teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,763 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
8
- # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.13
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- import itertools
18
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
19
- from teradataml.common.utils import UtilFuncs
20
- from teradataml.context.context import *
21
- from teradataml.dataframe.dataframe import DataFrame
22
- from teradataml.common.aed_utils import AedUtils
23
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
24
- from teradataml.common.exceptions import TeradataMlException
25
- from teradataml.common.messages import Messages
26
- from teradataml.common.messagecodes import MessageCodes
27
- from teradataml.common.constants import TeradataConstants
28
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
29
- from teradataml.options.display import display
30
-
31
- class IdentityMatch:
32
-
33
- def __init__(self,
34
- source_data = None,
35
- reference_data = None,
36
- source_id_column=None,
37
- reference_id_column=None,
38
- source_nominalmatch_columns=None,
39
- reference_nominalmatch_columns=None,
40
- fuzzymatch_columns = None,
41
- threshold = 0.5,
42
- source_accumulate=None,
43
- reference_accumulate=None,
44
- source_data_sequence_column = None,
45
- reference_data_sequence_column = None,
46
- source_data_partition_column = "ANY",
47
- reference_data_partition_column = None,
48
- source_data_order_column = None,
49
- reference_data_order_column = None,
50
- handle_nulls = "mismatch"):
51
- """
52
- DESCRIPTION:
53
- The IdentityMatch function tries to match source data with reference
54
- data, using specified attributes to calculate the similarity score of
55
- each source-reference pair, and then computes the final similarity score.
56
- Typically, the source data is about business customers and the reference
57
- data is from external sources, such as online forums and social networking
58
- services. The IdentityMatch function is designed to help determine if customers
59
- with similar identifiers are the same customer. The function supports both
60
- nominal (exact) matching and weighted fuzzy matching.
61
-
62
- PARAMETERS:
63
- source_data:
64
- Required Argument.
65
- Specifies the source input teradataml DataFrame.
66
-
67
- source_data_partition_column:
68
- Optional Argument.
69
- Specifies Partition By columns for source_data.
70
- Values to this argument can be provided as a list, if multiple
71
- columns are used for partition.
72
- Default Value: ANY
73
- Types: str OR list of Strings (str)
74
-
75
- source_data_order_column:
76
- Optional Argument.
77
- Specifies Order By columns for source_data.
78
- Values to this argument can be provided as a list, if multiple
79
- columns are used for ordering.
80
- Types: str OR list of Strings (str)
81
-
82
- reference_data:
83
- Required Argument.
84
- Specifies the reference input teradataml DataFrame.
85
-
86
- reference_data_partition_column:
87
- Optional Argument.
88
- Specifies Partition By columns for reference_data.
89
- Values to this argument can be provided as a list, if multiple
90
- columns are used for partition.
91
- Types: str OR list of Strings (str)
92
-
93
- reference_data_order_column:
94
- Optional Argument.
95
- Specifies Order By columns for reference_data.
96
- Values to this argument can be provided as a list, if multiple
97
- columns are used for ordering.
98
- Types: str OR list of Strings (str)
99
-
100
- source_id_column:
101
- Required Argument.
102
- Specifies the name of the column in the source_data DataFrame
103
- that contain row identifiers. The function copies this column
104
- to the output DataFrame.
105
- Types: str
106
-
107
- reference_id_column:
108
- Required Argument.
109
- Specifies the name of the column in the reference_data DataFrame
110
- that contain row identifiers. The function copies this column
111
- to the output DataFrame.
112
- Types: str
113
-
114
- source_nominalmatch_columns:
115
- Optional Argument. Required if you omit fuzzymatch_columns.
116
- Specifies the names of the columns (attributes) in the source_data DataFrame
117
- to check for exact matching with the columns specified in
118
- reference_nominalmatch_columns. If any pair (a column in source_nominalmatch_columns
119
- and a column in reference_nominalmatch_columns argument) matches exactly,
120
- then their records are considered to be exact matches, and the function
121
- does not compare the fuzzy match attributes.
122
- Note:
123
- 1. If this argument is provided, the 'reference_nominalmatch_columns' argument
124
- should also be provided.
125
- 2. The number of columns provided in the 'source_nominalmatch_columns' and
126
- 'reference_nominalmatch_columns' arguments should be equal.
127
- Types: str OR list of Strings (str)
128
-
129
- reference_nominalmatch_columns:
130
- Optional Argument. Required if you omit fuzzymatch_columns.
131
- Specifies the names of the columns (attributes) in the reference_data DataFrame
132
- to check for exact matching with the columns specified in
133
- source_nominalmatch_columns. If any pair (a column in source_nominalmatch_columns
134
- and a column in reference_nominalmatch_columns argument) matches exactly,
135
- then their records are considered to be exact matches, and the function
136
- does not compare the fuzzy match attributes.
