teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: teradataml
|
|
3
|
-
Version:
|
|
3
|
+
Version: 20.0.0.0
|
|
4
4
|
Summary: Teradata Vantage Python package for Advanced Analytics
|
|
5
5
|
Home-page: http://www.teradata.com/
|
|
6
6
|
Author: Teradata Corporation
|
|
@@ -19,10 +19,13 @@ Classifier: License :: Other/Proprietary License
|
|
|
19
19
|
Requires-Python: >=3.5
|
|
20
20
|
Description-Content-Type: text/markdown
|
|
21
21
|
Requires-Dist: teradatasql (>=17.10.0.11)
|
|
22
|
-
Requires-Dist: teradatasqlalchemy (>=
|
|
22
|
+
Requires-Dist: teradatasqlalchemy (>=20.0.0.0)
|
|
23
23
|
Requires-Dist: pandas (>=0.22)
|
|
24
24
|
Requires-Dist: psutil
|
|
25
25
|
Requires-Dist: requests (>=2.25.1)
|
|
26
|
+
Requires-Dist: scikit-learn (>=0.24.2)
|
|
27
|
+
Requires-Dist: IPython (>=8.10.0)
|
|
28
|
+
Requires-Dist: imbalanced-learn (>=0.8.0)
|
|
26
29
|
|
|
27
30
|
## Teradata Python package for Advanced Analytics.
|
|
28
31
|
|
|
@@ -32,7 +35,7 @@ For community support, please visit the [Teradata Community](https://support.ter
|
|
|
32
35
|
|
|
33
36
|
For Teradata customer support, please visit [Teradata Support](https://support.teradata.com/csm).
|
|
34
37
|
|
|
35
|
-
Copyright
|
|
38
|
+
Copyright 2024, Teradata. All Rights Reserved.
|
|
36
39
|
|
|
37
40
|
### Table of Contents
|
|
38
41
|
* [Release Notes](#release-notes)
|
|
@@ -42,6 +45,243 @@ Copyright 2023, Teradata. All Rights Reserved.
|
|
|
42
45
|
* [License](#license)
|
|
43
46
|
|
|
44
47
|
## Release Notes:
|
|
48
|
+
#### teradataml 20.00.00.00
|
|
49
|
+
* ##### New Features/Functionality
|
|
50
|
+
* ###### teradataml OpenML: Run Opensource packages through Teradata Vantage
|
|
51
|
+
`OpenML` dynamically exposes opensource packages through Teradata Vantage. `OpenML` provides an
|
|
52
|
+
interface object through which exposed classes and functions of opensource packages can be accessed
|
|
53
|
+
with the same syntax and arguments.
|
|
54
|
+
The following functionality is added in the current release:
|
|
55
|
+
* `td_sklearn` - Interface object to run scikit-learn functions and classes through Teradata Vantage.
|
|
56
|
+
Example usage below:
|
|
57
|
+
```
|
|
58
|
+
from teradataml import td_sklearn, DataFrame
|
|
59
|
+
|
|
60
|
+
df_train = DataFrame("multi_model_classification")
|
|
61
|
+
|
|
62
|
+
feature_columns = ["col1", "col2", "col3", "col4"]
|
|
63
|
+
label_columns = ["label"]
|
|
64
|
+
part_columns = ["partition_column_1", "partition_column_2"]
|
|
65
|
+
|
|
66
|
+
linear_svc = td_sklearn.LinearSVC()
|
|
67
|
+
```
|
|
68
|
+
* `OpenML` is supported in both Teradata Vantage Enterprise and Teradata Vantage Lake.
|
|
69
|
+
* Argument Support:
|
|
70
|
+
* `Use of X and y arguments` - Scikit-learn users are familiar with using `X` and `y` as argument names
|
|
71
|
+
which take data as pandas DataFrames, numpy arrays or lists etc. However, in OpenML, we pass
|
|
72
|
+
teradataml DataFrames for arguments `X` and `y`.
|
|
73
|
+
```
|
|
74
|
+
df_x = df_train.select(feature_columns)
|
|
75
|
+
df_y = df_train.select(label_columns)
|
|
76
|
+
|
|
77
|
+
linear_svc = linear_svc.fit(X=df_x, y=df_y)
|
|
78
|
+
```
|
|
79
|
+
* `Additional support for data, feature_columns, label_columns and group_columns arguments` -
|
|
80
|
+
Apart from traditional arguments, OpenML supports additional arguments - `data`,
|
|
81
|
+
`feature_columns`, `label_columns` and `group_columns`. These are used as alternatives to `X`, `y`
|
|
82
|
+
and `groups`.
