teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
teradataml/analytics/mle/CCM.py
DELETED
|
@@ -1,600 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class CCM:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
sequence_id_column = None,
|
|
35
|
-
time_column = None,
|
|
36
|
-
cause_columns = None,
|
|
37
|
-
effect_columns = None,
|
|
38
|
-
library_size = [100],
|
|
39
|
-
embedding_dimension = [2],
|
|
40
|
-
time_step = 1,
|
|
41
|
-
bootstrap_iterations = 100,
|
|
42
|
-
predict_step = 1,
|
|
43
|
-
self_predict = False,
|
|
44
|
-
seed = None,
|
|
45
|
-
point_select_rule = "DistanceOnly",
|
|
46
|
-
mode = "Single",
|
|
47
|
-
data_sequence_column = None):
|
|
48
|
-
"""
|
|
49
|
-
DESCRIPTION:
|
|
50
|
-
The CCM function takes two or more time series as input and evaluates
|
|
51
|
-
potential cause-effect relationships between them. Each time series
|
|
52
|
-
column can be a single, long time series or a set of shorter
|
|
53
|
-
subsequences that represent the same process. The function returns an
|
|
54
|
-
effect size for each cause-effect pair.
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
data:
|
|
59
|
-
Required Argument.
|
|
60
|
-
teradataml DataFrame containing the input data.
|
|
61
|
-
|
|
62
|
-
sequence_id_column:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies column containing the sequence ids. A sequence is a sample of the
|
|
65
|
-
time series.
|
|
66
|
-
Types: str OR list of Strings (str)
|
|
67
|
-
|
|
68
|
-
time_column:
|
|
69
|
-
Required Argument.
|
|
70
|
-
Specifies column containing the timestamps.
|
|
71
|
-
Types: str OR list of Strings (str)
|
|
72
|
-
|
|
73
|
-
cause_columns:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies column to be evaluated as potential causes.
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
effect_columns:
|
|
79
|
-
Required Argument.
|
|
80
|
-
Specifies column to be evaluated as potential effects.
|
|
81
|
-
Types: str OR list of Strings (str)
|
|
82
|
-
|
|
83
|
-
library_size:
|
|
84
|
-
Optional Argument.
|
|
85
|
-
The CCM algorithm works by using "libraries" of randomly selected
|
|
86
|
-
points along the potential effect time series to predict values of
|
|
87
|
-
the cause time series. A causal relationship is said to exist if the
|
|
88
|
-
correlation between the predicted values of the cause time series and
|
|
89
|
-
the actual values increases as the size of the library increases.
|
|
90
|
-
Each input value must be greater than 0.
|
|
91
|
-
Default Value: [100]
|
|
92
|
-
Types: int
|
|
93
|
-
|
|
94
|
-
embedding_dimension:
|
|
95
|
-
Optional Argument.
|
|
96
|
-
The embedding dimension is an estimate of the number of past values
|
|
97
|
-
to use when predicting a given value of the time series. The input
|
|
98
|
-
value must be greater than 0.
|
|
99
|
-
Default Value: [2]
|
|
100
|
-
Types: int
|
|
101
|
-
|
|
102
|
-
time_step:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
The time_step parameter indicates the number of time steps between
|
|
105
|
-
past values to use when predicting a given value of the time series.
|
|
106
|
-
The input value must be greater than 0.
|
|
107
|
-
Default Value: 1
|
|
108
|
-
Types: int
|
|
109
|
-
|
|
110
|
-
bootstrap_iterations:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
The number of bootstrap iterations used to predict. The bootstrap
|
|
113
|
-
process is used to estimate the uncertainty associated with the
|
|
114
|
-
predicted values. The input value must be greater than 0.
|
|
115
|
-
Default Value: 100
|
|
116
|
-
Types: int
|
|
117
|
-
|
|
118
|
-
predict_step:
|
|
119
|
-
Optional Argument.
|
|
120
|
-
If the best embedding dimension is needed to choose, the predict
|
|
121
|
-
step is used for specify the number of time steps into the
|
|
122
|
-
future to make predictions from past observations.
|
|
123
|
-
Default Value: 1
|
|
124
|
-
Types: int
|
|
125
|
-
|
|
126
|
-
self_predict:
|
|
127
|
-
Optional Argument.
|
|
128
|
-
If self_predict is set to true, the CCM function will attempt to
|
|
129
|
-
predict each attribute using the attribute itself. If an attribute
|
|
130
|
-
can predict its own time series well, the signal-to-noise ratio is
|
|
131
|
-
too low for the CCM algorithm to work effectively.