137
- Note:
138
- 1. If this argument is provided, the 'source_nominalmatch_columns' argument
139
- should also be provided.
140
- 2. The number of columns provided in the 'source_nominalmatch_columns' and
141
- 'reference_nominalmatch_columns' arguments should be equal.
142
- Types: str OR list of Strings (str)
143
-
144
- fuzzymatch_columns:
145
- Optional Argument. Required if you omit source_nominalmatch_columns and
146
- reference_nominalmatch_columns.
147
- Specifies the names of source_data and reference_data columns (attributes)
148
- and the fuzzy matching parameters match_metric, match_weight, and
149
- synonym_file (whose descriptions follow). If any pair is a fuzzy match,
150
- then their records are considered to be fuzzy matches, and the function
151
- reports the similarity score of these attributes.
152
- Fuzzy matching parameters:
153
- 1. match_metric:
154
- This parameter specifies the similarity metric, which is a function that
155
- returns the similarity score (a value between 0 and 1) of two strings.
156
- The possible values of match_metric are:
157
- * EQUAL: If strings a and b are equal, then their similarity score
158
- is 1.0; otherwise it 0.0.
159
- * LD: The similarity score of strings a and b is
160
- f(a,b)=LD(a,b)/max(len(a),len(b)), where LD(a,b) is the Levenshtein
161
- distance between a with b.
162
- * D-LD: The similarity score of strings a and b is
163
- f(a,b)=LD(a,b)/max(len(a),len(b)), where LD(a,b) is the Damerau-Levenshtein
164
- distance between a and b.
165
- * JARO: The similarity score of strings a and b is the Jaro distance
166
- between them.
167
- * JARO-WINKLER: The similarity score of strings a and b
168
- is the Jaro-Winkler distance between them.
169
- * NEEDLEMAN-WUNSCH: The similarity score of strings a and b is the
170
- Needleman-Wunsch distance between them.
171
- * JD: The similarity score of strings a and b is the Jaccard distance
172
- between them. The function converts the strings a and b to sets s and t
173
- by splitting them by space and then uses the formula f(s,t)=|S intersection T|/|s union t|.
174
- * COSINE: The similarity score of strings a and b is calculated with
175
- their term frequency-inverse document frequency (TF-IDF) and cosine
176
- similarity.
177
- Note: The function calculates IDF only on the input relation stored in memory.
178
- 2. match_weight:
179
- This parameter specifies the weight (relative importance) of the attribute
180
- represented by source_data and reference_data columns.
181
- The match_weight must be a positive number. The function normalizes each
182
- match_weight to a value in the range [0, 1]. Given match_weight values,
183
- w1, w2, ..., wn, the normalized value of wi is: wi /(w1+w2+...+ wn).
184
- For example, given two pairs of columns, whose match weights are 3 and 7,
185
- the function uses the weights 3/(3+7)=0.3 and 7/(3+7)=0.7 to compute the
186
- similarity score.
187
- 3. synonym_file:
188
- This parameter (optional) specifies the dictionary that the function
189
- uses to check the two strings for semantic equality. In the dictionary,
190
- each line is a comma-separated list of synonyms.
191
- Note: You must install the dictionary before running the function.
192
- The dictionary has to be of the following form:
193
- {
194
- "source_column" : <name of column from source_data>,
195
- "reference_column" : <name of column from reference_data>,
196
- "match_metric": <value of match_metric>,
197
- "match_weight" : <weight of the attribute>,
198
- "synonym_file": <name of dictionary for semantic check>
199
- }
200
- where the synonym_file key and associated value are optional. You may pass a
201
- dictionary or list of dictionaries of the above form as a value to this argument.
202
- Types: dict OR list of Dictionaries (dict)
203
-
204
- threshold:
205
- Optional Argument.
206
- Specifies the threshold similarity score, a float value between 0 and 1.
207
- The function outputs only the records whose similarity score exceeds threshold.
208
- The higher the threshold, the higher the matching accuracy.
209
- Default Value: 0.5
210
- Types: float
211
-
212
- source_accumulate:
213
- Optional Argument.
214
- Specifies source_data teradataml DataFrame columns to copy to the output
215
- teradataml DataFrame.
216
- Types: str OR list of Strings (str)
217
-
218
- reference_accumulate:
219
- Optional Argument.
220
- Specifies reference_data teradataml DataFrame columns to copy to the output
221
- teradataml DataFrame.
222
- Types: str OR list of Strings (str)
223
-
224
- source_data_sequence_column:
225
- Optional Argument.
226
- Specifies the list of column(s) that uniquely identifies each row of
227
- the input argument "source_data". The argument is used to ensure
228
- deterministic results for functions which produce results that vary
229
- from run to run.
