teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,600 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class CCM:
31
-
32
- def __init__(self,
33
- data = None,
34
- sequence_id_column = None,
35
- time_column = None,
36
- cause_columns = None,
37
- effect_columns = None,
38
- library_size = [100],
39
- embedding_dimension = [2],
40
- time_step = 1,
41
- bootstrap_iterations = 100,
42
- predict_step = 1,
43
- self_predict = False,
44
- seed = None,
45
- point_select_rule = "DistanceOnly",
46
- mode = "Single",
47
- data_sequence_column = None):
48
- """
49
- DESCRIPTION:
50
- The CCM function takes two or more time series as input and evaluates
51
- potential cause-effect relationships between them. Each time series
52
- column can be a single, long time series or a set of shorter
53
- subsequences that represent the same process. The function returns an
54
- effect size for each cause-effect pair.
55
-
56
-
57
- PARAMETERS:
58
- data:
59
- Required Argument.
60
- teradataml DataFrame containing the input data.
61
-
62
- sequence_id_column:
63
- Required Argument.
64
- Specifies column containing the sequence ids. A sequence is a sample of the
65
- time series.
66
- Types: str OR list of Strings (str)
67
-
68
- time_column:
69
- Required Argument.
70
- Specifies column containing the timestamps.
71
- Types: str OR list of Strings (str)
72
-
73
- cause_columns:
74
- Required Argument.
75
- Specifies column to be evaluated as potential causes.
76
- Types: str OR list of Strings (str)
77
-
78
- effect_columns:
79
- Required Argument.
80
- Specifies column to be evaluated as potential effects.
81
- Types: str OR list of Strings (str)
82
-
83
- library_size:
84
- Optional Argument.
85
- The CCM algorithm works by using "libraries" of randomly selected
86
- points along the potential effect time series to predict values of
87
- the cause time series. A causal relationship is said to exist if the
88
- correlation between the predicted values of the cause time series and
89
- the actual values increases as the size of the library increases.
90
- Each input value must be greater than 0.
91
- Default Value: [100]
92
- Types: int
93
-
94
- embedding_dimension:
95
- Optional Argument.
96
- The embedding dimension is an estimate of the number of past values
97
- to use when predicting a given value of the time series. The input
98
- value must be greater than 0.
99
- Default Value: [2]
100
- Types: int
101
-
102
- time_step:
103
- Optional Argument.
104
- The time_step parameter indicates the number of time steps between
105
- past values to use when predicting a given value of the time series.
106
- The input value must be greater than 0.
107
- Default Value: 1
108
- Types: int
109
-
110
- bootstrap_iterations:
111
- Optional Argument.
112
- The number of bootstrap iterations used to predict. The bootstrap
113
- process is used to estimate the uncertainty associated with the
114
- predicted values. The input value must be greater than 0.
115
- Default Value: 100
116
- Types: int
117
-
118
- predict_step:
119
- Optional Argument.
120
- If the best embedding dimension is needed to choose, the predict
121
- step is used for specify the number of time steps into the
122
- future to make predictions from past observations.
123
- Default Value: 1
124
- Types: int
125
-
126
- self_predict:
127
- Optional Argument.
128
- If self_predict is set to true, the CCM function will attempt to
129
- predict each attribute using the attribute itself. If an attribute
130
- can predict its own time series well, the signal-to-noise ratio is
131
- too low for the CCM algorithm to work effectively.
132
- Default Value: False
133
- Types: bool
134
-
135
- seed:
136
- Optional Argument.
137
- Specifies the random seed used to initialize the algorithm.
138
- Types: int
139
-
140
- point_select_rule:
141
- Optional Argument.
142
- The rules to select nearest points if the best embedding dimension
143
- is needed to choose. Two options are provided. One is
144
- DistanceAndTime. The other one is DistanceOnly.
145
- Default Value: "DistanceOnly"
146
- Permitted Values: DistanceAndTime, DistanceOnly
147
- Types: str
148
-
149
- mode:
150
- Optional Argument.
151
- Specifies the execution mode. CCM can be executed in single mode and
152
- distribute node.
153
- Default Value: "Single"
154
- Permitted Values: Single, Distribute
155
- Types: str
156
-
157
- data_sequence_column:
158
- Optional Argument.