|
|
83
|
+
```
|
|
84
|
+
linear_svc = linear_svc.fit(data=df_train, feature_columns=feature_columns, label_colums=label_columns)
|
|
85
|
+
```
|
|
86
|
+
* `Support for classification and regression metrics` - Metrics functions for classification and
|
|
87
|
+
regression in `sklearn.metrics` module are supported. Other metrics functions' support will be added
|
|
88
|
+
in future releases.
|
|
89
|
+
* `Distributed Modeling and partition_columns argument support` - Existing scikit-learn supports
|
|
90
|
+
only single model generation. However, OpenML supports both single model use case and distributed
|
|
91
|
+
(multi) model use case. For this, user has to additionally pass `partition_columns` argument to
|
|
92
|
+
existing `fit()`, `predict()` or any other function to be run. This will generate multiple models
|
|
93
|
+
for multiple partitions, using the data in corresponding partition.
|
|
94
|
+
```
|
|
95
|
+
df_x_1 = df_train.select(feature_columns + part_columns)
|
|
96
|
+
linear_svc = linear_svc.fit(X=df_x_1, y=df_y, partition_columns=part_columns)
|
|
97
|
+
```
|
|
98
|
+
* `Support for load and deploy models` - OpenML provides additional support for saving (deploying) the
|
|
99
|
+
trained models. These models can be loaded later to perform operations like prediction, score etc. The
|
|
100
|
+
following functions are provided by OpenML:
|
|
101
|
+
* `<obj>.deploy()` - Used to deploy/save the model created and/or trained by OpenML.
|
|
102
|
+
* `td_sklearn.deploy()` - Used to deploy/save the model created and/or trained outside teradataml.
|
|
103
|
+
* `td_sklearn.load()` - Used to load the saved models.
|
|
104
|
+
|
|
105
|
+
<br>Refer Teradata Python Package User Guide for more details of this feature, arguments, usage, examples and supportability in both VantageCloud Enterprise and VantageCloud Lake.
|
|
106
|
+
|
|
107
|
+
* ###### teradataml: AutoML - Automated end to end Machine Learning flow.
|
|
108
|
+
AutoML is an approach to automate the process of building, training, and validating machine learning models.
|
|
109
|
+
It involves automation of various aspects of the machine learning workflow, such as feature exploration,
|
|
110
|
+
feature engineering, data preparation, model training and evaluation for given dataset.
|
|
111
|
+
teradataml AutoML feature offers best model identification, model leaderboard generation, parallel execution,
|
|
112
|
+
early stopping feature, model evaluation, model prediction, live logging, customization on default process.
|
|
113
|
+
* `AutoML`
|
|
114
|
+
AutoML is a generic algorithm that supports all three tasks, i.e. 'Regression',
|
|
115
|
+
'Binary Classification' and 'Multiclass Classification'.
|
|
116
|
+
* Methods of AutoML
|
|
117
|
+
* `__init__()` - Instantiate an object of AutoML with given parameters.
|
|
118
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
119
|
+
* `leaderboard()` - Get the leaderboard for the AutoML. Presents diverse models, feature
|
|
120
|
+
selection method, and performance metrics.
|
|
121
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
122
|
+
selection method, and performance metrics.
|
|
123
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
124
|
+
choice from the leaderboard.
|
|
125
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
126
|
+
run of AutoML.
|
|
127
|
+
* `AutoRegressor`
|
|
128
|
+
AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
|
|
129
|
+
* Methods of AutoRegressor
|
|
130
|
+
* `__init__()` - Instantiate an object of AutoRegressor with given parameters.
|
|
131
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
132
|
+
* `leaderboard()` - Get the leaderboard for the AutoRegressor. Presents diverse models, feature
|
|
133
|
+
selection method, and performance metrics.
|
|
134
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
135
|
+
selection method, and performance metrics.
|
|
136
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
137
|
+
choice from the leaderboard.
|
|
138
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
139
|
+
run of AutoRegressor.
|
|
140
|
+
* `AutoClassifier`
|
|
141
|
+
AutoClassifier is a special purpose AutoML feature to run classification specific tasks.
|
|
142
|
+
* Methods of AutoClassifier
|
|
143
|
+
* `__init__()` - Instantiate an object of AutoClassifier with given parameters.
|
|
144
|
+
* `fit()` - Perform fit on specified data and target column.
