teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,842 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: PavansaiKumar Alladi (pavansaikumar.alladi@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 2.26
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.common.formula import Formula
30
-
31
- class XGBoost:
32
-
33
- def __init__(self,
34
- formula = None,
35
- data = None,
36
- id_column = None,
37
- loss_function = "SOFTMAX",
38
- prediction_type = "CLASSIFICATION",
39
- reg_lambda = 1.0,
40
- shrinkage_factor = 0.1,
41
- iter_num = 10,
42
- min_node_size = 1,
43
- max_depth = 5,
44
- variance = 0.0,
45
- seed = None,
46
- attribute_name_column = None,
47
- num_boosted_trees = None,
48
- attribute_table = None,
49
- attribute_value_column = None,
50
- column_subsampling = 1.0,
51
- response_column = None,
52
- data_sequence_column = None,
53
- attribute_table_sequence_column = None,
54
- output_accuracy = False):
55
- """
56
- DESCRIPTION:
57
- The XGBoost function takes a training data set and uses gradient
58
- boosting to create a strong classifying model that can be input to
59
- the function XGBoostPredict. The function supports input tables in
60
- both dense and sparse format.
61
-
62
-
63
- PARAMETERS:
64
- formula:
65
- Required Argument when input data is in dense format.
66
- A string consisting of "formula". Specifies the model to be fitted.
67
- Only basic formula of the "col1 ~ col2 + col3 +..." form are
68
- supported and all variables must be from the same teradataml
69
- DataFrame object. The response should be column of type float, int or
70
- bool. This argument is not supported for sparse format. For sparse data
71
- format, provide this information using "attribute_table" argument.
72
-
73
- data:
74
- Required Argument.
75
- Specifies the teradataml DataFrame containing the input data set.
76
- If the input data set is in dense format, the XGBoost function requires only "data".
77
-
78
- id_column:
79
- Optional Argument.
80
- Specifies the name of the partitioning column of input table. This
81
- column is used as a row identifier to distribute data among different
82
- vworkers for parallel boosted trees.
83
- Types: str OR list of Strings (str)
84
-
85
- loss_function:
86
- Optional Argument.
87
- Specifies the learning task and corresponding learning objective.
88
- Default Value: "SOFTMAX"
89
- Permitted Values: BINOMIAL, SOFTMAX, MSE
90
- Note:
91
- Permitted value 'MSE' is supported when teradataml is connected to Vantage1.3
92
- or later versions.
93
- Types: str
94
-
95
- prediction_type:
96
- Optional Argument.
97
- Specifies whether the function predicts the result from the number of classes
98
- ('classification') or from a continuous response variable ('regression').
99
- The function supports only 'classification'.
100
- Default Value: "CLASSIFICATION"
101
- Permitted Values: CLASSIFICATION, REGRESSION
102
- Note:
103
- Permitted value 'REGRESSION' is supported when teradataml is connected to Vantage1.3
104
- or later versions.
105
- Types: str
106
-
107
- reg_lambda:
108
- Optional Argument.
109
- Specifies the L2 regularization that the loss function uses
110
- while boosting trees. The higher the lambda, the stronger the
111
- regularization effect.
112
- Default Value: 1.0
113
- Types: float
114
-
115
- shrinkage_factor:
116
- Optional Argument.
117
- Specifies the learning rate (weight) of a learned tree in each boosting step.
118
- After each boosting step, the algorithm multiplies the learner by shrinkage
119
- to make the boosting process more conservative. The shrinkage is a
120
- float value in the range [0.0, 1.0].
121
- The value 1.0 specifies no shrinkage.
122
- Default Value: 0.1
123
- Types: float
124
-
125
- iter_num:
126
- Optional Argument.
127
- Specifies the number of iterations to boost the weak classifiers,
128
- which is also the number of weak classifiers in the ensemble (T). The
129
- number must an int in the range [1, 100000].