230
- Types: str OR list of Strings (str)
231
-
232
- reference_data_sequence_column:
233
- Optional Argument.
234
- Specifies the list of column(s) that uniquely identifies each row of
235
- the input argument "reference_data". The argument is used to ensure
236
- deterministic results for functions which produce results that vary
237
- from run to run.
238
- Types: str OR list of Strings (str)
239
-
240
- handle_nulls:
241
- Optional Argument.
242
- Specifies what score should be assigned for null/empty value.
243
- Note:
244
- "handle_nulls" argument support is only available when teradataml
245
- is connected to Vantage 1.3 version.
246
- Default Value: "mismatch"
247
- Permitted Values: mismatch, match-if-null, match-if-both-null
248
- Types: str
249
-
250
- RETURNS:
251
- Instance of IdentityMatch.
252
- Output teradataml DataFrame can be accessed using attribute
253
- references, such as IdentityMatchObj.<attribute_name>.
254
- The "result" teradataml DataFrame has column names as "a.<column_name1>"
255
- and "b.<column_name2>", where:
256
- 1. "a.<column_name1>" refers to "<column_name1>" column of "source_data"
257
- teradataml DataFrame.
258
- 2. "b.<column_name2>" refers to "<column_name2>" column of "reference_data"
259
- teradataml DataFrame.
260
- Output teradataml DataFrame attribute name is:
261
- result
262
-
263
-
264
- RAISES:
265
- TeradataMlException, TypeError, ValueError
266
-
267
-
268
- EXAMPLES:
269
- # Load the data to run the example.
270
- load_example_data("IdentityMatch", ["applicant_reference", "applicant_external"])
271
-
272
- # Create teradataml DataFrame object.
273
- applicant_reference = DataFrame.from_table("applicant_reference")
274
- applicant_external = DataFrame.from_table("applicant_external")
275
-
276
- # Example - Find the credit scores of job applicants by matching the information in teradataml
277
- # DataFrames 'applicant_reference' and 'applicant_external'.
278
- # The example looks for exact matches (nominalmatch_columns) to the email address and approximate
279
- # matches (fuzzymatch_columns) for lastname, firstname, zip code, city, and department, with different
280
- # match metrics and match weights.
281
- # source_data: applicant_reference, which has hypothetical information from job applicants.
282
- # reference_data: applicant_external, an external source table, which has missing and incomplete
283
- # information, but includes credit scores.
284
- identitymatch_out = IdentityMatch(source_data=applicant_reference,
285
- source_data_partition_column='ANY',
286
- reference_data=applicant_external,
287
- source_id_column="id",
288
- reference_id_column="id",
289
- source_nominalmatch_columns="email",
290
- reference_nominalmatch_columns="email",
291
- fuzzymatch_columns=[ {"source_column" : "lastname", "reference_column" : "lastname",
292
- "match_metric": "JARO-WINKLER", "match_weight" : 3}, {"source_column" : "firstname",
293
- "reference_column" : "firstname", "match_metric": "JARO-WINKLER", "match_weight" : 2},
294
- {"source_column" : "zipcode", "reference_column" : "zipcode", "match_metric": "JD",
295
- "match_weight" : 2}, {"source_column" : "city", "reference_column" : "city",
296
- "match_metric": "LD", "match_weight" : 2}, {"source_column" : "department",
297
- "reference_column" : "department", "match_metric": "COSINE", "match_weight" : 1}],
298
- threshold=0.5,
299
- source_accumulate=["firstname","lastname","email","zipcode"],
300
- reference_accumulate=["lastname","email","zipcode","department","creditscore"],
301
- source_data_sequence_column='id'
302
- )
303
-
304
- # Print the output DataFrames.
305
- print(identitymatch_out.result)
306
-
307
- """
308
- # Start the timer to get the build time
309
- _start_time = time.time()
310
-
311
- self.source_data = source_data
312
- self.reference_data = reference_data
313
- self.source_id_column = source_id_column
314
- self.reference_id_column = reference_id_column
315
- self.source_nominalmatch_columns = source_nominalmatch_columns
316
- self.reference_nominalmatch_columns = reference_nominalmatch_columns
317
- self.fuzzymatch_columns = fuzzymatch_columns
318
- self.threshold = threshold
319
- self.source_accumulate = source_accumulate
320
- self.reference_accumulate = reference_accumulate
321
- self.source_data_sequence_column = source_data_sequence_column
322
- self.reference_data_sequence_column = reference_data_sequence_column
323
- self.source_data_partition_column = source_data_partition_column
324
- self.reference_data_partition_column = reference_data_partition_column
325
- self.source_data_order_column = source_data_order_column
326
- self.reference_data_order_column = reference_data_order_column
327
- self.handle_nulls = handle_nulls
328
-
329
- # Create TeradataPyWrapperUtils instance which contains validation functions.
