
|
61
|
-
Required Argument.
|
|
62
|
-
Specifies the teradataml DataFrame that contains the click stream data,
|
|
63
|
-
which the function uses to compute attributions.
|
|
64
|
-
|
|
65
|
-
data_partition_column:
|
|
66
|
-
Required Argument.
|
|
67
|
-
Specifies Partition By columns for data.
|
|
68
|
-
Values to this argument can be provided as a list, if multiple
|
|
69
|
-
columns are used for partition.
|
|
70
|
-
Types: str OR list of Strings (str)
|
|
71
|
-
|
|
72
|
-
data_order_column:
|
|
73
|
-
Required Argument.
|
|
74
|
-
Specifies Order By columns for data.
|
|
75
|
-
Values to this argument can be provided as a list, if multiple
|
|
76
|
-
columns are used for ordering.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
data_optional:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Specifies the teradataml DataFrame that contains the click stream data,
|
|
82
|
-
which the function uses to compute attributions.
|
|
83
|
-
|
|
84
|
-
data_optional_partition_column:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Required if the data_optional teradataml DataFrame is used.
|
|
87
|
-
Specifies Partition By columns for data_optional.
|
|
88
|
-
Values to this argument can be provided as a list, if multiple
|
|
89
|
-
columns are used for partition.
|
|
90
|
-
Types: str OR list of Strings (str)
|
|
91
|
-
|
|
92
|
-
data_optional_order_column:
|
|
93
|
-
Optional Argument.
|
|
94
|
-
Required if the data_optional teradataml DataFrame is used.
|
|
95
|
-
Specifies Order By columns for data_optional.
|
|
96
|
-
Values to this argument can be provided as a list, if multiple
|
|
97
|
-
columns are used for ordering.
|
|
98
|
-
Types: str OR list of Strings (str)
|
|
99
|
-
|
|
100
|
-
conversion_data:
|
|
101
|
-
Required Argument.
|
|
102
|
-
Specifies the teradataml DataFrame that contains one varchar column
|
|
103
|
-
(conversion_events) containing conversion event values.
|
|
104
|
-
|
|
105
|
-
conversion_data_order_column:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies Order By columns for conversion_data.
|
|
108
|
-
Values to this argument can be provided as a list, if multiple
|
|
109
|
-
columns are used for ordering.
|
|
110
|
-
Types: str OR list of Strings (str)
|
|
111
|
-
|
|
112
|
-
excluding_data:
|
|
113
|
-
Optional Argument.
|
|
114
|
-
Specifies the teradataml DataFrame that contains one varchar column
|
|
115
|
-
(excluding_events) containing excluding cause event values.
|
|
116
|
-
|
|
117
|
-
excluding_data_order_column:
|
|
118
|
-
Optional Argument.
|
|
119
|
-
Specifies Order By columns for excluding_data.
|
|
120
|
-
Values to this argument can be provided as a list, if multiple
|
|
121
|
-
columns are used for ordering.
|
|
122
|
-
Types: str OR list of Strings (str)
|
|
123
|
-
|
|
124
|
-
optional_data:
|
|
125
|
-
Optional Argument.
|
|
126
|
-
Specifies the teradataml DataFrame that contains one varchar column
|
|
127
|
-
(optional_events) containing optional cause event values.
|
|
128
|
-
|
|
129
|
-
optional_data_order_column:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies Order By columns for optional_data.
|
|
132
|
-
Values to this argument can be provided as a list, if multiple
|
|
133
|
-
columns are used for ordering.
|
|
134
|
-
Types: str OR list of Strings (str)
|
|
135
|
-
|
|
136
|
-
model1_type:
|
|
137
|
-
Required Argument.
|
|
138
|
-
Specifies the teradataml DataFrame that defines the type and
|
|
139
|
-
specification of the first model.
|
|
140
|
-
For example:
|
|
141
|
-
model1_data ("EVENT_REGULAR", "email:0.19:LAST_CLICK:NA",
|
|
142
|
-
"impression:0.81:WEIGHTED:0.4,0.3,0.2,0.1")
|
|
143
|
-
|
|
144
|
-
model1_type_order_column:
|
|
145
|
-
Optional Argument.
|
|
146
|
-
Specifies Order By columns for model1_type.
|
|
147
|
-
Values to this argument can be provided as a list, if multiple
|
|
148
|
-
columns are used for ordering.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
model2_type:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies the teradataml DataFrame that defines the type and
|
|
154
|
-
distributions of the second model.