159
- Specifies the list of column(s) that uniquely identifies each row of
160
- the input argument "data". The argument is used to ensure
161
- deterministic results for functions which produce results that vary
162
- from run to run.
163
- Types: str OR list of Strings (str)
164
-
165
- RETURNS:
166
- Instance of CCM.
167
- Output teradataml DataFrames can be accessed using attribute
168
- references, such as CCMObj.<attribute_name>.
169
- Output teradataml DataFrame attribute name is:
170
- result
171
-
172
-
173
- RAISES:
174
- TeradataMlException
175
-
176
-
177
- EXAMPLES:
178
- # Load example data.
179
- load_example_data("CCM", ["ccmexample", "ccm_input", "ccm_input2", "ccmprepare_input"])
180
-
181
- # Create teradataml DataFrame objects.
182
- ccmexample = DataFrame.from_table("ccmexample")
183
- ccm_input = DataFrame.from_table("ccm_input")
184
- ccm_input2 = DataFrame.from_table("ccm_input2")
185
- ccmprepare_input = DataFrame.from_table("ccmprepare_input")
186
-
187
- # Example 1 - Identify the optimal value for embedding_dimension.
188
- # In this call, the cause_columns and effect_columns arguments must
189
- # have the same value, the argument self_predict must have the value
190
- # 'true', and the library_size argument must be omitted.
191
- ccm_out1 = CCM(data = ccmexample,
192
- sequence_id_column = "seqid",
193
- time_column = "t",
194
- cause_columns = ["b"],
195
- effect_columns = ["b"],
196
- embedding_dimension = [2,3,4,5,6,7,8,9,10],
197
- self_predict = True
198
- )
199
-
200
- # Print the result teradataml DataFrame
201
- print(ccm_out1)
202
-
203
- # Example 2 - Check for a causal relationship between the two time
204
- # series. This call uses the optimal value for embedding_dimension
205
- # identified in Example 1.
206
- ccm_out2 = CCM(data = ccmexample,
207
- sequence_id_column = "seqid",
208
- time_column = "t",
209
- cause_columns = ["a","b"],
210
- effect_columns = ["a","b"],
211
- embedding_dimension = 2
212
- )
213
-
214
- # Print the result teradataml DataFrame
215
- print(ccm_out2.result)
216
-
217
- # Example 3 - Find causal-effect relationship between income,
218
- # expenditure and investiment fields.
219
- ccm_out3 = CCM(data = ccm_input,
220
- sequence_id_column = 'id',
221
- time_column = 'period',
222
- cause_columns = ['income'],
223
- effect_columns = ['expenditure','investment'],
224
- seed = 0
225
- )
226
-
227
- # Print the result teradataml DataFrame
228
- print(ccm_out3)
229
-
230
- # Example 4 - Another example to find the cause-effect relation on
231
- # a sample market time series data.
232
- ccm_out4 = CCM(data = ccm_input2,
233
- sequence_id_column = 'id',
234
- time_column = 'period',
235
- cause_columns = ['marketindex','indexval'],
236
- effect_columns = ['indexdate','indexchange'],
237
- library_size = 10,
238
- seed = 0
239
- )
240
-
241
- # Print the result teradataml DataFrame
242
- print(ccm_out4.result)
243
-
244
- # Example 5 - Alternatively, the below example produces the same
245
- # output as above by making use of CCMPrepare and then using
246
- # its output object for CCM.
247
- ccmprepare_out = CCMPrepare(data=ccmprepare_input,
248
- data_partition_column='id'
249
- )
250
-
251
- ccm_out5 = CCM(data = ccmprepare_out.result,
252
- sequence_id_column = 'id',
253
- time_column = 'period',
254
- cause_columns = 'income',
255
- effect_columns = ["expenditure","investment"],
256
- seed = 0
257
- )
258
- print(ccm_out5)
259
-
260
- """
261
-
262
- # Start the timer to get the build time
263
- _start_time = time.time()
264
-
265
- self.data = data
266
- self.sequence_id_column = sequence_id_column
267
- self.time_column = time_column
268
- self.cause_columns = cause_columns
269
- self.effect_columns = effect_columns
270
- self.library_size = library_size
271
- self.embedding_dimension = embedding_dimension
272
- self.time_step = time_step
273
- self.bootstrap_iterations = bootstrap_iterations
274
- self.predict_step = predict_step
275
- self.self_predict = self_predict
276
- self.seed = seed
277
- self.point_select_rule = point_select_rule
278
- self.mode = mode
279
- self.data_sequence_column = data_sequence_column
280
-
281
- # Create TeradataPyWrapperUtils instance which contains validation functions.