130
- Default Value: 10
131
- Types: int
132
-
133
- min_node_size:
134
- Optional Argument.
135
- Specifies the minimum size of any particular node within each
136
- decision tree. The min_node_size must an int.
137
- Default Value: 1
138
- Types: int
139
-
140
- max_depth:
141
- Optional Argument.
142
- Specifies the maximum depth of the tree. The max_depth must be an int in
143
- the range [1, 100000].
144
- Default Value: 5
145
- Types: int
146
-
147
- variance:
148
- Optional Argument.
149
- Specifies a decision tree stopping criterion. If the variance within
150
- any node dips below this value, the algorithm stops looking for splits
151
- in the branch.
152
- Default Value: 0.0
153
- Types: float
154
-
155
- seed:
156
- Optional Argument.
157
- Specifies the seed to use to create a random number.
158
- If you omit this argument or specify its default value 1, the function
159
- uses a faster algorithm but does not ensure repeatability.
160
- This argument must have a int value greater than or equal to 1. To ensure
161
- repeatability, specify a value greater than 1.
162
- Types: int
163
-
164
- attribute_name_column:
165
- Optional Argument.
166
- Required for sparse data format. If the data set is in sparse format,
167
- this argument indicates the column containing the attributes in the
168
- input data set.
169
- Types: str OR list of Strings (str)
170
-
171
- num_boosted_trees:
172
- Optional Argument.
173
- Specifies the number of boosted trees to be trained. By default, the
174
- number of boosted trees equals the number of vworkers available for
175
- the functions.
176
- Types: int
177
-
178
- attribute_table:
179
- Optional Argument.
180
- Required if the input data set is in sparse format.
181
- Specifies the name of the teradataml DataFrame containing the features in the input
182
- data.
183
-
184
- attribute_value_column:
185
- Optional Argument.
186
- Required if the input data set is in sparse format.
187
- If the data is in the sparse format, this argument indicates the
188
- column containing the attribute values in the input table.
189
- Types: str OR list of Strings (str)
190
-
191
- column_subsampling:
192
- Optional Argument.
193
- Specifies the fraction of features to subsample during boosting.
194
- Default Value: 1.0 (no subsampling)
195
- Types: float
196
-
197
- response_column:
198
- Optional Argument.
199
- Specifies the name of the response teradataml DataFrame column that
200
- contains the responses (labels) of the data.
201
- Types: str OR list of Strings (str)
202
-
203
- data_sequence_column:
204
- Optional Argument.
205
- Specifies the list of column(s) that uniquely identifies each row of
206
- the input argument "data". The argument is used to ensure
207
- deterministic results for functions which produce results that vary
208
- from run to run.
209
- Types: str OR list of Strings (str)
210
-
211
- attribute_table_sequence_column:
212
- Optional Argument.
213
- Specifies the list of column(s) that uniquely identifies each row of
214
- the input argument "attribute_table". The argument is used to ensure
215
- deterministic results for functions which produce results that vary
216
- from run to run.
217
- Types: str OR list of Strings (str)
218
-
219
- output_accuracy:
220
- Optional Argument.
221
- Specifies whether to show training accuracy over iterations in the
222
- output model_table DataFrame.
223
- Note:
224
- The argument 'output_accuracy' is available when teradataml is connected to Vantage 1.3
225
- or later versions.
226
- Default Value: False
227
- Types: bool
228
-
229
- RETURNS:
230
- Instance of XGBoost.
231
- Output teradataml DataFrames can be accessed using attribute
232
- references, such as XGBoostObj.<attribute_name>.
233
- Output teradataml DataFrame attribute name is:
234
- 1. model_table
235
- 2. output
236
-
237
-
238
- RAISES:
239
- TeradataMlException
240
-
241
-
242
- EXAMPLES:
243
- # Load example data.
