teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,799 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Sanath Vobilisetty (sanath.vobilisetty@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.14
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.options.configure import configure
30
- from teradataml.analytics.mle.NaiveBayesTextClassifier import NaiveBayesTextClassifier
31
- from teradataml.analytics.mle.NaiveBayesTextClassifier2 import NaiveBayesTextClassifier2
32
-
33
- class NaiveBayesTextClassifierPredict:
34
-
35
- def __init__(self,
36
- object = None,
37
- newdata = None,
38
- input_token_column = None,
39
- doc_id_columns = None,
40
- model_type = "MULTINOMIAL",
41
- top_k = None,
42
- model_token_column = None,
43
- model_category_column = None,
44
- model_prob_column = None,
45
- terms = None,
46
- output_responses = None,
47
- output_prob = False,
48
- newdata_sequence_column = None,
49
- object_sequence_column = None,
50
- newdata_partition_column = None,
51
- newdata_order_column = None,
52
- object_order_column = None,
53
- stopwords = None,
54
- is_tokenized = True,
55
- convert_to_lower_case = False,
56
- stem_tokens = True,
57
- stopwords_sequence_column = None,
58
- stopwords_order_column = None):
59
- """
60
- DESCRIPTION:
61
- The NaiveBayesTextClassifierPredict function uses the model
62
- teradataml DataFrame generated by the NaiveBayesTextClassifier or
63
- NaiveBayesTextClassifier2 function to predict outcomes for test data.
64
- Test data can be in the form of either documents or tokens.
65
-
66
- Note:
67
- 1. This function is available only when teradataml is connected to
68
- Vantage 1.1 or later versions.
69
- 2. Teradata recommends to use NaiveBayesTextClassifier function when
70
- teradataml is connected to Vantage 1.1.1 or earlier versions.
71
- 3. Teradata recommends to use NaiveBayesTextClassifier2 function when
72
- teradataml is connected to Vantage 1.3 or later versions.
73
-
74
-
75
- PARAMETERS:
76
- object:
77
- Required Argument.
78
- Specifies the teradataml DataFrame containing the model data
79
- or instance of NaiveBayesTextClassifier or NaiveBayesTextClassifier2,
80
- which contains the model.
81
-
82
- object_order_column:
83
- Optional Argument.
84
- Specifies Order By columns for "object".
85
- Values to this argument can be provided as a list, if multiple
86
- columns are used for ordering.
87
- Types: str OR list of Strings (str)
88
-
89
- newdata:
90
- Required Argument.
91
- Specifies the teradataml DataFrame containing the input test
92
- data.
93
-
94
- newdata_partition_column:
95
- Required Argument.
96
- Specifies Partition By columns for "newdata".
97
- Values to this argument can be provided as a list, if multiple
98
- columns are used for partitioning.
99
- Types: str OR list of Strings (str)
100
-
101
- newdata_order_column:
102
- Optional Argument.
103
- Specifies Order By columns for "newdata".
104
- Values to this argument can be provided as a list, if multiple
105
- columns are used for ordering.
106
- Types: str OR list of Strings (str)
107
-
108
- input_token_column:
109
- Required Argument.
110
- Specifies the name of the column in the input argument "newdata"
111
- that contains the texts or tokens.
112
- Types: str
113
-
114
- doc_id_columns:
115
- Optional Argument. Required if teradataml is connected to
116
- Vantage 1.1.1 or earlier version.
117
- Specifies the names of the columns in the input argument
118
- "newdata" that contain the document identifier.
119
- Types: str OR list of Strings (str)
120
-
121
- model_type:
122
- Optional Argument.
123
- Specifies the model type of the text classifier.
124
- Default Value: "MULTINOMIAL"
125
- Permitted Values: MULTINOMIAL, BERNOULLI
126
- Types: str
127
-
128
- top_k:
129
- Optional Argument.
130
- Specifies the number of most likely prediction categories to output
131
- with their log-likelihood values (for example, the top 10 most
132
- likely prediction categories). The default is all prediction
133
- categories.
134
- Note:
135
- "top_k" cannot be specified along with "output_responses".