|
|
155
|
-
For example:
|
|
156
|
-
model2_data ("EVENT_OPTIONAL", "OrganicSearch:0.5:UNIFORM:NA",
|
|
157
|
-
"Direct:0.3:UNIFORM:NA", "Referral:0.2:UNIFORM:NA")
|
|
158
|
-
|
|
159
|
-
model2_type_order_column:
|
|
160
|
-
Optional Argument.
|
|
161
|
-
Specifies Order By columns for model2_type.
|
|
162
|
-
Values to this argument can be provided as a list, if multiple
|
|
163
|
-
columns are used for ordering.
|
|
164
|
-
Types: str OR list of Strings (str)
|
|
165
|
-
|
|
166
|
-
event_column:
|
|
167
|
-
Required Argument.
|
|
168
|
-
Specifies the name of the input column that contains the clickstream
|
|
169
|
-
events.
|
|
170
|
-
Types: str
|
|
171
|
-
|
|
172
|
-
timestamp_column:
|
|
173
|
-
Required Argument.
|
|
174
|
-
Specifies the name of the input column that contains the timestamps
|
|
175
|
-
of the clickstream events.
|
|
176
|
-
Types: str
|
|
177
|
-
|
|
178
|
-
window_size:
|
|
179
|
-
Required Argument.
|
|
180
|
-
Specifies how to determine the maximum window size for the
|
|
181
|
-
attribution calculation:
|
|
182
|
-
rows:K :
|
|
183
|
-
Consider the maximum number of events to be attributed,
|
|
184
|
-
excluding events of types specified in excluding_data,
|
|
185
|
-
which means assigning attributions to at most K effective
|
|
186
|
-
events before the current impact event.
|
|
187
|
-
seconds:K :
|
|
188
|
-
Consider the maximum time difference between the current
|
|
189
|
-
impact event and the earliest effective event to be attributed.
|
|
190
|
-
rows:K&seconds:K2 :
|
|
191
|
-
Consider both constraints and comply with the stricter one.
|
|
192
|
-
Types: str
|
|
193
|
-
|
|
194
|
-
RETURNS:
|
|
195
|
-
Instance of Attribution.
|
|
196
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
197
|
-
references, such as AttributionObj.<attribute_name>.
|
|
198
|
-
Output teradataml DataFrame attribute name is:
|
|
199
|
-
result
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
RAISES:
|
|
203
|
-
TeradataMlException
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
EXAMPLES:
|
|
207
|
-
# Load the data to run the example
|
|
208
|
-
load_example_data("attribution", ["attribution_sample_table1",
|
|
209
|
-
"attribution_sample_table2" , "conversion_event_table",
|
|
210
|
-
"optional_event_table", "model1_table", "model2_table"])
|
|
211
|
-
|
|
212
|
-
# Create teradataml DataFrame objects
|
|
213
|
-
attribution_sample_table1 = DataFrame.from_table("attribution_sample_table1")
|
|
214
|
-
attribution_sample_table2 = DataFrame.from_table("attribution_sample_table2")
|
|
215
|
-
conversion_event_table = DataFrame.from_table("conversion_event_table")
|
|
216
|
-
optional_event_table = DataFrame.from_table("optional_event_table")
|
|
217
|
-
model1_table = DataFrame.from_table("model1_table")
|
|
218
|
-
model2_table = DataFrame.from_table("model2_table")
|
|
219
|
-
|
|
220
|
-
# Execute function
|
|
221
|
-
attribution_out = Attribution(data=attribution_sample_table1,
|
|
222
|
-
data_partition_column="user_id",
|
|
223
|
-
data_order_column="time_stamp",
|
|
224
|
-
data_optional=attribution_sample_table2,
|
|
225
|
-
data_optional_partition_column='user_id',
|
|
226
|
-
data_optional_order_column='time_stamp',
|
|
227
|
-
event_column="event",
|
|
228
|
-
conversion_data=conversion_event_table,
|
|
229
|
-
optional_data=optional_event_table,
|
|
230
|
-
timestamp_column = "time_stamp",
|
|
231
|
-
window_size = "rows:10&seconds:20",
|
|
232
|
-
model1_type=model1_table,
|
|
233
|
-
model2_type=model2_table
|
|
234
|
-
)
|
|
235
|
-
|
|
236
|
-
# Print the results
|
|
237
|
-
print(attribution_out.result)
|
|
238
|
-
|
|
239
|
-
"""
|
|
240
|
-
|
|
241
|
-
# Start the timer to get the build time
|
|
242
|
-
_start_time = time.time()
|
|
243
|
-
|
|
244
|
-
self.data = data
|
|
245
|
-
self.data_optional = data_optional
|
|
246
|
-
self.conversion_data = conversion_data
|
|
247
|
-
self.excluding_data = excluding_data
|
|
248
|
-
self.optional_data = optional_data