244
- load_example_data("xgboost", ["housing_train_binary","iris_train","sparse_iris_train","sparse_iris_attribute"])
245
-
246
- # Example 1: Binary Classification on the housing data to build a model using training data
247
- # that contains couple of labels (Responses) - classic and eclectic, specifying the style of a house,
248
- # based on the 12 other attributes of the house, such as bedrooms, stories, price etc.
249
- # Create teradataml DataFrame objects.
250
- housing_train_binary = DataFrame.from_table("housing_train_binary")
251
- XGBoost_out1 = XGBoost(data=housing_train_binary,
252
- id_column='sn',
253
- formula = "homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price + lotsize + bedrooms + bathrms + stories + garagepl",
254
- num_boosted_trees=2,
255
- loss_function='binomial',
256
- prediction_type='classification',
257
- reg_lambda=1.0,
258
- shrinkage_factor=0.1,
259
- iter_num=10,
260
- min_node_size=1,
261
- max_depth=10
262
- )
263
-
264
- # Print the results.
265
- print(XGBoost_out1)
266
-
267
-
268
- # Example 2: Multiple-Class Classification
269
- # Let's use the XGBoost classification algorithm, on one of the famous dataset Iris Data set.
270
- # Dataset contains 50 samples from three species of Iris flower setosa, virginica and versicolor.
271
- # Each data point contains measurements of length and width of sepals and petals.
272
- iris_train = DataFrame.from_table("iris_train")
273
-
274
- XGBoost_out2 = XGBoost(data=iris_train,
275
- id_column='id',
276
- formula = "species ~ sepal_length + petal_length + petal_width + species",
277
- num_boosted_trees=2,
278
- loss_function='softmax',
279
- reg_lambda=1.0,
280
- shrinkage_factor=0.1,
281
- iter_num=10,
282
- min_node_size=1,
283
- max_depth=10)
284
-
285
- # Print the results.
286
- print(XGBoost_out2)
287
-
288
-
289
- # Example 3: Sparse Input Format. response_column argument is specified instead of formula.
290
- sparse_iris_train = DataFrame.from_table("sparse_iris_train")
291
- sparse_iris_attribute = DataFrame.from_table("sparse_iris_attribute")
292
-
293
- XGBoost_out3 = XGBoost(data=sparse_iris_train,
294
- attribute_table=sparse_iris_attribute,
295
- id_column='id',
296
- attribute_name_column='attribute',
297
- attribute_value_column='value_col',
298
- response_column="species",
299
- loss_function='SOFTMAX',
300
- reg_lambda=1.0,
301
- num_boosted_trees=2,
302
- shrinkage_factor=0.1,
303
- column_subsampling=1.0,
304
- iter_num=10,
305
- min_node_size=1,
306
- max_depth=10,
307
- variance=0.0,
308
- seed=1
309
- )
310
-
311
- # Print the results.
312
- print(XGBoost_out3)
313
-
314
-
315
- # Example 4: Use optional argument 'output_accuracy'.
316
- # We will use the teradataml DataFrames, created in the Example 3.
317
- Note:
318
- This Example will work only when teradataml is connected to Vantage 1.3
319
- or later versions.
320
-
321
- XGBoost_out4 = XGBoost(data=sparse_iris_train,
322
- attribute_table=sparse_iris_attribute,
323
- id_column='id',
324
- attribute_name_column='attribute',
325
- attribute_value_column='value_col',
326
- response_column="species",
327
- loss_function='SOFTMAX',
328
- reg_lambda=1.0,
329
- num_boosted_trees=2,
330
- shrinkage_factor=0.1,
331
- column_subsampling=1.0,
332
- iter_num=10,
333
- min_node_size=1,
334
- max_depth=10,
335
- variance=0.0,
336
- seed=1,
337
- output_accuracy=True
338
- )
339
-
340
- # Print the results.