136
- Types: int
137
-
138
- model_token_column:
139
- Optional Argument.
140
- Specifies the name of the column in the argument "object" that
141
- contains the tokens. The default value is the first column of
142
- the model.
143
- Note:
144
- This argument must be specified along with "model_category_column"
145
- and "model_prob_column".
146
- Types: str
147
-
148
- model_category_column:
149
- Optional Argument.
150
- Specifies the name of the column in the argument "object"
151
- that contains the prediction categories. The default value is
152
- the second column of the model.
153
- Note:
154
- This argument must be specified along with "model_token_column"
155
- and "model_prob_column".
156
- Types: str
157
-
158
- model_prob_column:
159
- Optional Argument.
160
- Specifies the name of the column in the argument "object" that
161
- contains the token counts. The default value is the third
162
- column of the model.
163
- Note:
164
- This argument must be specified along with "model_token_column"
165
- and "model_category_column".
166
- Types: str
167
-
168
- output_prob:
169
- Optional Argument.
170
- Specifies whether to output probabilities.
171
- Default Value: False
172
- Types: bool
173
-
174
- terms:
175
- Optional Argument.
176
- Specifies the names of the input teradataml DataFrame columns to copy
177
- to the output teradataml DataFrame.
178
- Types: str OR list of Strings (str)
179
-
180
- output_responses:
181
- Optional Argument.
182
- Specifies a list of output_responses to output.
183
- Note:
184
- 1. "output_responses" argument support is only available when teradataml
185
- is connected to Vantage 1.1.1 or later versions.
186
- 2. "output_responses" cannot be specified along with "top_k".
187
- Types: str OR list of Strings (str)
188
-
189
- newdata_sequence_column:
190
- Optional Argument.
191
- Specifies the list of column(s) that uniquely identifies each row of
192
- the input argument "newdata". The argument is used to ensure
193
- deterministic results for functions which produce results that vary
194
- from run to run.
195
- Types: str OR list of Strings (str)
196
-
197
- object_sequence_column:
198
- Optional Argument.
199
- Specifies the list of column(s) that uniquely identifies each row of
200
- the input argument "object". The argument is used to ensure
201
- deterministic results for functions which produce results that vary
202
- from run to run.
203
- Types: str OR list of Strings (str)
204
-
205
- stopwords:
206
- Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
207
- Specifies the teradataml DataFrame defining the stop words.
208
- Note:
209
- "stopwords" argument support is only available when teradataml
210
- is connected to Vantage 1.3 or later versions.
211
-
212
- stopwords_order_column:
213
- Optional Argument.
214
- Specifies Order By columns for "stopwords".
215
- Values to this argument can be provided as a list, if multiple
216
- columns are used for ordering.
217
- Note:
218
- "stopwords_order_column" argument support is only available when
219
- teradataml is connected to Vantage 1.3 or later versions.
220
- Types: str OR list of Strings (str)
221
-
222
- is_tokenized:
223
- Optional Argument.
224
- Specifies whether the input data is tokenized or not.
225
- When it is set to 'True', input data is tokenized, otherwise input data
226
- is not tokenized and will be tokenized internally.
227
- Note:
228
- "is_tokenized" argument support is only available when teradataml
229
- is connected to Vantage 1.3 or later versions.
230
- Default Value: True
231
- Types: bool
232
-
233
- convert_to_lower_case:
234
- Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
235
- Specifies whether to convert all letters in the input text to lowercase.
236
- value "true".
237
- Note:
238
- "convert_to_lower_case" argument support is only available when
239
- teradataml is connected to Vantage 1.3 or later versions.
240
- Default Value: False
241
- Types: bool
242
-
243
- stem_tokens:
244
- Optional Argument when "is_tokenized" is 'False', disallowed otherwise.
245
- Specifies whether to stem the tokens as part of text tokenization.
246
- Note:
247
- "stem_tokens" argument support is only available when teradataml
248
- is connected to Vantage 1.3 or later versions.
249
- Default Value: True
250
- Types: bool
251
-
252
- stopwords_sequence_column:
253
- Optional Argument.