|
|
145
|
+
* `leaderboard()` - Get the leaderboard for the AutoClassifier. Presents diverse models, feature
|
|
146
|
+
selection method, and performance metrics.
|
|
147
|
+
* `leader()` - Show best performing model and its details such as feature
|
|
148
|
+
selection method, and performance metrics.
|
|
149
|
+
* `predict()` - Perform prediction on the data using the best model or the model of users
|
|
150
|
+
choice from the leaderboard.
|
|
151
|
+
* `generate_custom_config()` - Generate custom config JSON file required for customized
|
|
152
|
+
run of AutoClassifier.
|
|
153
|
+
|
|
154
|
+
* ###### teradataml: DataFrame
|
|
155
|
+
* `fillna` - Replace the null values in a column with the value specified.
|
|
156
|
+
* Data Manipulation
|
|
157
|
+
* `cube()`- Analyzes data by grouping it into multiple dimensions.
|
|
158
|
+
* `rollup()` - Analyzes a set of data across a single dimension with more than one level of detail.
|
|
159
|
+
* `replace()` - Replaces the values for columns.
|
|
160
|
+
|
|
161
|
+
* ###### teradataml: Script and Apply
|
|
162
|
+
* `deploy()` - Function deploys the model, generated after `execute_script()`, in database or user
|
|
163
|
+
environment in lake. The function is available in both Script and Apply.
|
|
164
|
+
|
|
165
|
+
* ###### teradataml: DataFrameColumn
|
|
166
|
+
* `fillna` - Replaces every occurrence of null value in column with the value specified.
|
|
167
|
+
|
|
168
|
+
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|
|
169
|
+
* _Date Time Functions_
|
|
170
|
+
* `DataFrameColumn.week_start()` - Returns the first date or timestamp of the week that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
171
|
+
* `DataFrameColumn.week_begin()` - It is an alias for `DataFrameColumn.week_start()` function.
|
|
172
|
+
* `DataFrameColumn.week_end()` - Returns the last date or timestamp of the week that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
173
|
+
* `DataFrameColumn.month_start()` - Returns the first date or timestamp of the month that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
174
|
+
* `DataFrameColumn.month_begin()` - It is an alias for `DataFrameColumn.month_start()` function.
|
|
175
|
+
* `DataFrameColumn.month_end()` - Returns the last date or timestamp of the month that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
176
|
+
* `DataFrameColumn.year_start()` - Returns the first date or timestamp of the year that begins immediately before the specified date or timestamp value in a column or as a literal.
|
|
177
|
+
* `DataFrameColumn.year_begin()` - It is an alias for `DataFrameColumn.year_start()` function.
|
|
178
|
+
* `DataFrameColumn.year_end()` - Returns the last date or timestamp of the year that ends immediately after the specified date or timestamp value in a column or as a literal.
|
|
179
|
+
* `DataFrameColumn.quarter_start()` - Returns the first date or timestamp of the quarter that begins immediately before the specified date or timestamp value in a column as a literal.
|
|
180
|
+
* `DataFrameColumn.quarter_begin()` - It is an alias for `DataFrameColumn.quarter_start()` function.
|
|
181
|
+
* `DataFrameColumn.quarter_end()` - Returns the last date or timestamp of the quarter that ends immediately after the specified date or timestamp value in a column as a literal.
|
|
182
|
+
* `DataFrameColumn.last_sunday()` - Returns the date or timestamp of Sunday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
183
|
+
* `DataFrameColumn.last_monday()` - Returns the date or timestamp of Monday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
184
|
+
* `DataFrameColumn.last_tuesday()` - Returns the date or timestamp of Tuesday that falls immediately before the specified date or timestamp value in a column as a literal.
|
|
185
|
+
* `DataFrameColumn.last_wednesday()` - Returns the date or timestamp of Wednesday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
186
|
+
* `DataFrameColumn.last_thursday()`- Returns the date or timestamp of Thursday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
187
|
+
* `DataFrameColumn.last_friday()` - Returns the date or timestamp of Friday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
188
|
+
* `DataFrameColumn.last_saturday()` - Returns the date or timestamp of Saturday that falls immediately before specified date or timestamp value in a column as a literal.
|
|
189
|
+
* `DataFrameColumn.day_of_week()` - Returns the number of days from the beginning of the week to the specified date or timestamp value in a column as a literal.