341
- print(XGBoost_out3)
342
-
343
- """
344
-
345
- # Start the timer to get the build time
346
- _start_time = time.time()
347
-
348
- self.formula = formula
349
- self.data = data
350
- self.id_column = id_column
351
- self.loss_function = loss_function
352
- self.prediction_type = prediction_type
353
- self.reg_lambda = reg_lambda
354
- self.shrinkage_factor = shrinkage_factor
355
- self.iter_num = iter_num
356
- self.min_node_size = min_node_size
357
- self.max_depth = max_depth
358
- self.variance = variance
359
- self.seed = seed
360
- self.attribute_name_column = attribute_name_column
361
- self.num_boosted_trees = num_boosted_trees
362
- self.attribute_table = attribute_table
363
- self.attribute_value_column = attribute_value_column
364
- self.column_subsampling = column_subsampling
365
- self.response_column = response_column
366
- self.data_sequence_column = data_sequence_column
367
- self.attribute_table_sequence_column = attribute_table_sequence_column
368
- self.output_accuracy = output_accuracy
369
-
370
- # Create TeradataPyWrapperUtils instance which contains validation functions.
371
- self.__awu = AnalyticsWrapperUtils()
372
- self.__aed_utils = AedUtils()
373
-
374
- # Create argument information matrix to do parameter checking
375
- self.__arg_info_matrix = []
376
- self.__arg_info_matrix.append(["formula", self.formula, True, "formula"])
377
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
378
- self.__arg_info_matrix.append(["id_column", self.id_column, True, (str)])
379
- self.__arg_info_matrix.append(["loss_function", self.loss_function, True, (str)])
380
- self.__arg_info_matrix.append(["prediction_type", self.prediction_type, True, (str)])
381
- self.__arg_info_matrix.append(["reg_lambda", self.reg_lambda, True, (float)])
382
- self.__arg_info_matrix.append(["shrinkage_factor", self.shrinkage_factor, True, (float)])
383
- self.__arg_info_matrix.append(["iter_num", self.iter_num, True, (int)])
384
- self.__arg_info_matrix.append(["min_node_size", self.min_node_size, True, (int)])
385
- self.__arg_info_matrix.append(["max_depth", self.max_depth, True, (int)])
386
- self.__arg_info_matrix.append(["variance", self.variance, True, (float)])
387
- self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
388
- self.__arg_info_matrix.append(["attribute_name_column", self.attribute_name_column, True, (str)])
389
- self.__arg_info_matrix.append(["num_boosted_trees", self.num_boosted_trees, True, (int)])
390
- self.__arg_info_matrix.append(["attribute_table", self.attribute_table, True, (DataFrame)])
391
- self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, True, (str)])
392
- self.__arg_info_matrix.append(["column_subsampling", self.column_subsampling, True, (float)])
393
- self.__arg_info_matrix.append(["response_column", self.response_column, True, (str)])
394
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
395
- self.__arg_info_matrix.append(["attribute_table_sequence_column", self.attribute_table_sequence_column, True, (str,list)])
396
- self.__arg_info_matrix.append(["output_accuracy", self.output_accuracy, True, (bool)])
397
-
398
- if inspect.stack()[1][3] != '_from_model_catalog':
399
- # Perform the function validations
400
- self.__validate()
401
- # Generate the ML query
402
- self.__form_tdml_query()
403
- # Process output table schema
404
- self.__process_output_column_info()
405
- # Execute ML query
406
- self.__execute()
407
- # Get the prediction type
408
- self._prediction_type = self.__awu._get_function_prediction_type(self)
409
-
410
- # End the timer to get the build time
411
- _end_time = time.time()
412
-
413
- # Calculate the build time
414
- self._build_time = (int)(_end_time - _start_time)
415
-
416
- def __validate(self):
417
- """
418
- Function to validate sqlmr function arguments, which verifies missing
419
- arguments, input argument and table types. Also processes the
420
- argument values.
