teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1267,7 +1267,50 @@ class DataFrameUtils():
|
|
|
1267
1267
|
return aggregate_expr, new_column_names, new_column_types
|
|
1268
1268
|
|
|
1269
1269
|
@staticmethod
|
|
1270
|
-
def
|
|
1270
|
+
def _invalid_describe_column(df, columns, metaexpr, groupby_column_list):
|
|
1271
|
+
"""
|
|
1272
|
+
Internal function to validate columns provided to describe() is correct or not,
|
|
1273
|
+
when DataFrame is output of groupby and groupby_time.
|
|
1274
|
+
|
|
1275
|
+
PARAMETERS:
|
|
1276
|
+
df:
|
|
1277
|
+
Required Argument.
|
|
1278
|
+
Specifies teradataml DataFrame we are collecting statistics for.
|
|
1279
|
+
Types: str
|
|
1280
|
+
|
|
1281
|
+
columns:
|
|
1282
|
+
Optional Argument.
|
|
1283
|
+
Specifies the name(s) of columns we are collecting statistics for.
|
|
1284
|
+
Types: str ot List of strings (str)
|
|
1285
|
+
|
|
1286
|
+
metaexpr:
|
|
1287
|
+
Required Argument.
|
|
1288
|
+
Specifies the meta expression for the dataframe.
|
|
1289
|
+
Types: _MetaExpression
|
|
1290
|
+
|
|
1291
|
+
groupby_column_list:
|
|
1292
|
+
Optional Argument.
|
|
1293
|
+
Specifies the group by columns for the dataframe.
|
|
1294
|
+
Default Values: None.
|
|
1295
|
+
Types: str ot List of strings (str)
|
|
1296
|
+
|
|
1297
|
+
Returns:
|
|
1298
|
+
None
|
|
1299
|
+
|
|
1300
|
+
Raises:
|
|
1301
|
+
TeradataMLException
|
|
1302
|
+
"""
|
|
1303
|
+
invalid_columns = [_column for _column in groupby_column_list if columns is not None
|
|
1304
|
+
and _column in columns]
|
|
1305
|
+
if len(invalid_columns) > 0:
|
|
1306
|
+
all_columns = [col.name for col in metaexpr.c]
|
|
1307
|
+
valid_columns = [item for item in all_columns if item not in groupby_column_list]
|
|
1308
|
+
msg = Messages.get_message(MessageCodes.TDMLDF_AGGREGATE_INVALID_COLUMN). \
|
|
1309
|
+
format(", ".join(invalid_columns), 'columns', ", ".join(valid_columns))
|
|
1310
|
+
raise TeradataMlException(msg, MessageCodes.TDMLDF_AGGREGATE_INVALID_COLUMN)
|
|
1311
|
+
|
|
1312
|
+
@staticmethod
|
|
1313
|
+
def _construct_describe_query(df, columns, metaexpr, percentiles, function_label, groupby_column_list=None,
|
|
1271
1314
|
include=None, is_time_series_aggregate=False, verbose=False, distinct=False,
|
|
1272
1315
|
statistics=None, **kwargs):
|
|
1273
1316
|
"""
|
|
@@ -1279,6 +1322,11 @@ class DataFrameUtils():
|
|
|
1279
1322
|
Specifies teradataml DataFrame we are collecting statistics for.
|
|
1280
1323
|
Types: str
|
|
1281
1324
|
|
|
1325
|
+
columns:
|
|
1326
|
+
Optional Argument.
|
|
1327
|
+
Specifies the name(s) of columns we are collecting statistics for.
|
|
1328
|
+
Types: str ot List of strings (str)
|
|
1329
|
+
|
|
1282
1330
|
metaexpr:
|
|
1283
1331
|
Required Argument.
|
|
1284
1332
|
Specifies the meta expression for the dataframe.
