teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,547 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2024 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Sweta Shaw
7
+ # Email Id: Sweta.Shaw@Teradata.com
8
+ #
9
+ # Secondary Owner: Akhil Bisht
10
+ # Email Id: AKHIL.BISHT@Teradata.com
11
+ #
12
+ # Version: 1.1
13
+ # Function Version: 1.0
14
+ # ##################################################################
15
+
16
+
17
+ # Teradata libraries
18
+ from teradataml.dataframe.dataframe import DataFrame
19
+ from teradataml.dataframe.copy_to import copy_to_sql
20
+ from teradataml import ColumnSummary, CategoricalSummary, GetFutileColumns
21
+ from teradataml import OutlierFilterFit, OutlierFilterTransform
22
+ from teradataml.hyperparameter_tuner.utils import _ProgressBar
23
+ from teradataml.common.messages import Messages, MessageCodes
24
+
25
+ def _is_terminal():
26
+ """
27
+ DESCRIPTION:
28
+ Common Function detects whether code is running in
29
+ terminal/console or IPython supported environment.
30
+
31
+ RETURNS:
32
+ bool.
33
+ """
34
+ if not hasattr(_is_terminal, 'ipython_imported'):
35
+ try:
36
+ # Check IPython environment
37
+ __IPYTHON__
38
+ # Check if IPython library is installed
39
+ from IPython.display import display, HTML
40
+ _is_terminal.ipython_imported = True
41
+ except (NameError, ImportError):
42
+ # If error, then terminal
43
+ _is_terminal.ipython_imported = False
44
+
45
+ return not _is_terminal.ipython_imported
46
+
47
+ # # conditional import
48
+ if not _is_terminal():
49
+ from IPython.display import display, HTML
50
+
51
+ class _FeatureExplore:
52
+
53
+ def __init__(self,
54
+ data=None,
55
+ target_column=None,
56
+ verbose=0):
57
+ """
58
+ DESCRIPTION:
59
+ Internal function initializes the data, target column for feature exploration.
60
+
61
+ PARAMETERS:
62
+ data:
63
+ Required Argument.
64
+ Specifies the input teradataml DataFrame for feature exploration.
65
+ Types: teradataml Dataframe
66
+
67
+ target_column:
68
+ Required Arugment.
69
+ Specifies the name of the target column in "data".
70
+ Types: str
71
+
72
+ verbose:
73
+ Optional Argument.
74
+ Specifies the detailed execution steps based on verbose level.
75
+ Default Value: 0
76
+ Permitted Values:
77
+ * 0: prints the progress bar and leaderboard
78
+ * 1: prints the execution steps of AutoML.
79
+ * 2: prints the intermediate data between the execution of each step of AutoML.
80
+ Types: int
81
+ """
82
+ self.data = data
83
+ self.target_column = target_column
84
+ self.verbose = verbose
85
+ self.terminal_print = _is_terminal()
86
+ self.style = self._common_style()
87
+
88
+ def _exploration(self):
89
+ """
90
+ DESCRIPTION:
91
+ Internal function performs following operations:
92
+ 1. Column summary of columns of the dataset
93
+ 2. Statistics of numeric columns of the dataset
94
+ 3. Categorical column summary
95
+ 4. Futile columns in the dataset
96
+ 5. Target column distribution
97
+ 6. Outlier Percentage in numeric columns of the dataset
98
+ """
99
+ numerical_columns = []
100
+ categorical_columns= []
101
+ date_column_list = []
102
+
103
+ self._display_heading(phase=0)
104
+ self._display_msg(msg='Feature Exploration started ...')