|
|
132
|
-
Default Value: False
|
|
133
|
-
Types: bool
|
|
134
|
-
|
|
135
|
-
seed:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies the random seed used to initialize the algorithm.
|
|
138
|
-
Types: int
|
|
139
|
-
|
|
140
|
-
point_select_rule:
|
|
141
|
-
Optional Argument.
|
|
142
|
-
The rules to select nearest points if the best embedding dimension
|
|
143
|
-
is needed to choose. Two options are provided. One is
|
|
144
|
-
DistanceAndTime. The other one is DistanceOnly.
|
|
145
|
-
Default Value: "DistanceOnly"
|
|
146
|
-
Permitted Values: DistanceAndTime, DistanceOnly
|
|
147
|
-
Types: str
|
|
148
|
-
|
|
149
|
-
mode:
|
|
150
|
-
Optional Argument.
|
|
151
|
-
Specifies the execution mode. CCM can be executed in single mode and
|
|
152
|
-
distribute node.
|
|
153
|
-
Default Value: "Single"
|
|
154
|
-
Permitted Values: Single, Distribute
|
|
155
|
-
Types: str
|
|
156
|
-
|
|
157
|
-
data_sequence_column:
|
|
158
|
-
Optional Argument.
|
|
159
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
160
|
-
the input argument "data". The argument is used to ensure
|
|
161
|
-
deterministic results for functions which produce results that vary
|
|
162
|
-
from run to run.
|
|
163
|
-
Types: str OR list of Strings (str)
|
|
164
|
-
|
|
165
|
-
RETURNS:
|
|
166
|
-
Instance of CCM.
|
|
167
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
168
|
-
references, such as CCMObj.<attribute_name>.
|
|
169
|
-
Output teradataml DataFrame attribute name is:
|
|
170
|
-
result
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
RAISES:
|
|
174
|
-
TeradataMlException
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
EXAMPLES:
|
|
178
|
-
# Load example data.
|
|
179
|
-
load_example_data("CCM", ["ccmexample", "ccm_input", "ccm_input2", "ccmprepare_input"])
|
|
180
|
-
|
|
181
|
-
# Create teradataml DataFrame objects.
|
|
182
|
-
ccmexample = DataFrame.from_table("ccmexample")
|
|
183
|
-
ccm_input = DataFrame.from_table("ccm_input")
|
|
184
|
-
ccm_input2 = DataFrame.from_table("ccm_input2")
|
|
185
|
-
ccmprepare_input = DataFrame.from_table("ccmprepare_input")
|
|
186
|
-
|
|
187
|
-
# Example 1 - Identify the optimal value for embedding_dimension.
|
|
188
|
-
# In this call, the cause_columns and effect_columns arguments must
|
|
189
|
-
# have the same value, the argument self_predict must have the value
|
|
190
|
-
# 'true', and the library_size argument must be omitted.
|
|
191
|
-
ccm_out1 = CCM(data = ccmexample,
|
|
192
|
-
sequence_id_column = "seqid",
|
|
193
|
-
time_column = "t",
|
|
194
|
-
cause_columns = ["b"],
|
|
195
|
-
effect_columns = ["b"],
|
|
196
|
-
embedding_dimension = [2,3,4,5,6,7,8,9,10],
|
|
197
|
-
self_predict = True
|
|
198
|
-
)
|
|
199
|
-
|
|
200
|
-
# Print the result teradataml DataFrame
|
|
201
|
-
print(ccm_out1)
|
|
202
|
-
|
|
203
|
-
# Example 2 - Check for a causal relationship between the two time
|
|
204
|
-
# series. This call uses the optimal value for embedding_dimension
|
|
205
|
-
# identified in Example 1.
|
|
206
|
-
ccm_out2 = CCM(data = ccmexample,
|
|
207
|
-
sequence_id_column = "seqid",
|
|
208
|
-
time_column = "t",
|
|
209
|
-
cause_columns = ["a","b"],
|
|
210
|
-
effect_columns = ["a","b"],
|
|
211
|
-
embedding_dimension = 2
|
|
212
|
-
)
|
|
213
|
-
|
|
214
|
-
# Print the result teradataml DataFrame
|
|
215
|
-
print(ccm_out2.result)