254
- Specifies the list of column(s) that uniquely identifies each row of
255
- the input argument "stopwords". The argument is used to ensure
256
- deterministic results for functions which produce results that vary
257
- from run to run.
258
- Note:
259
- "stopwords_sequence_column" argument support is only available when
260
- teradataml is connected to Vantage 1.3 or later versions.
261
- Types: str OR list of Strings (str)
262
-
263
- RETURNS:
264
- Instance of NaiveBayesTextClassifierPredict.
265
- Output teradataml DataFrames can be accessed using attribute
266
- references, such as
267
- NaiveBayesTextClassifierPredictObj.<attribute_name>.
268
- Output teradataml DataFrame attribute name is:
269
- result
270
-
271
-
272
- RAISES:
273
- TeradataMlException, TypeError, ValueError
274
-
275
-
276
- EXAMPLES:
277
- # Load the data to run the example.
278
- load_example_data("NaiveBayesTextClassifierPredict",["complaints_tokens_test","token_table",
279
- "complaints","complaints_mini"])
280
-
281
- # Create teradataml DataFrame.
282
- token_table = DataFrame("token_table")
283
- complaints_tokens_test = DataFrame("complaints_tokens_test")
284
- complaints = DataFrame("complaints")
285
- complaints_mini = DataFrame("complaints_mini")
286
-
287
- # Example 1 -
288
- # We will try to predict the 'tokens' for the complaints_tokens_test
289
- # represented by the data points in the train data (token_table).
290
- # Run NaiveBayesTextClassifier on the train data.
291
- nbt_out = NaiveBayesTextClassifier(data = token_table,
292
- token_column = 'token',
293
- doc_id_columns = 'doc_id',
294
- doc_category_column = 'category',
295
- model_type = "Bernoulli",
296
- data_partition_column = 'category')
297
-
298
- # Use the generated model to predict the 'tokens' on the test data
299
- # complaints_tokens_test by using nbt_out model which is
300
- # generated by NaiveBayesTextClassifier.
301
-
302
- nbt_predict_out1 = NaiveBayesTextClassifierPredict(object = nbt_out,
303
- newdata = complaints_tokens_test,
304
- input_token_column = 'token',
305
- doc_id_columns = 'doc_id',
306
- model_type = "Bernoulli",
307
- model_token_column = 'token',
308
- model_category_column = 'category',
309
- model_prob_column = 'prob',
310
- newdata_partition_column = 'doc_id')
311
-
312
- # Print the result DataFrame.
313
- print(nbt_predict_out1.result)
314
-
315
- # Example 2 - "top_k" specified and "is_tokenized" set to 'False'
316
- # We will try to predict the 'documents' for the complaints_test
317
- # represented by the data points in the train data (complaints).
318
- # Run NaiveBayesTextClassifier2 on the train data.
319
- # Note:
320
- # This Example will work only when teradataml is connected
321
- # to Vantage 1.3 or later.
322
- nbtct2_out = NaiveBayesTextClassifier2(data=complaints,
323
- doc_category_column='category',
324
- text_column='text_data',
325
- doc_id_column='doc_id',
326
- model_type='BERNOULLI',
327
- is_tokenized=False
328
- )
329
-
330
- # Use the generated model to predict the 'documents' on the test data
331
- # complaints_test by using Bernoulli model nbtct2_out which is
332
- # generated by NaiveBayesTextClassifier2.
333
-
334
- nbt_predict_out2 = NaiveBayesTextClassifierPredict(object = nbtct2_out,
335
- newdata = complaints_mini,
336
- input_token_column = 'text_data',
337
- doc_id_columns = 'doc_id',
338
- model_type = "Bernoulli",
339
- newdata_partition_column = 'doc_id',
340
- top_k=2,
341
- output_prob=True,
342
- is_tokenized=False)
343
-
344
- # Print the result DataFrame.
345
- print(nbt_predict_out2.result)
346
-
347
- # Example 3 - "top_k" omitted and "is_tokenized" set to 'True'
348
- # The input teradataml DataFrame 'complaints_test' is tokenized using
349
- # TextTokenizer function.