421
- """
422
-
423
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
424
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
425
-
426
- # Either formula or response_column is required
427
- if (self.formula is None and self.response_column is None) or \
428
- (self.formula is not None and self.response_column is not None):
429
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT,
430
- "formula", "response_column"), MessageCodes.MISSING_ARGS)
431
-
432
- # Make sure that a non-NULL value has been supplied correct type of argument
433
- self.__awu._validate_argument_types(self.__arg_info_matrix)
434
-
435
- # Check to make sure input table types are strings or data frame objects or of valid type.
436
- self.__awu._validate_input_table_datatype(self.data, "data", None)
437
- self.__awu._validate_input_table_datatype(self.attribute_table, "attribute_table", None)
438
-
439
- # Check for permitted values
440
- if configure._vantage_version in ["vanatge1.3"]:
441
- loss_function_permitted_values = ["BINOMIAL", "SOFTMAX", "MSE"]
442
- prediction_type_permitted_values = ["CLASSIFICATION", "REGRESSION"]
443
- else:
444
- loss_function_permitted_values = ["BINOMIAL", "SOFTMAX"]
445
- prediction_type_permitted_values = ["CLASSIFICATION"]
446
-
447
- self.__awu._validate_permitted_values(self.loss_function, loss_function_permitted_values, "loss_function")
448
- self.__awu._validate_permitted_values(self.prediction_type, prediction_type_permitted_values, "prediction_type")
449
-
450
- # Check whether the input columns passed to the argument are not empty.
451
- # Also check whether the input columns passed to the argument valid or not.
452
- self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
453
- self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", self.data, "data", False)
454
-
455
- self.__awu._validate_input_columns_not_empty(self.id_column, "id_column")
456
- self.__awu._validate_dataframe_has_argument_columns(self.id_column, "id_column", self.data, "data", False)
457
-
458
- self.__awu._validate_input_columns_not_empty(self.attribute_name_column, "attribute_name_column")
459
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_column, "attribute_name_column", self.data, "data", False)
460
-
461
- self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
462
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", self.data, "data", False)
463
-
464
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
465
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
466
-
467
- self.__awu._validate_input_columns_not_empty(self.attribute_table_sequence_column, "attribute_table_sequence_column")
468
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_table_sequence_column, "attribute_table_sequence_column", self.attribute_table, "attribute_table", False)
469
-
470
-
471
- def __form_tdml_query(self):
472
- """
473
- Function to generate the analytical function queries. The function defines
474
- variables and list of arguments required to form the query.
475
- """
476
- # Generate temp table names for output table parameters if any.
477
- self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_xgboost0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
478
-
479
- # Output table arguments list
480
- self.__func_output_args_sql_names = ["OutputTable"]
481
- self.__func_output_args = [self.__model_table_temp_tablename]
482
-
483
- # Model Cataloging related attributes.
484
- self._sql_specific_attributes = {}
485
- self._sql_formula_attribute_mapper = {}
486
- self._target_column = None
487
- self._algorithm_name = None
488
-
489
- # Generate lists for rest of the function arguments
490
- self.__func_other_arg_sql_names = []
491
- self.__func_other_args = []
492
- self.__func_other_arg_json_datatypes = []
493
-
494
- if self.response_column is not None:
495
- self.__func_other_arg_sql_names.append("ResponseColumn")
496
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
497
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
498
-
499
- if self.id_column is not None:
500
- self.__func_other_arg_sql_names.append("IdColumn")
501
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_column, "\""), "'"))
502
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
503
-
504
- if self.attribute_name_column is not None:
505
- self.__func_other_arg_sql_names.append("AttributeNameColumn")
506
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_column, "\""), "'"))
507
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
508
-
509
- if self.attribute_value_column is not None:
510
- self.__func_other_arg_sql_names.append("AttributeValueColumn")