|
|
216
|
-
|
|
217
|
-
# Example 3 - Find causal-effect relationship between income,
|
|
218
|
-
# expenditure and investiment fields.
|
|
219
|
-
ccm_out3 = CCM(data = ccm_input,
|
|
220
|
-
sequence_id_column = 'id',
|
|
221
|
-
time_column = 'period',
|
|
222
|
-
cause_columns = ['income'],
|
|
223
|
-
effect_columns = ['expenditure','investment'],
|
|
224
|
-
seed = 0
|
|
225
|
-
)
|
|
226
|
-
|
|
227
|
-
# Print the result teradataml DataFrame
|
|
228
|
-
print(ccm_out3)
|
|
229
|
-
|
|
230
|
-
# Example 4 - Another example to find the cause-effect relation on
|
|
231
|
-
# a sample market time series data.
|
|
232
|
-
ccm_out4 = CCM(data = ccm_input2,
|
|
233
|
-
sequence_id_column = 'id',
|
|
234
|
-
time_column = 'period',
|
|
235
|
-
cause_columns = ['marketindex','indexval'],
|
|
236
|
-
effect_columns = ['indexdate','indexchange'],
|
|
237
|
-
library_size = 10,
|
|
238
|
-
seed = 0
|
|
239
|
-
)
|
|
240
|
-
|
|
241
|
-
# Print the result teradataml DataFrame
|
|
242
|
-
print(ccm_out4.result)
|
|
243
|
-
|
|
244
|
-
# Example 5 - Alternatively, the below example produces the same
|
|
245
|
-
# output as above by making use of CCMPrepare and then using
|
|
246
|
-
# its output object for CCM.
|
|
247
|
-
ccmprepare_out = CCMPrepare(data=ccmprepare_input,
|
|
248
|
-
data_partition_column='id'
|
|
249
|
-
)
|
|
250
|
-
|
|
251
|
-
ccm_out5 = CCM(data = ccmprepare_out.result,
|
|
252
|
-
sequence_id_column = 'id',
|
|
253
|
-
time_column = 'period',
|
|
254
|
-
cause_columns = 'income',
|
|
255
|
-
effect_columns = ["expenditure","investment"],
|
|
256
|
-
seed = 0
|
|
257
|
-
)
|
|
258
|
-
print(ccm_out5)
|
|
259
|
-
|
|
260
|
-
"""
|
|
261
|
-
|
|
262
|
-
# Start the timer to get the build time
|
|
263
|
-
_start_time = time.time()
|
|
264
|
-
|
|
265
|
-
self.data = data
|
|
266
|
-
self.sequence_id_column = sequence_id_column
|
|
267
|
-
self.time_column = time_column
|
|
268
|
-
self.cause_columns = cause_columns
|
|
269
|
-
self.effect_columns = effect_columns
|
|
270
|
-
self.library_size = library_size
|
|
271
|
-
self.embedding_dimension = embedding_dimension
|
|
272
|
-
self.time_step = time_step
|
|
273
|
-
self.bootstrap_iterations = bootstrap_iterations
|
|
274
|
-
self.predict_step = predict_step
|
|
275
|
-
self.self_predict = self_predict
|
|
276
|
-
self.seed = seed
|
|
277
|
-
self.point_select_rule = point_select_rule
|
|
278
|
-
self.mode = mode
|
|
279
|
-
self.data_sequence_column = data_sequence_column
|
|
280
|
-
|
|
281
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
282
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
283
|
-
self.__aed_utils = AedUtils()
|
|
284
|
-
|
|
285
|
-
# Create argument information matrix to do parameter checking
|
|
286
|
-
self.__arg_info_matrix = []
|
|
287
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
288
|
-
self.__arg_info_matrix.append(["sequence_id_column", self.sequence_id_column, False, (str)])
|
|
289
|
-
self.__arg_info_matrix.append(["time_column", self.time_column, False, (str)])
|
|
290
|
-
self.__arg_info_matrix.append(["cause_columns", self.cause_columns, False, (str,list)])
|
|
291
|
-
self.__arg_info_matrix.append(["effect_columns", self.effect_columns, False, (str,list)])
|
|
292
|
-
self.__arg_info_matrix.append(["library_size", self.library_size, True, (int,list)])
|
|
293
|
-
self.__arg_info_matrix.append(["embedding_dimension", self.embedding_dimension, True, (int,list)])
|
|
294
|
-
self.__arg_info_matrix.append(["time_step", self.time_step, True, (int)])
|
|
295
|
-
self.__arg_info_matrix.append(["bootstrap_iterations", self.bootstrap_iterations, True, (int)])
|
|
296
|
-
self.__arg_info_matrix.append(["predict_step", self.predict_step, True, (int)])
|
|
297
|
-
self.__arg_info_matrix.append(["self_predict", self.self_predict, True, (bool)])
|
|
298
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
299
|
-
self.__arg_info_matrix.append(["point_select_rule", self.point_select_rule, True, (str)])
|
|
300
|
-
self.__arg_info_matrix.append(["mode", self.mode, True, (str)])
|
|
301
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
302
|
-
|
|
303
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
304
|
-
# Perform the function validations
|
|
305
|
-
self.__validate()
|
|
306
|
-
# Generate the ML query
|
|
307
|
-
self.__form_tdml_query()
|
|
308
|
-
# Execute ML query
|
|
309
|
-
self.__execute()
|
|
310
|
-
# Get the prediction type
|
|
311
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
312
|
-
|
|
313
|
-
# End the timer to get the build time
|
|
314
|
-
_end_time = time.time()
|
|
315
|
-
|
|
316
|
-
# Calculate the build time
|
|
317
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
318
|
-
|
|
319
|
-
def __validate(self):
|
|
320
|
-
"""
|
|
321
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
322
|
-
arguments, input argument and table types. Also processes the
|
|
323
|
-
argument values.