350
- # Note:
351
- # This Example will work only when teradataml is connected
352
- # to Vantage 1.3 or later.
353
- complaints_test_tokenized = TextTokenizer(data=complaints_mini,
354
- text_column='text_data',
355
- language='en',
356
- output_delimiter=' ',
357
- output_byword =True,
358
- accumulate=['doc_id', 'category'])
359
-
360
- # Use input teradataml DataFrame complaints_test_tokenized which is the output of
361
- # TextTokenizer function and Bernoulli model nbtct2_out which is
362
- # generated by NaiveBayesTextClassifier2.
363
- nbt_predict_out3 = NaiveBayesTextClassifierPredict(object = nbtct2_out,
364
- newdata = complaints_test_tokenized.result,
365
- input_token_column = 'token',
366
- doc_id_columns = 'doc_id',
367
- output_responses=['crash','no_crash'],
368
- model_type = "Bernoulli",
369
- newdata_partition_column = 'doc_id',
370
- output_prob=True,
371
- is_tokenized=True)
372
-
373
- # Print the result DataFrame.
374
- print(nbt_predict_out3.result)
375
-
376
- """
377
-
378
- # Start the timer to get the build time
379
- _start_time = time.time()
380
-
381
- self.object = object
382
- self.newdata = newdata
383
- self.input_token_column = input_token_column
384
- self.doc_id_columns = doc_id_columns
385
- self.model_type = model_type
386
- self.top_k = top_k
387
- self.model_token_column = model_token_column
388
- self.model_category_column = model_category_column
389
- self.model_prob_column = model_prob_column
390
- self.terms = terms
391
- self.output_responses = output_responses
392
- self.output_prob = output_prob
393
- self.stopwords = stopwords
394
- self.is_tokenized = is_tokenized
395
- self.convert_to_lower_case = convert_to_lower_case
396
- self.stem_tokens = stem_tokens
397
- self.newdata_sequence_column = newdata_sequence_column
398
- self.object_sequence_column = object_sequence_column
399
- self.stopwords_sequence_column = stopwords_sequence_column
400
- self.newdata_partition_column = newdata_partition_column
401
- self.newdata_order_column = newdata_order_column
402
- self.object_order_column = object_order_column
403
- self.stopwords_order_column = stopwords_order_column
404
-
405
- # Create TeradataPyWrapperUtils instance which contains validation functions.
406
- self.__awu = AnalyticsWrapperUtils()
407
- self.__aed_utils = AedUtils()
408
-
409
- # Create argument information matrix to do parameter checking
410
- self.__arg_info_matrix = []
411
- self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
412
- self.__arg_info_matrix.append(["object_order_column", self.object_order_column, True, (str,list)])
413
- self.__arg_info_matrix.append(["newdata", self.newdata, False, (DataFrame)])
414
- self.__arg_info_matrix.append(["newdata_partition_column", self.newdata_partition_column, False, (str,list)])
415
- self.__arg_info_matrix.append(["newdata_order_column", self.newdata_order_column, True, (str,list)])
416
- self.__arg_info_matrix.append(["input_token_column", self.input_token_column, False, (str)])
417
- self.__arg_info_matrix.append(["doc_id_columns", self.doc_id_columns, configure._vantage_version == "vantage1.3", (str,list)])
418
- self.__arg_info_matrix.append(["model_type", self.model_type, True, (str)])
419
- self.__arg_info_matrix.append(["top_k", self.top_k, True, (int)])
420
- self.__arg_info_matrix.append(["model_token_column", self.model_token_column, True, (str)])
421
- self.__arg_info_matrix.append(["model_category_column", self.model_category_column, True, (str)])
422
- self.__arg_info_matrix.append(["model_prob_column", self.model_prob_column, True, (str)])
423
- self.__arg_info_matrix.append(["terms", self.terms, True, (str,list)])