|
|
249
|
-
self.model1_type = model1_type
|
|
250
|
-
self.model2_type = model2_type
|
|
251
|
-
self.event_column = event_column
|
|
252
|
-
self.timestamp_column = timestamp_column
|
|
253
|
-
self.window_size = window_size
|
|
254
|
-
self.data_partition_column = data_partition_column
|
|
255
|
-
self.data_optional_partition_column = data_optional_partition_column
|
|
256
|
-
self.data_order_column = data_order_column
|
|
257
|
-
self.data_optional_order_column = data_optional_order_column
|
|
258
|
-
self.conversion_data_order_column = conversion_data_order_column
|
|
259
|
-
self.excluding_data_order_column = excluding_data_order_column
|
|
260
|
-
self.optional_data_order_column = optional_data_order_column
|
|
261
|
-
self.model1_type_order_column = model1_type_order_column
|
|
262
|
-
self.model2_type_order_column = model2_type_order_column
|
|
263
|
-
|
|
264
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
265
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
266
|
-
self.__aed_utils = AedUtils()
|
|
267
|
-
|
|
268
|
-
# Create argument information matrix to do parameter checking
|
|
269
|
-
self.__arg_info_matrix = []
|
|
270
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
271
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
272
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
273
|
-
self.__arg_info_matrix.append(["data_optional", self.data_optional, True, (DataFrame)])
|
|
274
|
-
self.__arg_info_matrix.append(["data_optional_partition_column", self.data_optional_partition_column, self.data_optional is None, (str,list)])
|
|
275
|
-
self.__arg_info_matrix.append(["data_optional_order_column", self.data_optional_order_column, self.data_optional is None, (str,list)])
|
|
276
|
-
self.__arg_info_matrix.append(["conversion_data", self.conversion_data, False, (DataFrame)])
|
|
277
|
-
self.__arg_info_matrix.append(["conversion_data_order_column", self.conversion_data_order_column, True, (str,list)])
|
|
278
|
-
self.__arg_info_matrix.append(["excluding_data", self.excluding_data, True, (DataFrame)])
|
|
279
|
-
self.__arg_info_matrix.append(["excluding_data_order_column", self.excluding_data_order_column, True, (str,list)])
|
|
280
|
-
self.__arg_info_matrix.append(["optional_data", self.optional_data, True, (DataFrame)])
|
|
281
|
-
self.__arg_info_matrix.append(["optional_data_order_column", self.optional_data_order_column, True, (str,list)])
|
|
282
|
-
self.__arg_info_matrix.append(["model1_type", self.model1_type, False, (DataFrame)])
|
|
283
|
-
self.__arg_info_matrix.append(["model1_type_order_column", self.model1_type_order_column, True, (str,list)])
|
|
284
|
-
self.__arg_info_matrix.append(["model2_type", self.model2_type, True, (DataFrame)])
|
|
285
|
-
self.__arg_info_matrix.append(["model2_type_order_column", self.model2_type_order_column, True, (str,list)])
|
|
286
|
-
self.__arg_info_matrix.append(["event_column", self.event_column, False, (str)])
|
|
287
|
-
self.__arg_info_matrix.append(["timestamp_column", self.timestamp_column, False, (str)])
|
|
288
|
-
self.__arg_info_matrix.append(["window_size", self.window_size, False, (str)])
|
|
289
|
-
|
|
290
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
291
|
-
# Perform the function validations
|
|
292
|
-
self.__validate()
|
|
293
|
-
# Generate the ML query
|
|
294
|
-
self.__form_tdml_query()
|
|
295
|
-
# Execute ML query
|
|
296
|
-
self.__execute()
|
|
297
|
-
# Get the prediction type
|
|
298
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
299
|
-
|
|
300
|
-
# End the timer to get the build time
|
|
301
|
-
_end_time = time.time()
|
|
302
|
-
|
|
303
|
-
# Calculate the build time
|
|
304
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
305
|
-
|
|
306
|
-
def __validate(self):
|
|
307
|
-
"""
|
|
308
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
309
|
-
arguments, input argument and table types. Also processes the
|
|
310
|
-
argument values.