282
- self.__awu = AnalyticsWrapperUtils()
283
- self.__aed_utils = AedUtils()
284
-
285
- # Create argument information matrix to do parameter checking
286
- self.__arg_info_matrix = []
287
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
288
- self.__arg_info_matrix.append(["sequence_id_column", self.sequence_id_column, False, (str)])
289
- self.__arg_info_matrix.append(["time_column", self.time_column, False, (str)])
290
- self.__arg_info_matrix.append(["cause_columns", self.cause_columns, False, (str,list)])
291
- self.__arg_info_matrix.append(["effect_columns", self.effect_columns, False, (str,list)])
292
- self.__arg_info_matrix.append(["library_size", self.library_size, True, (int,list)])
293
- self.__arg_info_matrix.append(["embedding_dimension", self.embedding_dimension, True, (int,list)])
294
- self.__arg_info_matrix.append(["time_step", self.time_step, True, (int)])
295
- self.__arg_info_matrix.append(["bootstrap_iterations", self.bootstrap_iterations, True, (int)])
296
- self.__arg_info_matrix.append(["predict_step", self.predict_step, True, (int)])
297
- self.__arg_info_matrix.append(["self_predict", self.self_predict, True, (bool)])
298
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
299
- self.__arg_info_matrix.append(["point_select_rule", self.point_select_rule, True, (str)])
300
- self.__arg_info_matrix.append(["mode", self.mode, True, (str)])
301
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
302
-
303
- if inspect.stack()[1][3] != '_from_model_catalog':
304
- # Perform the function validations
305
- self.__validate()
306
- # Generate the ML query
307
- self.__form_tdml_query()
308
- # Execute ML query
309
- self.__execute()
310
- # Get the prediction type
311
- self._prediction_type = self.__awu._get_function_prediction_type(self)
312
-
313
- # End the timer to get the build time
314
- _end_time = time.time()
315
-
316
- # Calculate the build time
317
- self._build_time = (int)(_end_time - _start_time)
318
-
319
- def __validate(self):
320
- """
321
- Function to validate sqlmr function arguments, which verifies missing
322
- arguments, input argument and table types. Also processes the
323
- argument values.
324
- """
325
-
326
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
327
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
328
-
329
- # Make sure that a non-NULL value has been supplied correct type of argument
330
- self.__awu._validate_argument_types(self.__arg_info_matrix)
331
-
332
- # Check to make sure input table types are strings or data frame objects or of valid type.
333
- self.__awu._validate_input_table_datatype(self.data, "data", None)
334
-
335
- # Check for permitted values
336
- point_select_rule_permitted_values = ["DISTANCEANDTIME", "DISTANCEONLY"]
337
- self.__awu._validate_permitted_values(self.point_select_rule, point_select_rule_permitted_values, "point_select_rule")
338
-
339
- mode_permitted_values = ["SINGLE", "DISTRIBUTE"]
340
- self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
341
-
342
- # Check whether the input columns passed to the argument are not empty.
343
- # Also check whether the input columns passed to the argument valid or not.
344
- self.__awu._validate_input_columns_not_empty(self.sequence_id_column, "sequence_id_column")
345
- self.__awu._validate_dataframe_has_argument_columns(self.sequence_id_column, "sequence_id_column", self.data, "data", False)
346
-
347
- self.__awu._validate_input_columns_not_empty(self.time_column, "time_column")
348
- self.__awu._validate_dataframe_has_argument_columns(self.time_column, "time_column", self.data, "data", False)
349
-
350
- self.__awu._validate_input_columns_not_empty(self.cause_columns, "cause_columns")
351
- self.__awu._validate_dataframe_has_argument_columns(self.cause_columns, "cause_columns", self.data, "data", False)
352
-
353
- self.__awu._validate_input_columns_not_empty(self.effect_columns, "effect_columns")
354
- self.__awu._validate_dataframe_has_argument_columns(self.effect_columns, "effect_columns", self.data, "data", False)
355
-
356
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
357
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
358
-
359
-
360
- def __form_tdml_query(self):
361
- """
362
- Function to generate the analytical function queries. The function defines
363
- variables and list of arguments required to form the query.