424
- self.__arg_info_matrix.append(["output_responses", self.output_responses, True, (str,list)])
425
- self.__arg_info_matrix.append(["output_prob", self.output_prob, True, (bool)])
426
- self.__arg_info_matrix.append(["stopwords", self.stopwords, True, (DataFrame)])
427
- self.__arg_info_matrix.append(["stopwords_order_column", self.stopwords_order_column, True, (str,list)])
428
- self.__arg_info_matrix.append(["is_tokenized", self.is_tokenized, True, (bool)])
429
- self.__arg_info_matrix.append(["convert_to_lower_case", self.convert_to_lower_case, True, (bool)])
430
- self.__arg_info_matrix.append(["stem_tokens", self.stem_tokens, True, (bool)])
431
- self.__arg_info_matrix.append(["newdata_sequence_column", self.newdata_sequence_column, True, (str,list)])
432
- self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
433
- self.__arg_info_matrix.append(["stopwords_sequence_column", self.stopwords_sequence_column, True, (str,list)])
434
-
435
- if inspect.stack()[1][3] != '_from_model_catalog':
436
- # Perform the function validations
437
- self.__validate()
438
- # Generate the ML query
439
- self.__form_tdml_query()
440
- # Execute ML query
441
- self.__execute()
442
- # Get the prediction type
443
- self._prediction_type = self.__awu._get_function_prediction_type(self)
444
-
445
- # End the timer to get the build time
446
- _end_time = time.time()
447
-
448
- # Calculate the build time
449
- self._build_time = (int)(_end_time - _start_time)
450
-
451
- def __validate(self):
452
- """
453
- Function to validate sqlmr function arguments, which verifies missing
454
- arguments, input argument and table types. Also processes the
455
- argument values.
456
- """
457
- if isinstance(self.object, (NaiveBayesTextClassifier, NaiveBayesTextClassifier2)):
458
- self.object = self.object._mlresults[0]
459
-
460
- # Cannot use top_k along with output_responses
461
- if all([self.top_k, self.output_responses]):
462
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
463
- "top_k", "output_responses"),
464
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
465
-
466
- # Arguments model_token_column, model_category_column and model_prob_column must be used together or not
467
- mutually_inclusive_args = [self.model_token_column, self.model_category_column, self.model_prob_column]
468
- if not (all(mutually_inclusive_args) or not (any(mutually_inclusive_args))):
469
- raise TeradataMlException(
470
- Messages.get_message(MessageCodes.MUST_PASS_ARGUMENT, "model_token_column, model_category_column",
471
- "model_prob_column"), MessageCodes.MUST_PASS_ARGUMENT)
472
-
473
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
474
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
475
-
476
- # Make sure that a non-NULL value has been supplied correct type of argument
477
- self.__awu._validate_argument_types(self.__arg_info_matrix)
478
-
479
- # Check to make sure input table types are strings or data frame objects or of valid type.
480
- self.__awu._validate_input_table_datatype(self.newdata, "newdata", None)
481
- self.__awu._validate_input_table_datatype(self.object, "object", (NaiveBayesTextClassifier, NaiveBayesTextClassifier2))
482
- self.__awu._validate_input_table_datatype(self.stopwords, "stopwords", None)
483
-
484
- # Check for permitted values
485
- model_type_permitted_values = ["MULTINOMIAL", "BERNOULLI"]
486
- self.__awu._validate_permitted_values(self.model_type, model_type_permitted_values, "model_type")
487
-
488
- # Check whether the input columns passed to the argument are not empty.
489
- # Also check whether the input columns passed to the argument valid or not.