|
|
311
|
-
"""
|
|
312
|
-
|
|
313
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
314
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
315
|
-
|
|
316
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
317
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
318
|
-
|
|
319
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
320
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
321
|
-
self.__awu._validate_input_table_datatype(self.data_optional, "data_optional", None)
|
|
322
|
-
self.__awu._validate_input_table_datatype(self.conversion_data, "conversion_data", None)
|
|
323
|
-
self.__awu._validate_input_table_datatype(self.excluding_data, "excluding_data", None)
|
|
324
|
-
self.__awu._validate_input_table_datatype(self.optional_data, "optional_data", None)
|
|
325
|
-
self.__awu._validate_input_table_datatype(self.model1_type, "model1_type", None)
|
|
326
|
-
self.__awu._validate_input_table_datatype(self.model2_type, "model2_type", None)
|
|
327
|
-
|
|
328
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
329
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
330
|
-
self.__awu._validate_input_columns_not_empty(self.event_column, "event_column")
|
|
331
|
-
self.__awu._validate_dataframe_has_argument_columns(self.event_column, "event_column", self.data, "data", False)
|
|
332
|
-
|
|
333
|
-
self.__awu._validate_input_columns_not_empty(self.timestamp_column, "timestamp_column")
|
|
334
|
-
self.__awu._validate_dataframe_has_argument_columns(self.timestamp_column, "timestamp_column", self.data, "data", False)
|
|
335
|
-
|
|
336
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
337
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
338
|
-
|
|
339
|
-
self.__awu._validate_input_columns_not_empty(self.data_optional_partition_column, "data_optional_partition_column")
|
|
340
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_optional_partition_column, "data_optional_partition_column", self.data_optional, "data_optional", True)
|
|
341
|
-
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.data_optional_order_column, "data_optional_order_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_optional_order_column, "data_optional_order_column", self.data_optional, "data_optional", False)
|
|
347
|
-
|
|
348
|
-
self.__awu._validate_input_columns_not_empty(self.conversion_data_order_column, "conversion_data_order_column")
|
|
349
|
-
self.__awu._validate_dataframe_has_argument_columns(self.conversion_data_order_column, "conversion_data_order_column", self.conversion_data, "conversion_data", False)
|
|
350
|
-
|
|
351
|
-
self.__awu._validate_input_columns_not_empty(self.excluding_data_order_column, "excluding_data_order_column")
|
|
352
|
-
self.__awu._validate_dataframe_has_argument_columns(self.excluding_data_order_column, "excluding_data_order_column", self.excluding_data, "excluding_data", False)
|
|
353
|
-
|
|
354
|
-
self.__awu._validate_input_columns_not_empty(self.optional_data_order_column, "optional_data_order_column")
|
|
355
|
-
self.__awu._validate_dataframe_has_argument_columns(self.optional_data_order_column, "optional_data_order_column", self.optional_data, "optional_data", False)
|
|
356
|
-
|
|
357
|
-
self.__awu._validate_input_columns_not_empty(self.model1_type_order_column, "model1_type_order_column")
|
|
358
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model1_type_order_column, "model1_type_order_column", self.model1_type, "model1_type", False)
|
|
359
|
-
|
|
360
|
-
self.__awu._validate_input_columns_not_empty(self.model2_type_order_column, "model2_type_order_column")
|
|
361
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model2_type_order_column, "model2_type_order_column", self.model2_type, "model2_type", False)
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
def __form_tdml_query(self):
|
|
365
|
-
"""
|
|
366
|
-
Function to generate the analytical function queries. The function defines
|
|
367
|
-
variables and list of arguments required to form the query.
|
|
368
|
-
"""
|
|
369
|
-
|
|
370
|
-
# Output table arguments list
|
|
371
|
-
self.__func_output_args_sql_names = []
|
|
372
|
-
self.__func_output_args = []