105
+
106
+ # Detecting numerical and categorical column
107
+ for col, d_type in self.data._column_names_and_types:
108
+ if d_type in ['int','float']:
109
+ numerical_columns.append(col)
110
+ elif d_type in ['str']:
111
+ categorical_columns.append(col)
112
+ elif d_type in ['datetime.date','datetime.datetime']:
113
+ date_column_list.append(col)
114
+
115
+ # Display initial Count of data
116
+ self._display_msg(msg = '\nData Overview:', show_data=True)
117
+ print(f"Total Rows in the data: {self.data.shape[0]}\n"\
118
+ f"Total Columns in the data: {self.data.shape[1]}")
119
+
120
+ # Displaying date columns
121
+ if len(date_column_list)!=0:
122
+ self._display_msg(msg='Identified Date Columns:',
123
+ data=date_column_list)
124
+
125
+ # Column Summary of each feature of data
126
+ # such as null count, datatype, non null count
127
+ self._column_summary()
128
+
129
+ # Displays statistics such as mean/median/mode
130
+ self._statistics()
131
+
132
+ # Categorcial Summary and futile column detection
133
+ if len(categorical_columns) != 0:
134
+ categorical_obj = self._categorical_summary(categorical_columns)
135
+ self._futile_column(categorical_obj)
136
+
137
+ # Plot a graph of target column
138
+ self._target_column_details()
139
+
140
+ # Displays outlier percentage
141
+ outlier_method = "Tukey"
142
+ df = self._outlier_detection(outlier_method,numerical_columns)
143
+
144
+ def _statistics(self):
145
+ """
146
+ DESCRIPTION:
147
+ Internal function displays the statistics of numeric columns such mean, mode, median.
148
+ """
149
+ # Statistics of numerical columns
150
+ self._display_msg(msg='\nStatistics of Data:',
151
+ data=self.data.describe(),
152
+ show_data=True)
153
+
154
+
155
+ def _column_summary(self):
156
+ """
157
+ DESCRIPTION:
158
+ Internal function displays the column summary of categorical column such as
159
+ datatype, null count, non null count, zero count.
160
+ """
161
+ # Column Summary of all columns of dataset
162
+ obj = ColumnSummary(data=self.data,
163
+ target_columns=self.data.columns,
164
+ volatile=True)
165
+ self._display_msg(msg='\nColumn Summary:',
166
+ data=obj.result,
167
+ show_data=True)
168
+
169
+ def _categorical_summary(self,
170
+ categorical_columns=None):
171
+ """
172
+ DESCRIPTION:
173
+ Internal function display the categorical summary of categorical column such count, distinct values.
174
+
175
+ PARAMETERS:
176
+ categorical_columns:
177
+ Required Argument.
178
+ Specifies the categorical columns.
179
+ Types: str or list of strings (str)
180
+
181
+ RETURNS:
182
+ Instance of ColumnSummary.
183
+ """
184
+ self._display_msg(msg='\nCategorical Columns with their Distinct values:',
185
+ show_data=True)
186
+
187
+ # Categorical Summary of categorical columns
188
+ obj = CategoricalSummary(data=self.data,
189
+ target_columns=categorical_columns)
190
+
191
+ catg_obj = obj.result[obj.result['DistinctValue'] != None]
192
+ print("{:<25} {:<10}".format("ColumnName", "DistinctValueCount"))
193
+ for col in categorical_columns:
194
+ dst_val = catg_obj[catg_obj['ColumnName'] == col].size//3
195
+ print("{:<25} {:<10}".format(col, dst_val))
196
+
197
+ return obj
198
+
199
+ def _futile_column(self,
200
+ categorical_obj):
201
+ """
202
+ DESCRIPTION:
203
+ Internal function detects the futile columns.
204
+
205
+ PARAMETERS:
206
+ categorical_obj:
207
+ Required Argument.
208
+ Specifies the instance of CategoricalSummary for futile column detection..