490
- self.__awu._validate_input_columns_not_empty(self.input_token_column, "input_token_column")
491
- self.__awu._validate_dataframe_has_argument_columns(self.input_token_column, "input_token_column", self.newdata, "newdata", False)
492
-
493
- self.__awu._validate_input_columns_not_empty(self.doc_id_columns, "doc_id_columns")
494
- self.__awu._validate_dataframe_has_argument_columns(self.doc_id_columns, "doc_id_columns", self.newdata, "newdata", False)
495
-
496
- self.__awu._validate_input_columns_not_empty(self.model_token_column, "model_token_column")
497
- self.__awu._validate_dataframe_has_argument_columns(self.model_token_column, "model_token_column", self.object, "object", False)
498
-
499
- self.__awu._validate_input_columns_not_empty(self.model_category_column, "model_category_column")
500
- self.__awu._validate_dataframe_has_argument_columns(self.model_category_column, "model_category_column", self.object, "object", False)
501
-
502
- self.__awu._validate_input_columns_not_empty(self.model_prob_column, "model_prob_column")
503
- self.__awu._validate_dataframe_has_argument_columns(self.model_prob_column, "model_prob_column", self.object, "object", False)
504
-
505
- self.__awu._validate_input_columns_not_empty(self.terms, "terms")
506
- self.__awu._validate_dataframe_has_argument_columns(self.terms, "terms", self.newdata, "newdata", False)
507
-
508
- self.__awu._validate_input_columns_not_empty(self.newdata_sequence_column, "newdata_sequence_column")
509
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_sequence_column, "newdata_sequence_column", self.newdata, "newdata", False)
510
-
511
- self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
512
- self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
513
-
514
- self.__awu._validate_input_columns_not_empty(self.stopwords_sequence_column, "stopwords_sequence_column")
515
- self.__awu._validate_dataframe_has_argument_columns(self.stopwords_sequence_column, "stopwords_sequence_column", self.stopwords, "stopwords", False)
516
-
517
- self.__awu._validate_input_columns_not_empty(self.newdata_partition_column, "newdata_partition_column")
518
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_partition_column, "newdata_partition_column", self.newdata, "newdata", True)
519
-
520
- self.__awu._validate_input_columns_not_empty(self.newdata_order_column, "newdata_order_column")
521
- self.__awu._validate_dataframe_has_argument_columns(self.newdata_order_column, "newdata_order_column", self.newdata, "newdata", False)
522
-
523
- self.__awu._validate_input_columns_not_empty(self.object_order_column, "object_order_column")
524
- self.__awu._validate_dataframe_has_argument_columns(self.object_order_column, "object_order_column", self.object, "object", False)
525
-
526
- self.__awu._validate_input_columns_not_empty(self.stopwords_order_column, "stopwords_order_column")
527
- self.__awu._validate_dataframe_has_argument_columns(self.stopwords_order_column, "stopwords_order_column", self.stopwords, "stopwords", False)
528
-
529
-
530
- def __form_tdml_query(self):
531
- """
532
- Function to generate the analytical function queries. The function defines
533
- variables and list of arguments required to form the query.
534
- """
535
-
536
- # Output table arguments list
537
- self.__func_output_args_sql_names = []
538
- self.__func_output_args = []
539
-
540
- # Model Cataloging related attributes.
541
- self._sql_specific_attributes = {}
542
- self._sql_formula_attribute_mapper = {}
543
- self._target_column = None
544
- self._algorithm_name = None
545
-
546
- # Generate lists for rest of the function arguments
547
- self.__func_other_arg_sql_names = []
548
- self.__func_other_args = []
549
- self.__func_other_arg_json_datatypes = []
550
-
551
- self.__func_other_arg_sql_names.append("InputTokenColumn")
552
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.input_token_column, "\""), "'"))
553
- self.__func_other_arg_json_datatypes.append("COLUMNS")
554
-
555
- if self.doc_id_columns is not None:
556
- self.__func_other_arg_sql_names.append("DocIdColumns")
557
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.doc_id_columns, "\""), "'"))
558
- self.__func_other_arg_json_datatypes.append("COLUMNS")
559
-
560
- if self.model_token_column is not None:
561
- self.__func_other_arg_sql_names.append("ModelTokenColumn")
562
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_token_column, "\""), "'"))
563
- self.__func_other_arg_json_datatypes.append("COLUMNS")
564
-
565
- if self.model_category_column is not None:
566
- self.__func_other_arg_sql_names.append("ModelCategoryColumn")
567
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_category_column, "\""), "'"))
568
- self.__func_other_arg_json_datatypes.append("COLUMNS")
569
-
570
- if self.model_prob_column is not None:
571
- self.__func_other_arg_sql_names.append("ModelProbColumn")
572
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_prob_column, "\""), "'"))
573
- self.__func_other_arg_json_datatypes.append("COLUMNS")
574
-
575
- if self.terms is not None:
576
- self.__func_other_arg_sql_names.append("Accumulate")
577
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.terms, "\""), "'"))
578
- self.__func_other_arg_json_datatypes.append("COLUMNS")
579
-
580
- if self.model_type is not None and self.model_type != "MULTINOMIAL":
581
- self.__func_other_arg_sql_names.append("ModelType")
582
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_type, "'"))
583
- self.__func_other_arg_json_datatypes.append("STRING")
584
-
585
- if self.top_k is not None:
586
- self.__func_other_arg_sql_names.append("TopK")
587
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.top_k, "'"))
588
- self.__func_other_arg_json_datatypes.append("INTEGER")
589
-
590
- if self.output_prob is not None and self.output_prob != False:
591
- self.__func_other_arg_sql_names.append("OutputProb")
592
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_prob, "'"))
593
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
594
-
595
- if self.output_responses is not None:
596
- self.__func_other_arg_sql_names.append("Responses")
597
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_responses, "'"))
598
- self.__func_other_arg_json_datatypes.append("STRING")
599
-
600
- if self.is_tokenized is not None and self.is_tokenized != True:
601
- self.__func_other_arg_sql_names.append("IsTokenized")
602
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.is_tokenized, "'"))
603
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
604
-
605
- if self.convert_to_lower_case is not None and self.convert_to_lower_case != False:
606
- self.__func_other_arg_sql_names.append("ConvertToLowerCase")
607
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.convert_to_lower_case, "'"))
608
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
609
-
610
- if self.stem_tokens is not None and self.stem_tokens != True:
611
- self.__func_other_arg_sql_names.append("StemTokens")
612
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.stem_tokens, "'"))
613
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
614
-
615
- # Generate lists for rest of the function arguments
616
- sequence_input_by_list = []
617
- if self.newdata_sequence_column is not None:
618
- sequence_input_by_list.append("predicts:" + UtilFuncs._teradata_collapse_arglist(self.newdata_sequence_column, ""))
619
-
620
- if self.object_sequence_column is not None:
621
- sequence_input_by_list.append("model:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
622
-
623
- if self.stopwords_sequence_column is not None:
624
- sequence_input_by_list.append("StopWordsTable:" + UtilFuncs._teradata_collapse_arglist(self.stopwords_sequence_column, ""))
625
-
626
- if len(sequence_input_by_list) > 0:
627
- self.__func_other_arg_sql_names.append("SequenceInputBy")
628
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
629
- self.__func_other_args.append(sequence_input_by_arg_value)
630
- self.__func_other_arg_json_datatypes.append("STRING")
631
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
632
-
633
-
634
- # Declare empty lists to hold input table information.
635
- self.__func_input_arg_sql_names = []
636
- self.__func_input_table_view_query = []
637
- self.__func_input_dataframe_type = []
638
- self.__func_input_distribution = []
639
- self.__func_input_partition_by_cols = []
640
- self.__func_input_order_by_cols = []
641
-
642
- # Process newdata
643
- self.newdata_partition_column = UtilFuncs._teradata_collapse_arglist(self.newdata_partition_column, "\"")
644
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.newdata, False)
645
- self.__func_input_distribution.append("FACT")
646
- self.__func_input_arg_sql_names.append("predicts")
647
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
648
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
649
- self.__func_input_partition_by_cols.append(self.newdata_partition_column)
650
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.newdata_order_column, "\""))
651
-
652
- # Process object
653
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
654
- self.__func_input_distribution.append("DIMENSION")
655
- self.__func_input_arg_sql_names.append("model")
656
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
657
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
658
- self.__func_input_partition_by_cols.append("NA_character_")
659
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.object_order_column, "\""))
660
-
661
- # Process stopwords
662
- if self.stopwords is not None:
663
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.stopwords, False)
664
- self.__func_input_distribution.append("DIMENSION")
665
- self.__func_input_arg_sql_names.append("StopWordsTable")
666
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
667
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
668
- self.__func_input_partition_by_cols.append("NA_character_")
669
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.stopwords_order_column, "\""))
670
-
671
- function_name = "NaiveBayesTextClassifierPredict"
672
- # Create instance to generate SQLMR.