511
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
512
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
513
-
514
- if self.num_boosted_trees is not None:
515
- self.__func_other_arg_sql_names.append("NumBoostedTrees")
516
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_boosted_trees, "'"))
517
- self.__func_other_arg_json_datatypes.append("INTEGER")
518
-
519
- if self.output_accuracy is not None and self.output_accuracy != False:
520
- self.__func_other_arg_sql_names.append("OutputAccuracy")
521
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_accuracy, "'"))
522
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
523
-
524
- if self.loss_function is not None and self.loss_function != "SOFTMAX":
525
- self.__func_other_arg_sql_names.append("LossFunction")
526
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.loss_function, "'"))
527
- self.__func_other_arg_json_datatypes.append("STRING")
528
-
529
- if self.prediction_type is not None and self.prediction_type != "CLASSIFICATION":
530
- self.__func_other_arg_sql_names.append("PredictionType")
531
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.prediction_type, "'"))
532
- self.__func_other_arg_json_datatypes.append("STRING")
533
-
534
- if self.reg_lambda is not None and self.reg_lambda != 1:
535
- self.__func_other_arg_sql_names.append("RegularizationLambda")
536
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.reg_lambda, "'"))
537
- self.__func_other_arg_json_datatypes.append("DOUBLE")
538
-
539
- if self.shrinkage_factor is not None and self.shrinkage_factor != 0.1:
540
- self.__func_other_arg_sql_names.append("ShrinkageFactor")
541
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.shrinkage_factor, "'"))
542
- self.__func_other_arg_json_datatypes.append("DOUBLE")
543
-
544
- if self.column_subsampling is not None and self.column_subsampling != 1.0:
545
- self.__func_other_arg_sql_names.append("ColumnSubSampling")
546
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.column_subsampling, "'"))
547
- self.__func_other_arg_json_datatypes.append("DOUBLE")
548
-
549
- if self.iter_num is not None and self.iter_num != 10:
550
- self.__func_other_arg_sql_names.append("IterNum")
551
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.iter_num, "'"))
552
- self.__func_other_arg_json_datatypes.append("INTEGER")
553
-
554
- if self.min_node_size is not None and self.min_node_size != 1:
555
- self.__func_other_arg_sql_names.append("MinNodeSize")
556
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_node_size, "'"))
557
- self.__func_other_arg_json_datatypes.append("INTEGER")
558
-
559
- if self.max_depth is not None and self.max_depth != 5:
560
- self.__func_other_arg_sql_names.append("MaxDepth")
561
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_depth, "'"))
562
- self.__func_other_arg_json_datatypes.append("INTEGER")
563
-
564
- if self.variance is not None and self.variance != 0:
565
- self.__func_other_arg_sql_names.append("Variance")
566
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.variance, "'"))
567
- self.__func_other_arg_json_datatypes.append("DOUBLE")
568
-
569
- if self.seed is not None:
570
- self.__func_other_arg_sql_names.append("Seed")
571
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
572
- self.__func_other_arg_json_datatypes.append("LONG")
573
-
574
- # Generate lists for rest of the function arguments
575
- sequence_input_by_list = []
576
- if self.data_sequence_column is not None:
577
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
578
-
579
- if self.attribute_table_sequence_column is not None:
580
- sequence_input_by_list.append("AttributeTable:" + UtilFuncs._teradata_collapse_arglist(self.attribute_table_sequence_column, ""))
581
-
582
- if len(sequence_input_by_list) > 0:
583
- self.__func_other_arg_sql_names.append("SequenceInputBy")
584
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
585
- self.__func_other_args.append(sequence_input_by_arg_value)
586
- self.__func_other_arg_json_datatypes.append("STRING")
587
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
588
-
589
- # Let's process formula argument
590
- if self.formula is not None:
591
- self.formula = self.__awu._validate_formula_notation(self.formula, self.data, "formula")
592
- # response variable
593
- __response_column = self.formula._get_dependent_vars()
594
- self._target_column = __response_column
595
- self.__func_other_arg_sql_names.append("ResponseColumn")
596
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__response_column, "\""), "'"))
597
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