364
- """
365
-
366
- # Output table arguments list
367
- self.__func_output_args_sql_names = []
368
- self.__func_output_args = []
369
-
370
- # Model Cataloging related attributes.
371
- self._sql_specific_attributes = {}
372
- self._sql_formula_attribute_mapper = {}
373
- self._target_column = None
374
- self._algorithm_name = None
375
-
376
- # Generate lists for rest of the function arguments
377
- self.__func_other_arg_sql_names = []
378
- self.__func_other_args = []
379
- self.__func_other_arg_json_datatypes = []
380
-
381
- self.__func_other_arg_sql_names.append("SequenceIdColumn")
382
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_id_column, "\""), "'"))
383
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
384
-
385
- self.__func_other_arg_sql_names.append("TimeColumn")
386
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.time_column, "\""), "'"))
387
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
388
-
389
- self.__func_other_arg_sql_names.append("CauseColumns")
390
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.cause_columns, "\""), "'"))
391
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
392
-
393
- self.__func_other_arg_sql_names.append("EffectColumns")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.effect_columns, "\""), "'"))
395
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
396
-
397
- if self.library_size is not None and self.library_size != [100]:
398
- self.__func_other_arg_sql_names.append("LibrarySize")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.library_size, "'"))
400
- self.__func_other_arg_json_datatypes.append("INTEGER")
401
-
402
- if self.embedding_dimension is not None and self.embedding_dimension != [2]:
403
- self.__func_other_arg_sql_names.append("EmbeddingDimensions")
404
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.embedding_dimension, "'"))
405
- self.__func_other_arg_json_datatypes.append("INTEGER")
406
-
407
- if self.time_step is not None and self.time_step != 1:
408
- self.__func_other_arg_sql_names.append("TimeStep")
409
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.time_step, "'"))
410
- self.__func_other_arg_json_datatypes.append("INTEGER")
411
-
412
- if self.bootstrap_iterations is not None and self.bootstrap_iterations != 100:
413
- self.__func_other_arg_sql_names.append("BootstrapIterations")
414
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.bootstrap_iterations, "'"))
415
- self.__func_other_arg_json_datatypes.append("INTEGER")
416
-
417
- if self.predict_step is not None and self.predict_step != 1:
418
- self.__func_other_arg_sql_names.append("PredictStep")
419
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.predict_step, "'"))
420
- self.__func_other_arg_json_datatypes.append("INTEGER")
421
-
422
- if self.self_predict is not None and self.self_predict != False:
423
- self.__func_other_arg_sql_names.append("SelfPredict")
424
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.self_predict, "'"))
425
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
426
-
427
- if self.point_select_rule is not None and self.point_select_rule != "DistanceOnly":
428
- self.__func_other_arg_sql_names.append("PointSelectRule")
429
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.point_select_rule, "'"))
430
- self.__func_other_arg_json_datatypes.append("STRING")
431
-
432
- if self.mode is not None and self.mode != "Single":
433
- self.__func_other_arg_sql_names.append("ExecutionMode")
434
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode, "'"))
435
- self.__func_other_arg_json_datatypes.append("STRING")
436
-
437
- if self.seed is not None:
438
- self.__func_other_arg_sql_names.append("Seed")
439
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
440
- self.__func_other_arg_json_datatypes.append("LONG")
441
-
442
- # Generate lists for rest of the function arguments
443
- sequence_input_by_list = []
444
- if self.data_sequence_column is not None:
445
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
446
-
447
- if len(sequence_input_by_list) > 0:
448
- self.__func_other_arg_sql_names.append("SequenceInputBy")
449
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
450
- self.__func_other_args.append(sequence_input_by_arg_value)
451
- self.__func_other_arg_json_datatypes.append("STRING")
452
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
453
-
454
-
455
- # Declare empty lists to hold input table information.