330
- self.__awu = AnalyticsWrapperUtils()
331
- self.__aed_utils = AedUtils()
332
-
333
- # Create argument information matrix to do parameter checking
334
- self.__arg_info_matrix = []
335
- self.__arg_info_matrix.append(["source_data", self.source_data, False, (DataFrame)])
336
- self.__arg_info_matrix.append(["source_data_partition_column", self.source_data_partition_column, True, (str,list)])
337
- self.__arg_info_matrix.append(["source_data_order_column", self.source_data_order_column, True, (str,list)])
338
- self.__arg_info_matrix.append(["reference_data", self.reference_data, False, (DataFrame)])
339
- self.__arg_info_matrix.append(["reference_data_partition_column", self.reference_data_partition_column, True, (str,list)])
340
- self.__arg_info_matrix.append(["reference_data_order_column", self.reference_data_order_column, True, (str,list)])
341
- self.__arg_info_matrix.append(["source_id_column", self.source_id_column, False, (str)])
342
- self.__arg_info_matrix.append(["reference_id_column", self.reference_id_column, False, (str)])
343
- self.__arg_info_matrix.append(["source_nominalmatch_columns", self.source_nominalmatch_columns, True, (str, list)])
344
- self.__arg_info_matrix.append(["reference_nominalmatch_columns", self.reference_nominalmatch_columns, True, (str, list)])
345
- self.__arg_info_matrix.append(["fuzzymatch_columns", self.fuzzymatch_columns, True, (dict,list)])
346
- self.__arg_info_matrix.append(["threshold", self.threshold, True, (float)])
347
- self.__arg_info_matrix.append(["source_accumulate", self.source_accumulate, True, (str, list)])
348
- self.__arg_info_matrix.append(["reference_accumulate", self.reference_accumulate, True, (str, list)])
349
- self.__arg_info_matrix.append(["source_data_sequence_column", self.source_data_sequence_column, True, (str,list)])
350
- self.__arg_info_matrix.append(["reference_data_sequence_column", self.reference_data_sequence_column, True, (str,list)])
351
- self.__arg_info_matrix.append(["handle_nulls", self.handle_nulls, True, (str)])
352
-
353
- if inspect.stack()[1][3] != '_from_model_catalog':
354
- # Perform the function validations
355
- self.__validate()
356
- # Generate the ML query
357
- self.__form_tdml_query()
358
- # Execute ML query
359
- self.__execute()
360
- # Get the prediction type
361
- self._prediction_type = self.__awu._get_function_prediction_type(self)
362
-
363
- # End the timer to get the build time
364
- _end_time = time.time()
365
-
366
- # Calculate the build time
367
- self._build_time = (int)(_end_time - _start_time)
368
-
369
- def __validate(self):
370
- """
371
- Function to validate sqlmr function arguments, which verifies missing
372
- arguments, input argument and table types. Also processes the
373
- argument values.
374
- """
375
-
376
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
377
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
378
-
379
- # Make sure that a non-NULL value has been supplied correct type of argument
380
- self.__awu._validate_argument_types(self.__arg_info_matrix)
381
-
382
- # Check to make sure input table types are strings or data frame objects or of valid type.
383
- self.__awu._validate_input_table_datatype(self.source_data, "source_data", None)
384
- self.__awu._validate_input_table_datatype(self.reference_data, "reference_data", None)
385
-
386
- # Check for permitted values
387
- handle_nulls_permitted_values = ["MISMATCH", "MATCH-IF-NULL", "MATCH-IF-BOTH-NULL"]
388
- self.__awu._validate_permitted_values(self.handle_nulls, handle_nulls_permitted_values, "handle_nulls")
389
-
390
- # Check whether the input columns passed to the argument are not empty.
391
- # Also check whether the input columns passed to the argument valid or not.