|
|
324
|
-
"""
|
|
325
|
-
|
|
326
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
327
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
328
|
-
|
|
329
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
330
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
331
|
-
|
|
332
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
333
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
334
|
-
|
|
335
|
-
# Check for permitted values
|
|
336
|
-
point_select_rule_permitted_values = ["DISTANCEANDTIME", "DISTANCEONLY"]
|
|
337
|
-
self.__awu._validate_permitted_values(self.point_select_rule, point_select_rule_permitted_values, "point_select_rule")
|
|
338
|
-
|
|
339
|
-
mode_permitted_values = ["SINGLE", "DISTRIBUTE"]
|
|
340
|
-
self.__awu._validate_permitted_values(self.mode, mode_permitted_values, "mode")
|
|
341
|
-
|
|
342
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
343
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
344
|
-
self.__awu._validate_input_columns_not_empty(self.sequence_id_column, "sequence_id_column")
|
|
345
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sequence_id_column, "sequence_id_column", self.data, "data", False)
|
|
346
|
-
|
|
347
|
-
self.__awu._validate_input_columns_not_empty(self.time_column, "time_column")
|
|
348
|
-
self.__awu._validate_dataframe_has_argument_columns(self.time_column, "time_column", self.data, "data", False)
|
|
349
|
-
|
|
350
|
-
self.__awu._validate_input_columns_not_empty(self.cause_columns, "cause_columns")
|
|
351
|
-
self.__awu._validate_dataframe_has_argument_columns(self.cause_columns, "cause_columns", self.data, "data", False)
|
|
352
|
-
|
|
353
|
-
self.__awu._validate_input_columns_not_empty(self.effect_columns, "effect_columns")
|
|
354
|
-
self.__awu._validate_dataframe_has_argument_columns(self.effect_columns, "effect_columns", self.data, "data", False)
|
|
355
|
-
|
|
356
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
357
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
def __form_tdml_query(self):
|
|
361
|
-
"""
|
|
362
|
-
Function to generate the analytical function queries. The function defines
|
|
363
|
-
variables and list of arguments required to form the query.
|
|
364
|
-
"""
|
|
365
|
-
|
|
366
|
-
# Output table arguments list
|
|
367
|
-
self.__func_output_args_sql_names = []
|
|
368
|
-
self.__func_output_args = []