456
- self.__func_input_arg_sql_names = []
457
- self.__func_input_table_view_query = []
458
- self.__func_input_dataframe_type = []
459
- self.__func_input_distribution = []
460
- self.__func_input_partition_by_cols = []
461
- self.__func_input_order_by_cols = []
462
-
463
- # Process data
464
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
465
- self.__func_input_distribution.append("NONE")
466
- self.__func_input_arg_sql_names.append("InputTable")
467
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
468
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
469
- self.__func_input_partition_by_cols.append("NA_character_")
470
- self.__func_input_order_by_cols.append("NA_character_")
471
-
472
- function_name = "CCM"
473
- # Create instance to generate SQLMR.
474
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
475
- self.__func_input_arg_sql_names,
476
- self.__func_input_table_view_query,
477
- self.__func_input_dataframe_type,
478
- self.__func_input_distribution,
479
- self.__func_input_partition_by_cols,
480
- self.__func_input_order_by_cols,
481
- self.__func_other_arg_sql_names,
482
- self.__func_other_args,
483
- self.__func_other_arg_json_datatypes,
484
- self.__func_output_args_sql_names,
485
- self.__func_output_args,
486
- engine="ENGINE_ML")
487
- # Invoke call to SQL-MR generation.
488
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
489
-
490
- # Print SQL-MR query if requested to do so.
491
- if display.print_sqlmr_query:
492
- print(self.sqlmr_query)
493
-
494
- # Set the algorithm name for Model Cataloging.
495
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
496
-
497
- def __execute(self):
498
- """
499
- Function to execute SQL-MR queries.
500
- Create DataFrames for the required SQL-MR outputs.
501
- """
502
- # Generate STDOUT table name and add it to the output table list.
503
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
504
- try:
505
- # Generate the output.
506
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
507
- except Exception as emsg:
508
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
509
-
510
- # Update output table data frames.
511
- self._mlresults = []
512
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
513
- self._mlresults.append(self.result)
514
-
515
- def show_query(self):
516
- """
517
- Function to return the underlying SQL query.
518
- When model object is created using retrieve_model(), then None is returned.
519
- """
520
- return self.sqlmr_query
521
-
522
- def get_prediction_type(self):
523
- """
524
- Function to return the Prediction type of the algorithm.
525
- When model object is created using retrieve_model(), then the value returned is
526
- as saved in the Model Catalog.
527
- """
528
- return self._prediction_type
529
-
530
- def get_target_column(self):
531
- """
532
- Function to return the Target Column of the algorithm.
533
- When model object is created using retrieve_model(), then the value returned is
534
- as saved in the Model Catalog.
535
- """
536
- return self._target_column
537
-
538
- def get_build_time(self):
539
- """
540
- Function to return the build time of the algorithm in seconds.
541
- When model object is created using retrieve_model(), then the value returned is
542
- as saved in the Model Catalog.
543
- """
544
- return self._build_time
545
-
546
- def _get_algorithm_name(self):
547
- """
548
- Function to return the name of the algorithm.
549
- """
550
- return self._algorithm_name
551
-
552
- def _get_sql_specific_attributes(self):
553
- """
554
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
555
- """
556
- return self._sql_specific_attributes
557
-
558
- @classmethod
559
- def _from_model_catalog(cls,
560
- result = None,
561
- **kwargs):
562
- """
563
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
564
- """
565
- kwargs.pop("result", None)
566
-
567
- # Model Cataloging related attributes.
568
- target_column = kwargs.pop("__target_column", None)
569
- prediction_type = kwargs.pop("__prediction_type", None)
570
- algorithm_name = kwargs.pop("__algorithm_name", None)
571
- build_time = kwargs.pop("__build_time", None)
572
-
573
- # Let's create an object of this class.
574
- obj = cls(**kwargs)
575
- obj.result = result
576
-
577
- # Initialize the sqlmr_query class attribute.
578
- obj.sqlmr_query = None
579
-
580
- # Initialize the SQL specific Model Cataloging attributes.
581
- obj._sql_specific_attributes = None
582
- obj._target_column = target_column
583
- obj._prediction_type = prediction_type
584
- obj._algorithm_name = algorithm_name
585
- obj._build_time = build_time
586
-
587
- # Update output table data frames.
588
- obj._mlresults = []
589
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
590
- obj._mlresults.append(obj.result)
591
- return obj
592
-
593
- def __repr__(self):
594
- """
595
- Returns the string representation for a CCM class instance.
596
- """
597
- repr_string="############ STDOUT Output ############"
598
- repr_string = "{}\n\n{}".format(repr_string,self.result)
599
- return repr_string
600
-