|
|
190
|
+
* `DataFrameColumn.day_of_month()` - Returns the number of days from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
191
|
+
* `DataFrameColumn.day_of_year()` - Returns the number of days from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
192
|
+
* `DataFrameColumn.day_of_calendar()` - Returns the number of days from the beginning of the business calendar to the specified date or timestamp value in a column as a literal.
|
|
193
|
+
* `DataFrameColumn.week_of_month()` - Returns the number of weeks from the beginning of the month to the specified date or timestamp value in a column as a literal.
|
|
194
|
+
* `DataFrameColumn.week_of_quarter()` - Returns the number of weeks from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
195
|
+
* `DataFrameColumn.week_of_year()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
196
|
+
* `DataFrameColumn.week_of_calendar()` - Returns the number of weeks from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
197
|
+
* `DataFrameColumn.month_of_year()` - Returns the number of months from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
198
|
+
* `DataFrameColumn.month_of_calendar()` - Returns the number of months from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
199
|
+
* `DataFrameColumn.month_of_quarter()` - Returns the number of months from the beginning of the quarter to the specified date or timestamp value in a column as a literal.
|
|
200
|
+
* `DataFrameColumn.quarter_of_year()` - Returns the number of quarters from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
201
|
+
* `DataFrameColumn.quarter_of_calendar()` - Returns the number of quarters from the beginning of the calendar to the specified date or timestamp value in a column as a literal.
|
|
202
|
+
* `DataFrameColumn.year_of_calendar()` - Returns the year of the specified date or timestamp value in a column as a literal.
|
|
203
|
+
* `DataFrameColumn.day_occurrence_of_month()` - Returns the nth occurrence of the weekday in the month for the date to the specified date or timestamp value in a column as a literal.
|
|
204
|
+
* `DataFrameColumn.year()` - Returns the integer value for year in the specified date or timestamp value in a column as a literal.
|
|
205
|
+
* `DataFrameColumn.month()` - Returns the integer value for month in the specified date or timestamp value in a column as a literal.
|
|
206
|
+
* `DataFrameColumn.hour()` - Returns the integer value for hour in the specified timestamp value in a column as a literal.
|
|
207
|
+
* `DataFrameColumn.minute()` - Returns the integer value for minute in the specified timestamp value in a column as a literal.
|
|
208
|
+
* `DataFrameColumn.second()` - Returns the integer value for seconds in the specified timestamp value in a column as a literal.
|
|
209
|
+
* `DataFrameColumn.week()` - Returns the number of weeks from the beginning of the year to the specified date or timestamp value in a column as a literal.
|
|
210
|
+
* `DataFrameColumn.next_day()` - Returns the date of the first weekday specified as 'day_value' that is later than the specified date or timestamp value in a column as a literal.
|
|
211
|
+
* `DataFrameColumn.months_between()` - Returns the number of months between value in specified date or timestamp value in a column as a literal and date or timestamp value in argument.
|
|
212
|
+
* `DataFrameColumn.add_months()` - Adds an integer number of months to specified date or timestamp value in a column as a literal.
|
|
213
|
+
* `DataFrameColumn.oadd_months()` - Adds an integer number of months, date or timestamp value in specified date or timestamp value in a column as a literal.
|
|
214
|
+
* `DataFrameColumn.to_date()` - Function converts a string-like representation of a DATE or PERIOD type to Date type.
|
|
215
|
+
* _String Functions_
|
|
216
|
+
* `DataFrameColumn.concat()` - Function to concatenate the columns with a separator.
|
|
217
|
+
* `DataFrameColumn.like()` - Function to match the string pattern. String match is case sensitive.
|
|
218
|
+
* `DataFrameColumn.ilike()` - Function to match the string pattern. String match is not case sensitive.
|
|
219
|
+
* `DataFrameColumn.substr()` - Returns the substring from a string column.
|
|
220
|
+
* `DataFrameColumn.startswith()` - Function to check if the column value starts with the specified value or not.
|
|
221
|
+
* `DataFrameColumn.endswith()` - Function to check if the column value ends with the specified value or not.
|
|
222
|
+
* `DataFrameColumn.format()` - Function to format the values in column based on formatter.
|
|
223
|
+
* `DataFrameColumn.to_char()` - Function converts numeric type or datetype to character type.
|
|
224
|
+
* `DataFrameColumn.trim()` - Function trims the string values in the column.
|
|
225
|
+
* _Regular Arithmetic Functions_
|
|
226
|
+
* `DataFrameColumn.cbrt()` - Computes the cube root of values in the column.