|
|
369
|
-
|
|
370
|
-
# Model Cataloging related attributes.
|
|
371
|
-
self._sql_specific_attributes = {}
|
|
372
|
-
self._sql_formula_attribute_mapper = {}
|
|
373
|
-
self._target_column = None
|
|
374
|
-
self._algorithm_name = None
|
|
375
|
-
|
|
376
|
-
# Generate lists for rest of the function arguments
|
|
377
|
-
self.__func_other_arg_sql_names = []
|
|
378
|
-
self.__func_other_args = []
|
|
379
|
-
self.__func_other_arg_json_datatypes = []
|
|
380
|
-
|
|
381
|
-
self.__func_other_arg_sql_names.append("SequenceIdColumn")
|
|
382
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_id_column, "\""), "'"))
|
|
383
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
384
|
-
|
|
385
|
-
self.__func_other_arg_sql_names.append("TimeColumn")
|
|
386
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.time_column, "\""), "'"))
|
|
387
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
388
|
-
|
|
389
|
-
self.__func_other_arg_sql_names.append("CauseColumns")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.cause_columns, "\""), "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
392
|
-
|
|
393
|
-
self.__func_other_arg_sql_names.append("EffectColumns")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.effect_columns, "\""), "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
396
|
-
|
|
397
|
-
if self.library_size is not None and self.library_size != [100]:
|
|
398
|
-
self.__func_other_arg_sql_names.append("LibrarySize")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.library_size, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
401
|
-
|
|
402
|
-
if self.embedding_dimension is not None and self.embedding_dimension != [2]:
|
|
403
|
-
self.__func_other_arg_sql_names.append("EmbeddingDimensions")
|
|
404
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.embedding_dimension, "'"))
|
|
405
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
406
|
-
|
|
407
|
-
if self.time_step is not None and self.time_step != 1:
|
|
408
|
-
self.__func_other_arg_sql_names.append("TimeStep")
|
|
409
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.time_step, "'"))
|
|
410
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
411
|
-
|
|
412
|
-
if self.bootstrap_iterations is not None and self.bootstrap_iterations != 100:
|
|
413
|
-
self.__func_other_arg_sql_names.append("BootstrapIterations")
|
|
414
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.bootstrap_iterations, "'"))
|
|
415
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
416
|
-
|
|
417
|
-
if self.predict_step is not None and self.predict_step != 1:
|
|
418
|
-
self.__func_other_arg_sql_names.append("PredictStep")
|
|
419
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.predict_step, "'"))
|
|
420
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
421
|
-
|
|
422
|
-
if self.self_predict is not None and self.self_predict != False:
|
|
423
|
-
self.__func_other_arg_sql_names.append("SelfPredict")
|
|
424
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.self_predict, "'"))
|
|
425
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
426
|
-
|
|
427
|
-
if self.point_select_rule is not None and self.point_select_rule != "DistanceOnly":
|
|
428
|
-
self.__func_other_arg_sql_names.append("PointSelectRule")
|
|
429
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.point_select_rule, "'"))
|
|
430
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
431
|
-
|
|
432
|
-
if self.mode is not None and self.mode != "Single":
|
|
433
|
-
self.__func_other_arg_sql_names.append("ExecutionMode")
|
|
434
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mode, "'"))
|
|
435
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
436
|
-
|
|
437
|
-
if self.seed is not None:
|
|
438
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
439
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
440
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
441
|
-
|
|
442
|
-
# Generate lists for rest of the function arguments
|
|
443
|
-
sequence_input_by_list = []
|
|
444
|
-
if self.data_sequence_column is not None:
|
|
445
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
446
|
-
|
|
447
|
-
if len(sequence_input_by_list) > 0:
|
|
448
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
449
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
450
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
451
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
452
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
# Declare empty lists to hold input table information.
|
|
456
|
-
self.__func_input_arg_sql_names = []
|
|
457
|
-
self.__func_input_table_view_query = []
|
|
458
|
-
self.__func_input_dataframe_type = []
|
|
459
|
-
self.__func_input_distribution = []
|
|
460
|
-
self.__func_input_partition_by_cols = []
|
|
461
|
-
self.__func_input_order_by_cols = []
|
|
462
|
-
|
|
463
|
-
# Process data
|
|
464
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
465
|
-
self.__func_input_distribution.append("NONE")
|
|
466
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
467
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
468
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
469
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
470
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
471
|
-
|
|
472
|
-
function_name = "CCM"
|
|
473
|
-
# Create instance to generate SQLMR.
|
|
474
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
475
|
-
self.__func_input_arg_sql_names,
|
|
476
|
-
self.__func_input_table_view_query,
|
|
477
|
-
self.__func_input_dataframe_type,
|
|
478
|
-
self.__func_input_distribution,
|
|
479
|
-
self.__func_input_partition_by_cols,
|
|
480
|
-
self.__func_input_order_by_cols,
|
|
481
|
-
self.__func_other_arg_sql_names,
|
|
482
|
-
self.__func_other_args,
|
|
483
|
-
self.__func_other_arg_json_datatypes,
|
|
484
|
-
self.__func_output_args_sql_names,
|
|
485
|
-
self.__func_output_args,
|
|
486
|
-
engine="ENGINE_ML")
|
|
487
|
-
# Invoke call to SQL-MR generation.
|
|
488
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
489
|
-
|
|
490
|
-
# Print SQL-MR query if requested to do so.
|
|
491
|
-
if display.print_sqlmr_query:
|
|
492
|
-
print(self.sqlmr_query)
|
|
493
|
-
|
|
494
|
-
# Set the algorithm name for Model Cataloging.
|
|
495
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
496
|
-
|
|
497
|
-
def __execute(self):
|
|
498
|
-
"""
|
|
499
|
-
Function to execute SQL-MR queries.