|
|
373
|
-
|
|
374
|
-
# Model Cataloging related attributes.
|
|
375
|
-
self._sql_specific_attributes = {}
|
|
376
|
-
self._sql_formula_attribute_mapper = {}
|
|
377
|
-
self._target_column = None
|
|
378
|
-
self._algorithm_name = None
|
|
379
|
-
|
|
380
|
-
# Generate lists for rest of the function arguments
|
|
381
|
-
self.__func_other_arg_sql_names = []
|
|
382
|
-
self.__func_other_args = []
|
|
383
|
-
self.__func_other_arg_json_datatypes = []
|
|
384
|
-
|
|
385
|
-
self.__func_other_arg_sql_names.append("EventColumn")
|
|
386
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.event_column, "'"))
|
|
387
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
388
|
-
|
|
389
|
-
self.__func_other_arg_sql_names.append("TimestampColumn")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.timestamp_column, "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
392
|
-
|
|
393
|
-
self.__func_other_arg_sql_names.append("WindowSize")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
# Declare empty lists to hold input table information.
|
|
399
|
-
self.__func_input_arg_sql_names = []
|
|
400
|
-
self.__func_input_table_view_query = []
|
|
401
|
-
self.__func_input_dataframe_type = []
|
|
402
|
-
self.__func_input_distribution = []
|
|
403
|
-
self.__func_input_partition_by_cols = []
|
|
404
|
-
self.__func_input_order_by_cols = []
|
|
405
|
-
|
|
406
|
-
# Process data
|
|
407
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
408
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
409
|
-
self.__func_input_distribution.append("FACT")
|
|
410
|
-
self.__func_input_arg_sql_names.append("input")
|
|
411
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
412
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
413
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
414
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
415
|
-
|
|
416
|
-
# Process data_optional
|
|
417
|
-
if self.data_optional is not None:
|
|
418
|
-
self.data_optional_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_optional_partition_column,"\"")
|
|
419
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data_optional, False)
|
|
420
|
-
self.__func_input_distribution.append("FACT")
|
|
421
|
-
self.__func_input_arg_sql_names.append("input2")
|
|
422
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
423
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
424
|
-
self.__func_input_partition_by_cols.append(self.data_optional_partition_column)
|
|
425
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_optional_order_column, "\""))
|
|
426
|
-
|
|
427
|
-
# Process conversion_data
|
|
428
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.conversion_data, False)
|
|
429
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
430
|
-
self.__func_input_arg_sql_names.append("conversion")
|
|
431
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
432
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
433
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
434
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.conversion_data_order_column, "\""))
|
|
435
|
-
|
|
436
|
-
# Process excluding_data
|
|
437
|
-
if self.excluding_data is not None:
|
|
438
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.excluding_data, False)
|
|
439
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
440
|
-
self.__func_input_arg_sql_names.append("excluding")
|
|
441
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
442
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
443
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
444
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.excluding_data_order_column, "\""))
|
|
445
|
-
|
|
446
|
-
# Process optional_data
|
|
447
|
-
if self.optional_data is not None:
|
|
448
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.optional_data, False)
|
|
449
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
450
|
-
self.__func_input_arg_sql_names.append("optional")
|
|
451
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
452
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
453
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
454
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.optional_data_order_column, "\""))
|
|
455
|
-
|
|
456
|
-
# Process model1_type
|
|
457
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.model1_type, False)
|
|
458
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
459
|
-
self.__func_input_arg_sql_names.append("model1")
|
|
460
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
461
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
462
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
463
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.model1_type_order_column, "\""))
|
|
464
|
-
|
|
465
|
-
# Process model2_type
|
|
466
|
-
if self.model2_type is not None:
|
|
467
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.model2_type, False)
|
|
468
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
469
|
-
self.__func_input_arg_sql_names.append("model2")
|
|
470
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
471
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
472
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
473
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.model2_type_order_column, "\""))
|
|
474
|
-
|
|
475
|
-
function_name = "Attribution"
|
|
476
|
-
# Create instance to generate SQLMR.
|
|
477
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
478
|
-
self.__func_input_arg_sql_names,
|
|
479
|
-
self.__func_input_table_view_query,
|
|
480
|
-
self.__func_input_dataframe_type,
|
|
481
|
-
self.__func_input_distribution,
|
|
482
|
-
self.__func_input_partition_by_cols,
|
|
483
|
-
self.__func_input_order_by_cols,
|
|
484
|
-
self.__func_other_arg_sql_names,
|
|
485
|
-
self.__func_other_args,
|
|
486
|
-
self.__func_other_arg_json_datatypes,
|
|
487
|
-
self.__func_output_args_sql_names,
|
|
488
|
-
self.__func_output_args,
|
|
489
|
-
engine="ENGINE_SQL")
|
|
490
|
-
# Invoke call to SQL-MR generation.
|
|
491
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
492
|
-
|
|
493
|
-
# Print SQL-MR query if requested to do so.
|
|
494
|
-
if display.print_sqlmr_query:
|
|
495
|
-
print(self.sqlmr_query)
|
|
496
|
-
|
|
497
|
-
# Set the algorithm name for Model Cataloging.
|
|
498
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
499
|
-
|
|
500
|
-
def __execute(self):
|
|
501
|
-
"""
|
|
502
|
-
Function to execute SQL-MR queries.