|
|
@@ -1388,15 +1436,16 @@ class DataFrameUtils():
|
|
|
1388
1436
|
for col in metaexpr.c:
|
|
1389
1437
|
if (include is None and type(col.type) in UtilFuncs()._get_numeric_datatypes()) or include == 'all' or statistics is not None:
|
|
1390
1438
|
if not(groupby is not None and col.name in groupby_column_list):
|
|
1391
|
-
|
|
1392
|
-
|
|
1439
|
+
if columns is None or col.name in columns:
|
|
1440
|
+
col_names.append(col.name)
|
|
1441
|
+
col_types.append(col.type)
|
|
1442
|
+
|
|
1393
1443
|
|
|
1394
1444
|
if len(col_names) == 0:
|
|
1395
1445
|
raise TeradataMlException(
|
|
1396
1446
|
Messages.get_message(MessageCodes.TDMLDF_AGGREGATE_COMBINED_ERR,
|
|
1397
1447
|
"The DataFrame does not contain numeric columns"),
|
|
1398
1448
|
MessageCodes.TDMLDF_AGGREGATE_COMBINED_ERR)
|
|
1399
|
-
|
|
1400
1449
|
for op in operators:
|
|
1401
1450
|
if op == "percentile":
|
|
1402
1451
|
for p in percentiles:
|
|
@@ -1737,4 +1786,52 @@ class DataFrameUtils():
|
|
|
1737
1786
|
stmt = text(str(stmt))
|
|
1738
1787
|
stmt = stmt.bindparams(schema_name=schema_name)
|
|
1739
1788
|
res = connection.execute(stmt).fetchall()
|
|
1740
|
-
return [name.databasename for name in res]
|
|
1789
|
+
return [name.databasename for name in res]
|
|
1790
|
+
|
|
1791
|
+
@staticmethod
|
|
1792
|
+
def _get_common_parent_df_from_dataframes(dfs):
|
|
1793
|
+
"""
|
|
1794
|
+
Internal function to return common parent dataframe from given list of dataframes.
|
|
1795
|
+
"""
|
|
1796
|
+
from teradataml import DataFrame, in_schema
|
|
1797
|
+
aed_utils = AedUtils()
|
|
1798
|
+
if len(dfs) == 1:
|
|
1799
|
+
operation = aed_utils._aed_get_node_query_type(dfs[0]._nodeid)
|
|
1800
|
+
if operation == "table":
|
|
1801
|
+
# Return the same dataframe if it is DataFrame object from table.
|
|
1802
|
+
return dfs[0]
|
|
1803
|
+
|
|
1804
|
+
# If select node or any other node, then get the parent node and execute it.
|
|
1805
|
+
pids = aed_utils._aed_get_parent_nodeids(dfs[0]._nodeid)
|
|
1806
|
+
if not aed_utils._aed_is_node_executed(pids[0]):
|
|
1807
|
+
_ = DataFrameUtils._execute_node_return_db_object_name(pids[0])
|
|
1808
|
+
|
|
1809
|
+
tab_name_first = aed_utils._aed_get_source_tablename(pids[0])
|
|
1810
|
+
|
|
1811
|
+
db_schema = UtilFuncs._extract_db_name(tab_name_first)
|
|
1812
|
+
db_table_name = UtilFuncs._extract_table_name(tab_name_first)
|
|
1813
|
+
|
|
1814
|
+
return DataFrame(in_schema(db_schema, db_table_name))
|
|
1815
|
+
|
|
1816
|
+
pids_first = None
|
|
1817
|
+
parent_df = None
|
|
1818
|
+
for i in range(len(dfs)):
|
|
1819
|
+
pids = aed_utils._aed_get_parent_nodeids(dfs[i]._nodeid)
|
|
1820
|
+
|
|
1821
|
+
if parent_df is None:
|
|
1822
|
+
if not aed_utils._aed_is_node_executed(pids[0]):
|
|
1823
|
+
_ = DataFrameUtils._execute_node_return_db_object_name(pids[0])
|
|
1824
|
+
|
|
1825
|
+
tab_name_first = aed_utils._aed_get_source_tablename(pids[0])
|
|
1826
|
+
|
|
1827
|
+
db_schema = UtilFuncs._extract_db_name(tab_name_first)
|
|
1828
|
+
db_table_name = UtilFuncs._extract_table_name(tab_name_first)
|
|
1829
|
+
|
|
1830
|
+
parent_df = DataFrame(in_schema(db_schema, db_table_name))
|
|
1831
|
+
pids_first = pids
|
|
1832
|
+
else:
|
|
1833
|
+
if pids_first != pids:
|
|
1834
|
+
raise TeradataMlException(Messages.get_message(MessageCodes.DFS_NO_COMMON_PARENT),
|
|
1835
|
+
MessageCodes.DFS_NO_COMMON_PARENT)
|
|
1836
|
+
|
|
1837
|
+
return parent_df
|
teradataml/dataframe/fastload.py
CHANGED
|
@@ -28,8 +28,10 @@ from teradataml.dataframe.copy_to import copy_to_sql, \
|
|
|
28
28
|
_create_pti_table_object, _extract_column_info, \
|
|
29
29
|
_check_columns_insertion_compatible
|
|
30
30
|
from teradataml.dataframe.data_transfer import _DataTransferUtils
|
|
31
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
31
32
|
|
|
32
33
|
|
|
34
|
+
@collect_queryband(queryband="fstLd")
|
|
33
35
|
def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
|
|
34
36
|
index_label=None, primary_index=None, types=None, batch_size=None,
|
|
35
37
|
save_errors=False, open_sessions=None):
|
|
@@ -292,9 +294,9 @@ def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
|
|
|
292
294
|
_Validators._validate_function_arguments([["batch_size", batch_size,
|
|
293
295
|
False, (int)]])
|
|
294
296
|
if batch_size < 100000:
|
|
295
|
-
warnings.warn("The batch_size provided is less than 100000.