209
+ Types: Instance of CategoricalSummary
210
+ """
211
+ # Futile columns detection using categorical column object
212
+ gfc_out = GetFutileColumns(data=self.data,
213
+ object=categorical_obj,
214
+ category_summary_column="ColumnName",
215
+ threshold_value=0.7)
216
+
217
+ # Extracts the futile column present in the first column
218
+ f_cols = [i[0] for i in gfc_out.result.itertuples()]
219
+
220
+ if len(f_cols) == 0:
221
+ self._display_msg(inline_msg='\nNo Futile columns found.',
222
+ show_data=True)
223
+ else:
224
+ self._display_msg(msg='\nFutile columns in dataset:',
225
+ data=gfc_out.result,
226
+ show_data=True)
227
+
228
+ def _target_column_details(self,
229
+ plot_data = None):
230
+ """
231
+ DESCRIPTION:
232
+ Internal function displays the target column distribution of Target column/ Response column.
233
+
234
+ PARAMETERS:
235
+ plot_data:
236
+ Required Argument.
237
+ Specifies the input teradataml DataFrame for plotting distribution.
238
+ Types: teradataml Dataframe
239
+ """
240
+ if self._check_visualization_libraries() and not _is_terminal():
241
+ import matplotlib.pyplot as plt
242
+ import seaborn as sns
243
+ if plot_data is None:
244
+ target_data = self.data.select([self.target_column]).to_pandas()
245
+ else:
246
+ target_data = plot_data[[self.target_column]]
247
+ self._display_msg(msg='\nTarget Column Distribution:',
248
+ show_data=True)
249
+ plt.figure(figsize=(8, 6))
250
+ # Ploting a histogram for target column
251
+ plt.hist(target_data, bins=10, density=True, edgecolor='black')
252
+ plt.xlabel(self.target_column)
253
+ plt.ylabel('Density')
254
+ plt.show()
255
+
256
+ def _check_visualization_libraries(self):
257
+ """
258
+ DESCRIPTION:
259
+ Internal function Checks the availability of data visualization libraries.
260
+
261
+ RETURNS:
262
+ Boolean, True if data visualization libraries are available. Otherwise return False.
263
+ """
264
+
265
+ # Conditional import
266
+ try:
267
+ import matplotlib.pyplot as plt
268
+ import seaborn as sns
269
+ except ImportError:
270
+ print("Install seaborn and matplotlib libraries to visualize the data.")
271
+ return False
272
+
273
+ return True
274
+
275
+ def _outlier_detection(self,
276
+ outlier_method,
277
+ column_list,
278
+ lower_percentile = None,
279
+ upper_percentile = None):
280
+ """
281
+ DESCRIPTION:
282
+ Function detects the outlier in numerical column and display thier percentage.
283
+
284
+ PARAMETERS:
285
+ outlier_method:
286
+ Required Argument.
287
+ Specifies the outlier method required for outlier detection.
288
+ Types: str
289
+
290
+ column_list:
291
+ Required Argument.
292
+ Specifies the numeric columns for outlier percentage calculation.
293
+ Types: str or list of strings (str)
294
+
295
+ lower_percentile:
296
+ Optional Argument.
297
+ Specifies the lower percentile value for outlier detection in case of percentile method.
298
+ Types: float
299
+
300
+ upper_percentile:
301
+ Optional Argument.
302
+ Specifies the upper percentile value for outlier detection in case of percentile method.
303
+ Types: float
304
+
305
+ RETURNS:
306
+ Pandas DataFrame containing, column name with outlier percentage.