598
- self._sql_specific_attributes["ResponseColumn"] = __response_column
599
- self._sql_formula_attribute_mapper["ResponseColumn"] = "__response_column"
600
-
601
- # numerical input columns
602
- __numeric_columns = self.__awu._get_columns_by_type(self.formula, self.data, "numerical")
603
- if len(__numeric_columns) > 0:
604
- self.__func_other_arg_sql_names.append("NumericInputs")
605
- numerical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__numeric_columns, "\""), "'")
606
- self.__func_other_args.append(numerical_columns_list)
607
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
608
- self._sql_specific_attributes["NumericInputs"] = numerical_columns_list
609
- self._sql_formula_attribute_mapper["NumericInputs"] = "__numeric_columns"
610
-
611
- # categorical input columns
612
- __categorical_columns = self.__awu._get_columns_by_type(self.formula, self.data, "categorical")
613
- if len(__categorical_columns) > 0:
614
- self.__func_other_arg_sql_names.append("CategoricalInputs")
615
- categorical_columns_list = UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(__categorical_columns, "\""), "'")
616
- self.__func_other_args.append(categorical_columns_list)
617
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
618
- self._sql_specific_attributes["CategoricalInputs"] = categorical_columns_list
619
- self._sql_formula_attribute_mapper["CategoricalInputs"] = "__categorical_columns"
620
-
621
-
622
- # Declare empty lists to hold input table information.
623
- self.__func_input_arg_sql_names = []
624
- self.__func_input_table_view_query = []
625
- self.__func_input_dataframe_type = []
626
- self.__func_input_distribution = []
627
- self.__func_input_partition_by_cols = []
628
- self.__func_input_order_by_cols = []
629
-
630
- # Process data
631
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
632
- self.__func_input_distribution.append("NONE")
633
- self.__func_input_arg_sql_names.append("InputTable")
634
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
635
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
636
- self.__func_input_partition_by_cols.append("NA_character_")
637
- self.__func_input_order_by_cols.append("NA_character_")
638
-
639
- # Process attribute_table
640
- if self.attribute_table is not None:
641
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.attribute_table)
642
- self.__func_input_distribution.append("NONE")
643
- self.__func_input_arg_sql_names.append("AttributeTable")
644
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
645
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
646
- self.__func_input_partition_by_cols.append("NA_character_")
647
- self.__func_input_order_by_cols.append("NA_character_")
648
-
649
- function_name = "XGBoost"
650
- # Create instance to generate SQLMR.
651
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
652
- self.__func_input_arg_sql_names,
653
- self.__func_input_table_view_query,
654
- self.__func_input_dataframe_type,
655
- self.__func_input_distribution,
656
- self.__func_input_partition_by_cols,
657
- self.__func_input_order_by_cols,
658
- self.__func_other_arg_sql_names,
659
- self.__func_other_args,
660
- self.__func_other_arg_json_datatypes,
661
- self.__func_output_args_sql_names,
662
- self.__func_output_args,
663
- engine="ENGINE_ML")
664
- # Invoke call to SQL-MR generation.
665
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
666
-
667
- # Print SQL-MR query if requested to do so.
668
- if display.print_sqlmr_query:
669
- print(self.sqlmr_query)
670
-
671
- # Set the algorithm name for Model Cataloging.
672
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
673
-
674
- def __execute(self):
675
- """
676
- Function to generate AED nodes for output tables.
677
- This makes a call aed_ml_query() and then output table dataframes are created.
678
- """
679
- # Create a list of input node ids contributing to a query.
680
- self.__input_nodeids = []
681
- self.__input_nodeids.append(self.data._nodeid)
682
- if self.attribute_table is not None:
683
- self.__input_nodeids.append(self.attribute_table._nodeid)
684
-
685
- # Generate STDOUT table name and add it to the output table list.
686
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
687
- self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
688
- try:
689
- # Call aed_ml_query and generate AED nodes.
690
- node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "XGBoost", self.__aqg_obj._multi_query_input_nodes)
691
- except Exception as emsg:
692
- raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
693
-
694
-
695
- # Update output table data frames.