|
|
296
|
-
recommends using 100000 as minimum batch
|
|
297
|
-
improved performance.")
|
|
297
|
+
warnings.warn("The batch_size provided is less than 100000. "
|
|
298
|
+
"Teradata recommends using 100000 as minimum batch "
|
|
299
|
+
"size for improved performance.", stacklevel=2)
|
|
298
300
|
|
|
299
301
|
# If the table created must be a PTI table, then validate additional parameters
|
|
300
302
|
# Note that if the required parameters for PTI are valid, then other parameters, though being validated,
|
|
@@ -360,6 +362,7 @@ def fastload(df, table_name, schema_name=None, if_exists='replace', index=False,
|
|
|
360
362
|
MessageCodes.FASTLOAD_FAILS) from err
|
|
361
363
|
return fl_dict
|
|
362
364
|
|
|
365
|
+
|
|
363
366
|
def _insert_from_dataframe(dt_obj, table_name, batch_size):
|
|
364
367
|
"""
|
|
365
368
|
This is an internal function used to to sequentially extract column info from DataFrame,
|
|
@@ -443,6 +446,9 @@ def _insert_from_dataframe(dt_obj, table_name, batch_size):
|
|
|
443
446
|
batch_number = 1
|
|
444
447
|
num_batches = int(dt_obj.df.shape[0]/batch_size)
|
|
445
448
|
|
|
449
|
+
|
|
450
|
+
# Empty queryband buffer before SQL call.
|
|
451
|
+
UtilFuncs._set_queryband()
|
|
446
452
|
for i in range(0, dt_obj.df.shape[0], batch_size):
|
|
447
453
|
# Add the remaining rows to last batch after second last batch
|
|
448
454
|
if (batch_number == num_batches) :
|
|
@@ -516,6 +522,7 @@ def _insert_from_dataframe(dt_obj, table_name, batch_size):
|
|
|
516
522
|
return {"errors_dataframe": pd_err_df, "warnings_dataframe": pd_warn_df,
|
|
517
523
|
"errors_table": error_tablename, "warnings_table": warn_tablename}
|
|
518
524
|
|
|
525
|
+
|
|
519
526
|
def _get_batchsize(df):
|
|
520
527
|
"""
|
|
521
528
|
This internal function calculates batch size which should be more than 100000
|
|
@@ -537,6 +544,7 @@ def _get_batchsize(df):
|
|
|
537
544
|
"""
|
|
538
545
|
return df.shape[0] if df.shape[0] <= 100000 else round(df.shape[0]/int(df.shape[0]/100000))
|
|
539
546
|
|
|
547
|
+
|
|
540
548
|
def _create_table_for_fastload(df, con, table_name, schema_name=None, primary_index=None,
|
|
541
549
|
is_pti=False, primary_time_index_name=None, timecode_column=None,
|
|
542
550
|
timezero_date=None, timebucket_duration=None, sequence_column=None,
|
teradataml/dataframe/setop.py
CHANGED
|
@@ -24,6 +24,8 @@ from teradatasqlalchemy.dialect import dialect as td_dialect, TeradataTypeCompil
|
|
|
24
24
|
from teradatasqlalchemy import (GEOMETRY, MBR, MBB)
|
|
25
25
|
from teradatasql import OperationalError
|
|
26
26
|
|
|
27
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
28
|
+
|
|
27
29
|
module = importlib.import_module("teradataml")
|
|
28
30
|
|
|
29
31
|
def __validate_setop_args(df_list, awu_matrix, setop_type):
|
|
@@ -75,7 +77,8 @@ def __validate_setop_args(df_list, awu_matrix, setop_type):
|
|
|
75
77
|
if not all(len(l) == the_len for l in it):
|
|
76
78
|
raise TeradataMlException(Messages.get_message(MessageCodes.INVALID_DF_LENGTH),
|
|
77
79
|
MessageCodes.INVALID_DF_LENGTH)
|
|
78
|
-
|
|
80
|
+
|
|
81
|