392
- self.__awu._validate_input_columns_not_empty(self.source_id_column, "source_id_column")
393
- self.__awu._validate_dataframe_has_argument_columns(self.source_id_column, "source_id_column", self.source_data,"source_data", False)
394
-
395
- self.__awu._validate_input_columns_not_empty(self.reference_id_column, "reference_id_column")
396
- self.__awu._validate_dataframe_has_argument_columns(self.reference_id_column, "reference_id_column", self.reference_data, "reference_data", False)
397
-
398
- self.__awu._validate_input_columns_not_empty(self.source_nominalmatch_columns, "source_nominalmatch_columns")
399
- self.__awu._validate_dataframe_has_argument_columns(self.source_nominalmatch_columns, "source_nominalmatch_columns", self.source_data, "source_data", False)
400
-
401
- self.__awu._validate_input_columns_not_empty(self.reference_nominalmatch_columns, "reference_nominalmatch_columns")
402
- self.__awu._validate_dataframe_has_argument_columns(self.reference_nominalmatch_columns, "reference_nominalmatch_columns", self.reference_data, "reference_data", False)
403
-
404
- self.__awu._validate_input_columns_not_empty(self.source_accumulate, "source_accumulate")
405
- self.__awu._validate_dataframe_has_argument_columns(self.source_accumulate, "source_accumulate", self.source_data, "source_data", False)
406
-
407
- self.__awu._validate_input_columns_not_empty(self.reference_accumulate, "reference_accumulate")
408
- self.__awu._validate_dataframe_has_argument_columns(self.reference_accumulate, "reference_accumulate", self.reference_data, "reference_data", False)
409
-
410
- self.__awu._validate_input_columns_not_empty(self.source_data_sequence_column, "source_data_sequence_column")
411
- self.__awu._validate_dataframe_has_argument_columns(self.source_data_sequence_column, "source_data_sequence_column", self.source_data, "source_data", False)
412
-
413
- self.__awu._validate_input_columns_not_empty(self.reference_data_sequence_column, "reference_data_sequence_column")
414
- self.__awu._validate_dataframe_has_argument_columns(self.reference_data_sequence_column, "reference_data_sequence_column", self.reference_data, "reference_data", False)
415
-
416
- self.__awu._validate_input_columns_not_empty(self.source_data_partition_column, "source_data_partition_column")
417
- if self.__awu._is_default_or_not(self.source_data_partition_column, "ANY"):
418
- self.__awu._validate_dataframe_has_argument_columns(self.source_data_partition_column, "source_data_partition_column", self.source_data, "source_data", True)
419
- self.__awu._validate_input_columns_not_empty(self.reference_data_partition_column, "reference_data_partition_column")
420
- self.__awu._validate_dataframe_has_argument_columns(self.reference_data_partition_column, "reference_data_partition_column", self.reference_data, "reference_data", True)
421
-
422
- self.__awu._validate_input_columns_not_empty(self.source_data_order_column, "source_data_order_column")
423
- self.__awu._validate_dataframe_has_argument_columns(self.source_data_order_column, "source_data_order_column", self.source_data, "source_data", False)
424
-
425
- self.__awu._validate_input_columns_not_empty(self.reference_data_order_column, "reference_data_order_column")
426
- self.__awu._validate_dataframe_has_argument_columns(self.reference_data_order_column, "reference_data_order_column", self.reference_data, "reference_data", False)
427
-
428
- # Check if source_nominalmatch_columns and reference_nominalmatch_columns arguments are passed together or not.
429
- if (not self.source_nominalmatch_columns and self.reference_nominalmatch_columns) or \
430
- (self.source_nominalmatch_columns and not self.reference_nominalmatch_columns):
431
- raise TeradataMlException(Messages.get_message(MessageCodes.MUST_PASS_ARGUMENT,
432
- 'source_nominalmatch_columns',
433
- 'reference_nominalmatch_columns'),
434
- MessageCodes.MUST_PASS_ARGUMENT)
435
-
436
- if isinstance(self.source_nominalmatch_columns, str):
437
- self.source_nominalmatch_columns = [self.source_nominalmatch_columns]
438
-
439
- if isinstance(self.reference_nominalmatch_columns, str):
440
- self.reference_nominalmatch_columns = [self.reference_nominalmatch_columns]
441
-
442
- # source_nominalmatch_columns and reference_nominalmatch_columns arguments length should be equal.
443
- if self.source_nominalmatch_columns and self.reference_nominalmatch_columns and \
444
- len(self.source_nominalmatch_columns) != len(self.reference_nominalmatch_columns):
445
- raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_LENGTH_ARGS,
446
- "'source_nominalmatch_columns' and 'reference_nominalmatch_columns'"),
447
- MessageCodes.INVALID_LENGTH_ARGS)
448
-
449
- # At least one argument source_nominalmatch_columns and reference_nominalmatch_columns or fuzzymatch_columns must be passed.
450
- if not self.source_nominalmatch_columns and not self.reference_nominalmatch_columns and not self.fuzzymatch_columns:
451
- raise TeradataMlException(Messages.get_message(MessageCodes.SPECIFY_AT_LEAST_ONE_ARG,
452
- "'source_nominalmatch_columns' and 'reference_nominalmatch_columns'",
453
- "fuzzymatch_columns"),
454
- MessageCodes.SPECIFY_AT_LEAST_ONE_ARG)
455
-
456
- if self.fuzzymatch_columns:
457
- for _fuzzy_column in self.fuzzymatch_columns:
458
- # Make sure that key's in each dict is valid string.