673
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
674
- self.__func_input_arg_sql_names,
675
- self.__func_input_table_view_query,
676
- self.__func_input_dataframe_type,
677
- self.__func_input_distribution,
678
- self.__func_input_partition_by_cols,
679
- self.__func_input_order_by_cols,
680
- self.__func_other_arg_sql_names,
681
- self.__func_other_args,
682
- self.__func_other_arg_json_datatypes,
683
- self.__func_output_args_sql_names,
684
- self.__func_output_args,
685
- engine="ENGINE_ML")
686
- # Invoke call to SQL-MR generation.
687
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
688
-
689
- # Print SQL-MR query if requested to do so.
690
- if display.print_sqlmr_query:
691
- print(self.sqlmr_query)
692
-
693
- # Set the algorithm name for Model Cataloging.
694
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
695
-
696
- def __execute(self):
697
- """
698
- Function to execute SQL-MR queries.
699
- Create DataFrames for the required SQL-MR outputs.
700
- """
701
- # Generate STDOUT table name and add it to the output table list.
702
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
703
- try:
704
- # Generate the output.
705
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
706
- except Exception as emsg:
707
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
708
-
709
- # Update output table data frames.
710
- self._mlresults = []
711
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
712
- self._mlresults.append(self.result)
713
-
714
- def show_query(self):
715
- """
716
- Function to return the underlying SQL query.
717
- When model object is created using retrieve_model(), then None is returned.
718
- """
719
- return self.sqlmr_query
720
-
721
- def get_prediction_type(self):
722
- """
723
- Function to return the Prediction type of the algorithm.
724
- When model object is created using retrieve_model(), then the value returned is
725
- as saved in the Model Catalog.
726
- """
727
- return self._prediction_type
728
-
729
- def get_target_column(self):
730
- """
731
- Function to return the Target Column of the algorithm.
732
- When model object is created using retrieve_model(), then the value returned is
733
- as saved in the Model Catalog.
734
- """
735
- return self._target_column
736
-
737
- def get_build_time(self):
738
- """
739
- Function to return the build time of the algorithm in seconds.
740
- When model object is created using retrieve_model(), then the value returned is
741
- as saved in the Model Catalog.
742
- """
743
- return self._build_time
744
-
745
- def _get_algorithm_name(self):
746
- """
747
- Function to return the name of the algorithm.
748
- """
749
- return self._algorithm_name
750
-
751
- def _get_sql_specific_attributes(self):
752
- """
753
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
754
- """
755
- return self._sql_specific_attributes
756
-
757
- @classmethod
758
- def _from_model_catalog(cls,
759
- result = None,
760
- **kwargs):
761
- """
762
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
763
- """
764
- kwargs.pop("result", None)
765
-
766
- # Model Cataloging related attributes.
767
- target_column = kwargs.pop("__target_column", None)
768
- prediction_type = kwargs.pop("__prediction_type", None)
769
- algorithm_name = kwargs.pop("__algorithm_name", None)
770
- build_time = kwargs.pop("__build_time", None)
771
-
772
- # Let's create an object of this class.
773
- obj = cls(**kwargs)
774
- obj.result = result
775
-
776
- # Initialize the sqlmr_query class attribute.
777
- obj.sqlmr_query = None
778
-
779
- # Initialize the SQL specific Model Cataloging attributes.
780
- obj._sql_specific_attributes = None
781
- obj._target_column = target_column
782
- obj._prediction_type = prediction_type
783
- obj._algorithm_name = algorithm_name
784
- obj._build_time = build_time
785
-
786
- # Update output table data frames.
787
- obj._mlresults = []
788
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
789
- obj._mlresults.append(obj.result)
790
- return obj
791
-
792
- def __repr__(self):
793
- """
794
- Returns the string representation for a NaiveBayesTextClassifierPredict class instance.
795
- """
796
- repr_string="############ STDOUT Output ############"
797
- repr_string = "{}\n\n{}".format(repr_string,self.result)
798
- return repr_string
799
-