|
|
503
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
504
|
-
"""
|
|
505
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
506
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
507
|
-
try:
|
|
508
|
-
# Generate the output.
|
|
509
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
510
|
-
except Exception as emsg:
|
|
511
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
512
|
-
|
|
513
|
-
# Update output table data frames.
|
|
514
|
-
self._mlresults = []
|
|
515
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
516
|
-
self._mlresults.append(self.result)
|
|
517
|
-
|
|
518
|
-
def show_query(self):
|
|
519
|
-
"""
|
|
520
|
-
Function to return the underlying SQL query.
|
|
521
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
522
|
-
"""
|
|
523
|
-
return self.sqlmr_query
|
|
524
|
-
|
|
525
|
-
def get_prediction_type(self):
|
|
526
|
-
"""
|
|
527
|
-
Function to return the Prediction type of the algorithm.
|
|
528
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
529
|
-
as saved in the Model Catalog.
|
|
530
|
-
"""
|
|
531
|
-
return self._prediction_type
|
|
532
|
-
|
|
533
|
-
def get_target_column(self):
|
|
534
|
-
"""
|
|
535
|
-
Function to return the Target Column of the algorithm.
|
|
536
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
537
|
-
as saved in the Model Catalog.
|
|
538
|
-
"""
|
|
539
|
-
return self._target_column
|
|
540
|
-
|
|
541
|
-
def get_build_time(self):
|
|
542
|
-
"""
|
|
543
|
-
Function to return the build time of the algorithm in seconds.
|
|
544
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
545
|
-
as saved in the Model Catalog.
|
|
546
|
-
"""
|
|
547
|
-
return self._build_time
|
|
548
|
-
|
|
549
|
-
def _get_algorithm_name(self):
|
|
550
|
-
"""
|
|
551
|
-
Function to return the name of the algorithm.
|
|
552
|
-
"""
|
|
553
|
-
return self._algorithm_name
|
|
554
|
-
|
|
555
|
-
def _get_sql_specific_attributes(self):
|
|
556
|
-
"""
|
|
557
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
558
|
-
"""
|
|
559
|
-
return self._sql_specific_attributes
|
|
560
|
-
|
|
561
|
-
@classmethod
|
|
562
|
-
def _from_model_catalog(cls,
|
|
563
|
-
result = None,
|
|
564
|
-
**kwargs):
|
|
565
|
-
"""
|
|
566
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
567
|
-
"""
|
|
568
|
-
kwargs.pop("result", None)
|
|
569
|
-
|
|
570
|
-
# Model Cataloging related attributes.
|
|
571
|
-
target_column = kwargs.pop("__target_column", None)
|
|
572
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
573
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
574
|
-
build_time = kwargs.pop("__build_time", None)
|
|
575
|
-
|
|
576
|
-
# Let's create an object of this class.
|
|
577
|
-
obj = cls(**kwargs)
|
|
578
|
-
obj.result = result
|
|
579
|
-
|
|
580
|
-
# Initialize the sqlmr_query class attribute.
|
|
581
|
-
obj.sqlmr_query = None
|
|
582
|
-
|
|
583
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
584
|
-
obj._sql_specific_attributes = None
|
|
585
|
-
obj._target_column = target_column
|
|
586
|
-
obj._prediction_type = prediction_type
|
|
587
|
-
obj._algorithm_name = algorithm_name
|
|
588
|
-
obj._build_time = build_time
|
|
589
|
-
|
|
590
|
-
# Update output table data frames.
|
|
591
|
-
obj._mlresults = []
|
|
592
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
593
|
-
obj._mlresults.append(obj.result)
|
|
594
|
-
return obj
|
|
595
|
-
|
|
596
|
-
def __repr__(self):
|
|
597
|
-
"""
|
|
598
|
-
Returns the string representation for a Attribution class instance.
|
|
599
|
-
"""
|
|
600
|
-
repr_string="############ STDOUT Output ############"
|
|
601
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
602
|
-
return repr_string
|
|
603
|
-
|