459
- if (sorted(_fuzzy_column.keys()) != ["match_metric", "match_weight", "reference_column", "source_column"] and
460
- sorted(_fuzzy_column.keys()) != ["match_metric", "match_weight", "reference_column", "source_column", "synonym_file"]):
461
- raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_ARG_VALUE,
462
- str(sorted(_fuzzy_column.keys())), 'fuzzymatch_columns',
463
- "a dictionary or a list of dictionaries with the following keys ['source_column', 'reference_column', 'match_metric', 'match_weight', 'synonym_file']"),
464
- MessageCodes.INVALID_ARG_VALUE)
465
-
466
- __fuzzy_arg_info_matrix = []
467
- __fuzzy_arg_info_matrix.append(["source_column: {}".format(_fuzzy_column['source_column']), _fuzzy_column['source_column'], False, (str)])
468
- __fuzzy_arg_info_matrix.append(["reference_column: {}".format(_fuzzy_column['reference_column']), _fuzzy_column['reference_column'], False, (str)])
469
- __fuzzy_arg_info_matrix.append(["match_metric: {}".format(_fuzzy_column['match_metric']), _fuzzy_column['match_metric'], False, (str)])
470
- __fuzzy_arg_info_matrix.append(["match_weight: {}".format(_fuzzy_column['match_weight']), _fuzzy_column['match_weight'], False, (int)])
471
- if len(_fuzzy_column) == 5:
472
- __fuzzy_arg_info_matrix.append(["synonym_file: {}".format(_fuzzy_column['synonym_file']), _fuzzy_column['synonym_file'], True, (str)])
473
-
474
- self.__awu._validate_argument_types(__fuzzy_arg_info_matrix)
475
-
476
- # Check whether the input columns passed to the key's in argument fuzzymatch_columns are not empty.
477
- # Also check whether the input columns passed to the key's in argument fuzzymatch_columns valid or not.
478
- self.__awu._validate_input_columns_not_empty(_fuzzy_column['source_column'],
479
- "'source_column' in fuzzy_matchcolumns")
480
- self.__awu._validate_dataframe_has_argument_columns(_fuzzy_column['source_column'],
481
- "'source_column' in fuzzy_matchcolumns", self.source_data,
482
- "source_data", False)
483
-
484
- self.__awu._validate_input_columns_not_empty(_fuzzy_column['reference_column'],
485
- "'reference_column' in fuzzy_matchcolumns")
486
- self.__awu._validate_dataframe_has_argument_columns(_fuzzy_column['reference_column'],
487
- "'reference_column' in fuzzy_matchcolumns",
488
- self.reference_data,
489
- "reference_data", False)
490
-
491
- self.__awu._validate_input_columns_not_empty(_fuzzy_column['match_metric'],
492
- "'match_metric' in fuzzy_matchcolumns")
493
-
494
- # Check for permitted values for match_metric key in argument fuzzymatch_columns
495
- __match_metric_permitted_values = ["EQUAL", "LD", "D-LD", "JARO", "JARO-WINKLER", "NEEDLEMAN-WUNSCH", "JD", "COSINE"]
496
- self.__awu._validate_permitted_values(_fuzzy_column['match_metric'], __match_metric_permitted_values, "'match_metric' in fuzzy_matchcolumns")
497
-
498
- if len(_fuzzy_column) == 5:
499
- self.__awu._validate_input_columns_not_empty(_fuzzy_column['synonym_file'], "'synonym_file' in fuzzy_matchcolumns")
500
-
501
-
502
- def __form_tdml_query(self):
503
- """
504
- Function to generate the analytical function queries. The function defines
505
- variables and list of arguments required to form the query.
506
- """
507
-
508
- if isinstance(self.fuzzymatch_columns, dict):
509
- self.fuzzymatch_columns = [self.fuzzymatch_columns]
510
-
511
- # Processing id_column to format "a.source_col_name:b.reference_col_name".
512
- __id_column = "a.{0}:b.{1}".format(self.source_id_column, self.reference_id_column)
513
-
514
- # Processing nominalmatch_columns to format "a.source_col_name:b.reference_col_name".
515
- if self.source_nominalmatch_columns and self.reference_nominalmatch_columns:
516
- __nominalmatch_columns = []
517
- for __source_nominal_col, __reference_nominal_col in zip(self.source_nominalmatch_columns,self.reference_nominalmatch_columns):
518
- __nominalmatch_columns.append("a.{0}:b.{1}".format(__source_nominal_col, __reference_nominal_col))
519
-
520
- # Processing accumulate to format "a.source_col_name, b.reference_col_name".