307
+
308
+ """
309
+ # Performing outlier fit on the data for replacing outliers with NULL value
310
+ fit_params = {
311
+ "data" : self.data,
312
+ "target_columns" : column_list,
313
+ "outlier_method" : outlier_method,
314
+ "lower_percentile" : lower_percentile,
315
+ "upper_percentile" : upper_percentile,
316
+ "replacement_value" : 'NULL'
317
+ }
318
+ OutlierFilterFit_out = OutlierFilterFit(**fit_params)
319
+ transform_params = {
320
+ "data" : self.data,
321
+ "object" : OutlierFilterFit_out.result
322
+ }
323
+ # Performing outlier transformation on each column
324
+ OutlierTransform_obj = OutlierFilterTransform(**transform_params)
325
+
326
+ # Column summary of each column of the data
327
+ fit_params = {
328
+ "data" : OutlierTransform_obj.result,
329
+ "target_columns" : column_list
330
+ }
331
+ colSummary = ColumnSummary(**fit_params)
332
+
333
+ null_count_expr = colSummary.result.NullCount
334
+ non_null_count_expr = colSummary.result.NonNullCount
335
+
336
+ # Calculating outlier percentage
337
+ df = colSummary.result.assign(True,
338
+ ColumnName = colSummary.result.ColumnName,
339
+ OutlierPercentage = (null_count_expr/(non_null_count_expr+null_count_expr))*100)
340
+
341
+ # Displaying non-zero containing outlier percentage for columns
342
+ df = df[df['OutlierPercentage']>0]
343
+ if self.verbose > 0:
344
+ print(" "*500, end='\r')
345
+ if df.shape[0] > 0:
346
+ self._display_msg(msg='Columns with outlier percentage :-',
347
+ show_data=True)
348
+ print(df)
349
+ else:
350
+ print("\nNo outlier found!")
351
+
352
+ return df
353
+
354
+ def _common_style(self):
355
+ """
356
+ DESCRIPTION:
357
+ Internal Function sets the style tag for HTML.
358
+
359
+ RETURNS:
360
+ string containing style tag.
361
+
362
+ """
363
+ style = '''
364
+ <style>
365
+ .custom-div {
366
+ background-color: lightgray;
367
+ color: #000000;
368
+ padding: 10px;
369
+ border-radius: 8px;
370
+ box-shadow: 0 3px 4px rgba(0, 0, 0, 0.2);
371
+ margin-bottom: 10px;
372
+ text-align: center;
373
+ }
374
+ </style>
375
+ '''
376
+ return style
377
+
378
+ def _display_heading(self,
379
+ phase=0,
380
+ progress_bar=None):
381
+ """
382
+ DESCRIPTION:
383
+ Internal function to print the phase of AutoML that
384
+ completed in green color.
385
+
386
+ PARAMETERS:
387
+ phase:
388
+ Optional Argument.
389
+ Specifies the phase of automl that completed.
390
+ Types: int
391
+
392
+ progress_bar:
393
+ Optional Argument.
394
+ Specifies the _ProgressBar object.
395
+ Types: object (_ProgressBar)
396
+
397
+ RETURNS:
398
+ None.
399
+ """
400
+ # Phases of automl
401
+ steps = ["1. Feature Exploration ->", " 2. Feature Engineering ->",
402
+ " 3. Data Preparation ->", " 4. Model Training & Evaluation"]
403
+ # Check verbose > 0
404
+ if self.verbose > 0:
405
+
406
+ # Check if code is running in IPython enviornment
407
+ if not self.terminal_print:
408
+ # Highlightedt phases of automl
409
+ highlighted_steps = "".join(steps[:phase])
410
+
411
+ # Unhighlighted phases of automl
412
+ unhighlighted_steps = "".join(steps[phase:])
413
+
414
+ # Combining highlighted and unhighlighted phases
415
+ msg = self.style + f'<br><div class="custom-div"><h3><span style="color: green;">{highlighted_steps}</span>{unhighlighted_steps}<center></h3></center></div>'
416
+ # Displaying the msg
417
+ if progress_bar is not None:
418
+ progress_bar.update(msg=msg,
419
+ progress=False,
420
+ ipython=True)
421
+ else:
422
+ display(HTML(msg))
423
+ else:
424
+ try:
425
+ # Try to import colorama if not already imported
426
+ from colorama import Fore, Style, init
427
+ # initalize the color package
428
+ init()
429
+
430
+ # Highlight the phases of automl
431
+ highlighted_steps = "".join([Fore.GREEN + Style.BRIGHT + step + Style.RESET_ALL for step in steps[:phase]])
432
+
433
+ # Unhighlighted the phases of automl
434
+ unhighlighted_steps = "".join(steps[phase:])
435
+
436
+ # Combining highlighted and unhighlighted phases
437
+ msg = f'{highlighted_steps}{unhighlighted_steps}'
438
+
439
+ except ImportError:
440
+ msg = "".join(step for step in steps)
441
+
442
+ if progress_bar is not None:
443
+ progress_bar.update(msg=msg,
444
+ progress=False)
445
+ else:
446
+ print(msg)
447
+
448
+ def _display_msg(self,
449
+ msg=None,
450
+ progress_bar=None,
451
+ inline_msg=None,
452
+ data=None,
453
+ col_lst=None,
454
+ show_data=False):
455
+ """
456
+ DESCRIPTION:
457
+ Internal Function to print statement according to
458
+ environment.