|
|
227
|
+
* `DataFrameColumn.hex()` - Computes the Hexadecimal from decimal for the values in the column.
|
|
228
|
+
* `DataframeColumn.hypot()` - Computes the decimal from Hexadecimal for the values in the column.
|
|
229
|
+
* `DataFrameColumn.unhex()` - computes the hypotenuse for the values between two columns.
|
|
230
|
+
* _Bit Byte Manipulation Functions_
|
|
231
|
+
* `DataFrameColumn.from_byte()` - Encodes a sequence of bits into a sequence of characters.
|
|
232
|
+
* _Comparison Functions_
|
|
233
|
+
* `DataFrameColumn.greatest()` - Returns the greatest values from columns.
|
|
234
|
+
* `DataFrameColumn.least()` - Returns the least values from columns.
|
|
235
|
+
* Behaviour of `DataFrameColumn.replace()` is changed.
|
|
236
|
+
* Behaviour of `DataFrameColumn.to_byte()` is changed. It now decodes a sequence of characters in a given encoding into a sequence of bits.
|
|
237
|
+
* Behaviour of `DataFrameColumn.trunc()` is changed. It now accepts Date type columns.
|
|
238
|
+
|
|
239
|
+
* ##### Bug Fixes
|
|
240
|
+
* Argument `url_encode` is no longer used in `create_context()` and is deprecated.
|
|
241
|
+
* **Important notes**
|
|
242
|
+
* Users do not need to encode password even if password contain special characters.
|
|
243
|
+
* Pass the password to the `create_context()` function argument `password` as it is without changing special characters.
|
|
244
|
+
* `fillna()` in VAL transformation allows to replace NULL values with empty string.
|
|
245
|
+
|
|
246
|
+
* ##### Updates
|
|
247
|
+
* Support for following deprecated functionality is removed:
|
|
248
|
+
* ML Engine functions
|
|
249
|
+
* STO and APPLY sandbox feature support for testing the script.
|
|
250
|
+
* sandbox_container_utils is removed. Following methods can no longer be used:
|
|
251
|
+
* `setup_sandbox_env()`
|
|
252
|
+
* `copy_files_from_container()`
|
|
253
|
+
* `cleanup_sandbox_env()`
|
|
254
|
+
* Model Cataloging APIs can no longer be used:
|
|
255
|
+
* `describe_model()`
|
|
256
|
+
* `delete_model()`
|
|
257
|
+
* `list_models()`
|
|
258
|
+
* `publish_model()`
|
|
259
|
+
* `retrieve_model()`
|
|
260
|
+
* `save_model()`
|
|
261
|
+
* `DataFrame.join()`
|
|
262
|
+
* Arguments `lsuffix` and `rsuffix` now add suffixes to new column names for join operation.
|
|
263
|
+
* `DataFrame.describe()`
|
|
264
|
+
* New argument `columns` is added to generate statistics on only those columns instead of all applicable columns.
|
|
265
|
+
* `DataFrame.groupby()`
|
|
266
|
+
* Supports `CUBE` and `ROLLUP` with additional optional argument `option`.
|
|
267
|
+
* `DataFrame.column.window()`
|
|
268
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
269
|
+
* `DataFrame.column.contains()` allows ColumnExpressions for `pattern` argument.
|
|
270
|
+
* `DataFrame.window()`
|
|
271
|
+
* Supports ColumnExpressions for `partition_columns` and `order_columns` arguments.
|
|
272
|
+
|
|
273
|
+
#### teradataml 17.20.00.07
|
|
274
|
+
* ##### New Features/Functionality
|
|
275
|
+
* ###### Open Analytics Framework (OpenAF) APIs:
|
|
276
|
+
* Manage all user environments.
|
|
277
|
+
* `create_env()`:
|
|
278
|
+
* new argument `conda_env` is added to create a conda environment.
|
|
279
|
+
* `list_user_envs()`:
|
|
280
|
+
* User can list conda environment(s) by using filter with new argument `conda_env`.
|
|
281
|
+
* Conda environment(s) can be managed using APIs for installing , updating, removing files/libraries.
|
|
282
|
+
* ##### Bug Fixes
|
|
283
|
+
* `columns` argument for `FillNa` function is made optional.
|
|
284
|
+
|
|
45
285
|
#### teradataml 17.20.00.06
|
|
46
286
|
* ##### New Features/Functionality
|
|
47
287
|
* ###### teradataml DataFrameColumn a.k.a. ColumnExpression
|