521
- __accumulate = []
522
- input_names = ['a', 'b']
523
- for input_name, column_list in zip(input_names, [self.source_accumulate, self.reference_accumulate]):
524
- if column_list:
525
- if isinstance(column_list, str):
526
- column_list = [column_list]
527
- for col in column_list:
528
- __accumulate.append("{0}.{1}".format(input_name, col))
529
-
530
- # Processing fuzzymatch_columns to format ['a.source_col_name:b.reference_col_name, match_metric, match_weight'].
531
- if self.fuzzymatch_columns is not None:
532
- __fuzzymatch_columns = []
533
- for _fuzzy_column in self.fuzzymatch_columns:
534
- __fuzzy_temp = "a.{0}:b.{1}, {2}, {3}".format(_fuzzy_column["source_column"], _fuzzy_column["reference_column"],
535
- _fuzzy_column["match_metric"], _fuzzy_column["match_weight"])
536
- if len(_fuzzy_column) == 5:
537
- __fuzzy_temp = "{0}, {1}".format(__fuzzy_temp, _fuzzy_column["synonym_file"])
538
- __fuzzymatch_columns.append(__fuzzy_temp)
539
-
540
- # Output table arguments list
541
- self.__func_output_args_sql_names = []
542
- self.__func_output_args = []
543
-
544
- # Model Cataloging related attributes.
545
- self._sql_specific_attributes = {}
546
- self._sql_formula_attribute_mapper = {}
547
- self._target_column = None
548
- self._algorithm_name = None
549
-
550
- # Generate lists for rest of the function arguments
551
- self.__func_other_arg_sql_names = []
552
- self.__func_other_args = []
553
- self.__func_other_arg_json_datatypes = []
554
-
555
- self.__func_other_arg_sql_names.append("IdColumn")
556
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(__id_column, "'"))
557
- self.__func_other_arg_json_datatypes.append("STRING")
558
-
559
- if self.source_nominalmatch_columns is not None and self.reference_nominalmatch_columns is not None:
560
- self.__func_other_arg_sql_names.append("NominalMatchColumns")
561
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(__nominalmatch_columns, "'"))
562
- self.__func_other_arg_json_datatypes.append("STRING")
563
-
564
- if self.fuzzymatch_columns is not None:
565
- self.__func_other_arg_sql_names.append("FuzzyMatchColumns")
566
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(__fuzzymatch_columns, "'"))
567
- self.__func_other_arg_json_datatypes.append("STRING")
568
-
569
- if self.threshold is not None and self.threshold != 0.5:
570
- self.__func_other_arg_sql_names.append("ThresholdScore")
571
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.threshold, "'"))
572
- self.__func_other_arg_json_datatypes.append("DOUBLE")
573
-
574
- if self.source_accumulate is not None or self.reference_accumulate is not None:
575
- self.__func_other_arg_sql_names.append("Accumulate")
576
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(__accumulate, "'"))
577
- self.__func_other_arg_json_datatypes.append("STRING")
578
-
579
- if self.handle_nulls is not None and self.handle_nulls != "mismatch":
580
- self.__func_other_arg_sql_names.append("NullHandling")
581
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.handle_nulls, "'"))
582
- self.__func_other_arg_json_datatypes.append("STRING")
583
-
584
- # Generate lists for rest of the function arguments
585
- sequence_input_by_list = []
586
- if self.source_data_sequence_column is not None:
587
- sequence_input_by_list.append("a:" + UtilFuncs._teradata_collapse_arglist(self.source_data_sequence_column, ""))
588
-
589
- if self.reference_data_sequence_column is not None:
590
- sequence_input_by_list.append("b:" + UtilFuncs._teradata_collapse_arglist(self.reference_data_sequence_column, ""))
591
-
592
- if len(sequence_input_by_list) > 0:
593
- self.__func_other_arg_sql_names.append("SequenceInputBy")
594
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
595
- self.__func_other_args.append(sequence_input_by_arg_value)
596
- self.__func_other_arg_json_datatypes.append("STRING")
597
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
598
-
599
-
600
- # Declare empty lists to hold input table information.