459
+
460
+ PARAMETERS:
461
+ msg:
462
+ Optional Argument.
463
+ Specifies the message to print.
464
+ Types: str
465
+
466
+ progress_bar:
467
+ Optional Argument.
468
+ Specifies the _ProgressBar object.
469
+ Types: object (_ProgressBar)
470
+
471
+ inline_msg:
472
+ Optional Argument.
473
+ Specifies the additional information to print.
474
+ Types: str
475
+
476
+ data:
477
+ Optional Argument.
478
+ Specifies the teradataml dataframe to print.
479
+ Types: teradataml DataFrame
480
+
481
+ col_lst:
482
+ Optional Argument.
483
+ Specifies the list of columns.
484
+ Types: list of str/int/data.time
485
+
486
+ show_data:
487
+ Optional Argument.
488
+ Specifies whether to print msg/data when verbose<2.
489
+ Default Value: False
490
+ Types: bool
491
+
492
+ RETURNS:
493
+ None.
494
+
495
+ """
496
+ # If verbose level is set to 2
497
+ if self.verbose == 2:
498
+ # If a progress bar is provided
499
+ if progress_bar:
500
+ # If a message is provided
501
+ if msg:
502
+ # Update the progress bar with the message and either the column list or data (if they are not None)
503
+ progress_bar.update(msg=msg, data=col_lst if col_lst else data if data is not None else None,
504
+ progress=False,
505
+ ipython=not self.terminal_print)
506
+ # If an inline message is provided instead
507
+ elif inline_msg:
508
+ # Update the progress bar with the inline message
509
+ progress_bar.update(msg=inline_msg, progress=False)
510
+ # If no progress bar is provided
511
+ else:
512
+ # If a message is provided
513
+ if msg:
514
+ # Print the message
515
+ print(f"{msg}")
516
+ # If a column list is provided
517
+ if col_lst:
518
+ # Print the column list
519
+ print(col_lst)
520
+ # If data is provided instead
521
+ elif data is not None:
522
+ # Print the data if terminal_print is True, else display the data
523
+ print(data) if self.terminal_print else display(data)
524
+ # If an inline message is provided instead
525
+ elif inline_msg:
526
+ # Print the inline message
527
+ print(f'{inline_msg}')
528
+ # Exit the function after handling verbose level 2
529
+ return
530
+
531
+ # If verbose level is more than 0 and show_data is True
532
+ if self.verbose > 0 and show_data:
533
+ # If a progress bar and a message are provided
534
+ if progress_bar and msg:
535
+ # Update the progress bar with the message and data (if data is not None)
536
+ progress_bar.update(msg=msg, data=data if data is not None else None,
537
+ progress=False, ipython=not self.terminal_print)
538
+ # If no progress bar is provided
539
+ else:
540
+ # If a message is provided
541
+ if msg:
542
+ # Print the message if terminal_print is True, else display the message
543
+ print(f'{msg}') if self.terminal_print else display(HTML(f'<h4>{msg}</h4>'))
544
+ # If data is provided
545
+ if data is not None:
546
+ # Print the data if terminal_print is True, else display the data
547
+ print(data) if self.terminal_print else display(data)