+
|
|
79
82
|
def __check_concat_compatibility(df_list, join, sort, ignore_index):
|
|
80
83
|
"""
|
|
81
84
|
DESCRIPTION:
|
|
@@ -231,6 +234,7 @@ def __check_concat_compatibility(df_list, join, sort, ignore_index):
|
|
|
231
234
|
|
|
232
235
|
return col_dict, is_lazy
|
|
233
236
|
|
|
237
|
+
|
|
234
238
|
def __check_setop_if_lazy(df_list):
|
|
235
239
|
"""
|
|
236
240
|
DESCRIPTION:
|
|
@@ -269,6 +273,7 @@ def __check_setop_if_lazy(df_list):
|
|
|
269
273
|
|
|
270
274
|
return is_lazy
|
|
271
275
|
|
|
276
|
+
|
|
272
277
|
def __process_operation(meta_data, is_lazy, setop_type, nodeid, index_label, index_to_use, class_name = None):
|
|
273
278
|
"""
|
|
274
279
|
DESCRIPTION:
|
|
@@ -355,6 +360,7 @@ def __process_operation(meta_data, is_lazy, setop_type, nodeid, index_label, ind
|
|
|
355
360
|
raise
|
|
356
361
|
|
|
357
362
|
|
|
363
|
+
@collect_queryband(queryband="concat")
|
|
358
364
|
def concat(df_list, join='OUTER', allow_duplicates=True, sort=False, ignore_index=False):
|
|
359
365
|
"""
|
|
360
366
|
DESCRIPTION:
|
|
@@ -686,6 +692,8 @@ def concat(df_list, join='OUTER', allow_duplicates=True, sort=False, ignore_inde
|
|
|
686
692
|
raise TeradataMlException(Messages.get_message(MessageCodes.SETOP_FAILED, setop_type),
|
|
687
693
|
MessageCodes.SETOP_FAILED) from err
|
|
688
694
|
|
|
695
|
+
|
|
696
|
+
@collect_queryband(queryband="tdIntersect")
|
|
689
697
|
def td_intersect(df_list, allow_duplicates=True):
|
|
690
698
|
"""
|
|
691
699
|
DESCRIPTION:
|
|
@@ -824,6 +832,8 @@ def td_intersect(df_list, allow_duplicates=True):
|
|
|
824
832
|
|
|
825
833
|
return __process_setop_operation(df_list, allow_duplicates, setop_type, operation)
|
|
826
834
|
|
|
835
|
+
|
|
836
|
+
@collect_queryband(queryband="tdMinus")
|
|
827
837
|
def td_minus(df_list, allow_duplicates=True):
|
|
828
838
|
"""
|
|
829
839
|
DESCRIPTION:
|
|
@@ -953,7 +963,7 @@ def td_minus(df_list, allow_duplicates=True):
|
|
|
953
963
|
awu_matrix = []
|
|
954
964
|
awu_matrix.append(["df_list", df_list, False, (list)])
|
|
955
965
|
awu_matrix.append(["allow_duplicates", allow_duplicates, False, (bool)])
|
|
956
|
-
setop_type = 'td_except' if (inspect.stack()[
|
|
966
|
+
setop_type = 'td_except' if (inspect.stack()[2][3] and inspect.stack()[2][3] == 'td_except') else 'td_minus'
|
|
957
967
|
operation = 'minus'
|
|
958
968
|
|
|
959
969
|
# Validate Set operator arguments
|
|
@@ -961,6 +971,8 @@ def td_minus(df_list, allow_duplicates=True):
|
|
|
961
971
|
|
|
962
972
|
return __process_setop_operation(df_list, allow_duplicates, setop_type, operation)
|
|
963
973
|
|
|
974
|
+
|
|
975
|
+
@collect_queryband(queryband="tdExcept")
|
|
964
976
|
def td_except(df_list, allow_duplicates=True):
|
|
965
977
|
"""
|
|
966
978
|
DESCRIPTION:
|
|
@@ -1088,6 +1100,7 @@ def td_except(df_list, allow_duplicates=True):
|
|
|
1088
1100
|
"""
|
|
1089
1101
|
return td_minus(df_list, allow_duplicates)
|
|
1090
1102
|
|
|
1103
|
+
|
|
1091
1104
|
def __process_setop_operation(df_list, allow_duplicates, setop_type, operation):
|
|
1092
1105
|
"""
|
|
1093
1106
|
DESCRIPTION:
|