601
- self.__func_input_arg_sql_names = []
602
- self.__func_input_table_view_query = []
603
- self.__func_input_dataframe_type = []
604
- self.__func_input_distribution = []
605
- self.__func_input_partition_by_cols = []
606
- self.__func_input_order_by_cols = []
607
-
608
- # Process source_data
609
- if self.__awu._is_default_or_not(self.source_data_partition_column, "ANY"):
610
- self.source_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.source_data_partition_column, "\"")
611
-
612
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.source_data, False)
613
- self.__func_input_distribution.append("FACT")
614
- self.__func_input_arg_sql_names.append("a")
615
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
616
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
617
- self.__func_input_partition_by_cols.append(self.source_data_partition_column)
618
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.source_data_order_column, "\""))
619
-
620
- # Process reference_data
621
- reference_data_distribution = "DIMENSION"
622
- if self.reference_data_partition_column is not None:
623
- reference_data_distribution = "FACT"
624
- reference_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.reference_data_partition_column, "\"")
625
- else:
626
- reference_data_partition_column = "NA_character_"
627
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.reference_data, False)
628
- self.__func_input_distribution.append(reference_data_distribution)
629
- self.__func_input_arg_sql_names.append("b")
630
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
631
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
632
- self.__func_input_partition_by_cols.append(self.reference_data_partition_column)
633
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.reference_data_order_column, "\""))
634
-
635
- function_name = "IdentityMatch"
636
- # Create instance to generate SQLMR.
637
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
638
- self.__func_input_arg_sql_names,
639
- self.__func_input_table_view_query,
640
- self.__func_input_dataframe_type,
641
- self.__func_input_distribution,
642
- self.__func_input_partition_by_cols,
643
- self.__func_input_order_by_cols,
644
- self.__func_other_arg_sql_names,
645
- self.__func_other_args,
646
- self.__func_other_arg_json_datatypes,
647
- self.__func_output_args_sql_names,
648
- self.__func_output_args,
649
- engine="ENGINE_ML")
650
- # Invoke call to SQL-MR generation.
651
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
652
-
653
- # Print SQL-MR query if requested to do so.
654
- if display.print_sqlmr_query:
655
- print(self.sqlmr_query)
656
-
657
- # Set the algorithm name for Model Cataloging.
658
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
659
-
660
- def __execute(self):
661
- """
662
- Function to execute SQL-MR queries.
663
- Create DataFrames for the required SQL-MR outputs.
664
- """
665
- # Generate STDOUT table name and add it to the output table list.
666
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
667
- try:
668
- # Generate the output.
669
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
670
- except Exception as emsg:
671
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
672
-
673
- # Update output table data frames.
674
- self._mlresults = []
675
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
676
- self._mlresults.append(self.result)
677
-
678
- def show_query(self):
679
- """
680
- Function to return the underlying SQL query.
681
- When model object is created using retrieve_model(), then None is returned.
682
- """
683
- return self.sqlmr_query
684
-
685
- def get_prediction_type(self):
686
- """
687
- Function to return the Prediction type of the algorithm.
688
- When model object is created using retrieve_model(), then the value returned is
689
- as saved in the Model Catalog.
690
- """
691
- return self._prediction_type
692
-
693
- def get_target_column(self):
694
- """
695
- Function to return the Target Column of the algorithm.
696
- When model object is created using retrieve_model(), then the value returned is
697
- as saved in the Model Catalog.
698
- """
699
- return self._target_column
700
-
701
- def get_build_time(self):
702
- """
703
- Function to return the build time of the algorithm in seconds.
704
- When model object is created using retrieve_model(), then the value returned is
705
- as saved in the Model Catalog.
706
- """
707
- return self._build_time
708
-
709
- def _get_algorithm_name(self):
710
- """
711
- Function to return the name of the algorithm.
712
- """
713
- return self._algorithm_name
714
-
715
- def _get_sql_specific_attributes(self):
716
- """
717
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
718
- """
719
- return self._sql_specific_attributes
720
-
721
- @classmethod
722
- def _from_model_catalog(cls,
723
- result = None,
724
- **kwargs):
725
- """
726
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
727
- """
728
- kwargs.pop("result", None)
729
-
730
- # Model Cataloging related attributes.
731
- target_column = kwargs.pop("__target_column", None)
732
- prediction_type = kwargs.pop("__prediction_type", None)
733
- algorithm_name = kwargs.pop("__algorithm_name", None)
734
- build_time = kwargs.pop("__build_time", None)
735
-
736
- # Let's create an object of this class.
737
- obj = cls(**kwargs)
738
- obj.result = result
739
-
740
- # Initialize the sqlmr_query class attribute.
741
- obj.sqlmr_query = None
742
-
743
- # Initialize the SQL specific Model Cataloging attributes.
744
- obj._sql_specific_attributes = None
745
- obj._target_column = target_column
746
- obj._prediction_type = prediction_type
747
- obj._algorithm_name = algorithm_name
748
- obj._build_time = build_time
749
-
750
- # Update output table data frames.
751
- obj._mlresults = []
752
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
753
- obj._mlresults.append(obj.result)
754
- return obj
755
-
756
- def __repr__(self):
757
- """
758
- Returns the string representation for a IdentityMatch class instance.
759
- """
760
- repr_string="############ STDOUT Output ############"
761
- repr_string = "{}\n\n{}".format(repr_string,self.result)
762
- return repr_string
763
-