|
|
500
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
501
|
-
"""
|
|
502
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
503
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
504
|
-
try:
|
|
505
|
-
# Generate the output.
|
|
506
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
507
|
-
except Exception as emsg:
|
|
508
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
509
|
-
|
|
510
|
-
# Update output table data frames.
|
|
511
|
-
self._mlresults = []
|
|
512
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
513
|
-
self._mlresults.append(self.result)
|
|
514
|
-
|
|
515
|
-
def show_query(self):
|
|
516
|
-
"""
|
|
517
|
-
Function to return the underlying SQL query.
|
|
518
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
519
|
-
"""
|
|
520
|
-
return self.sqlmr_query
|
|
521
|
-
|
|
522
|
-
def get_prediction_type(self):
|
|
523
|
-
"""
|
|
524
|
-
Function to return the Prediction type of the algorithm.
|
|
525
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
526
|
-
as saved in the Model Catalog.
|
|
527
|
-
"""
|
|
528
|
-
return self._prediction_type
|
|
529
|
-
|
|
530
|
-
def get_target_column(self):
|
|
531
|
-
"""
|
|
532
|
-
Function to return the Target Column of the algorithm.
|
|
533
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
534
|
-
as saved in the Model Catalog.
|
|
535
|
-
"""
|
|
536
|
-
return self._target_column
|
|
537
|
-
|
|
538
|
-
def get_build_time(self):
|
|
539
|
-
"""
|
|
540
|
-
Function to return the build time of the algorithm in seconds.
|
|
541
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
542
|
-
as saved in the Model Catalog.
|
|
543
|
-
"""
|
|
544
|
-
return self._build_time
|
|
545
|
-
|
|
546
|
-
def _get_algorithm_name(self):
|
|
547
|
-
"""
|
|
548
|
-
Function to return the name of the algorithm.
|
|
549
|
-
"""
|
|
550
|
-
return self._algorithm_name
|
|
551
|
-
|
|
552
|
-
def _get_sql_specific_attributes(self):
|
|
553
|
-
"""
|
|
554
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
555
|
-
"""
|
|
556
|
-
return self._sql_specific_attributes
|
|
557
|
-
|
|
558
|
-
@classmethod
|
|
559
|
-
def _from_model_catalog(cls,
|
|
560
|
-
result = None,
|
|
561
|
-
**kwargs):
|
|
562
|
-
"""
|
|
563
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
564
|
-
"""
|
|
565
|
-
kwargs.pop("result", None)
|
|
566
|
-
|
|
567
|
-
# Model Cataloging related attributes.
|
|
568
|
-
target_column = kwargs.pop("__target_column", None)
|
|
569
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
570
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
571
|
-
build_time = kwargs.pop("__build_time", None)
|
|
572
|
-
|
|
573
|
-
# Let's create an object of this class.
|
|
574
|
-
obj = cls(**kwargs)
|
|
575
|
-
obj.result = result
|
|
576
|
-
|
|
577
|
-
# Initialize the sqlmr_query class attribute.
|
|
578
|
-
obj.sqlmr_query = None
|
|
579
|
-
|
|
580
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
581
|
-
obj._sql_specific_attributes = None
|
|
582
|
-
obj._target_column = target_column
|
|
583
|
-
obj._prediction_type = prediction_type
|
|
584
|
-
obj._algorithm_name = algorithm_name
|
|
585
|
-
obj._build_time = build_time
|
|
586
|
-
|
|
587
|
-
# Update output table data frames.
|
|
588
|
-
obj._mlresults = []
|
|
589
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
590
|
-
obj._mlresults.append(obj.result)
|
|
591
|
-
return obj
|
|
592
|
-
|
|
593
|
-
def __repr__(self):
|
|
594
|
-
"""
|
|
595
|
-
Returns the string representation for a CCM class instance.
|
|
596
|
-
"""
|
|
597
|
-
repr_string="############ STDOUT Output ############"
|
|
598
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
599
|
-
return repr_string
|
|
600
|
-
|