696
- self._mlresults = []
697
- self.model_table = self.__awu._create_data_set_object(df_input=node_id_list[1], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[1], self.__model_table_column_info))
698
- self.output = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
699
- self._mlresults.append(self.model_table)
700
- self._mlresults.append(self.output)
701
-
702
- def __process_output_column_info(self):
703
- """
704
- Function to process the output schema for all the ouptut tables.
705
- This function generates list of column names and column types
706
- for each generated output tables, which can be used to create metaexpr.
707
- """
708
- # Collecting STDOUT output column information.
709
- stdout_column_info_name = []
710
- stdout_column_info_type = []
711
- stdout_column_info_name.append("message")
712
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("varchar"))
713
-
714
- self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
715
-
716
- # Collecting model_table output column information.
717
- model_table_column_info_name = []
718
- model_table_column_info_type = []
719
- model_table_column_info_name.append("tree_id")
720
- model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
721
-
722
- model_table_column_info_name.append("iter")
723
- model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
724
-
725
- model_table_column_info_name.append("class_num")
726
- model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("integer"))
727
-
728
- model_table_column_info_name.append("tree")
729
- model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("clob"))
730
-
731
- model_table_column_info_name.append("region_prediction")
732
- model_table_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("clob"))
733
-
734
- self.__model_table_column_info = zip(model_table_column_info_name, model_table_column_info_type)
735
-
736
- def show_query(self):
737
- """
738
- Function to return the underlying SQL query.
739
- When model object is created using retrieve_model(), then None is returned.
740
- """
741
- return self.sqlmr_query
742
-
743
- def get_prediction_type(self):
744
- """
745
- Function to return the Prediction type of the algorithm.
746
- When model object is created using retrieve_model(), then the value returned is
747
- as saved in the Model Catalog.
748
- """
749
- return self._prediction_type
750
-
751
- def get_target_column(self):
752
- """
753
- Function to return the Target Column of the algorithm.
754
- When model object is created using retrieve_model(), then the value returned is
755
- as saved in the Model Catalog.
756
- """
757
- return self._target_column
758
-
759
- def get_build_time(self):
760
- """
761
- Function to return the build time of the algorithm in seconds.
762
- When model object is created using retrieve_model(), then the value returned is
763
- as saved in the Model Catalog.
764
- """
765
- return self._build_time
766
-
767
- def _get_algorithm_name(self):
768
- """
769
- Function to return the name of the algorithm.
770
- """
771
- return self._algorithm_name
772
-
773
- def _get_sql_specific_attributes(self):
774
- """
775
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
776
- """
777
- return self._sql_specific_attributes
778
-
779
- @classmethod
780
- def _from_model_catalog(cls,
781
- model_table = None,
782
- output = None,
783
- **kwargs):
784
- """
785
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
786
- """
787
- kwargs.pop("model_table", None)
788
- kwargs.pop("output", None)
789
-
790
- # Model Cataloging related attributes.
791
- target_column = kwargs.pop("__target_column", None)
792
- prediction_type = kwargs.pop("__prediction_type", None)
793
- algorithm_name = kwargs.pop("__algorithm_name", None)
794
- build_time = kwargs.pop("__build_time", None)
795
-
796
- # Initialize the formula attributes.
797
- __response_column = kwargs.pop("__response_column", None)
798
- __all_columns = kwargs.pop("__all_columns", None)
799
- __numeric_columns = kwargs.pop("__numeric_columns", None)
800
- __categorical_columns = kwargs.pop("__categorical_columns", None)
801
-
802
- # Let's create an object of this class.
803
- obj = cls(**kwargs)
804
- obj.model_table = model_table
805
- obj.output = output
806
-
807
- # Initialize the sqlmr_query class attribute.
808
- obj.sqlmr_query = None
809
-
810
- # Initialize the SQL specific Model Cataloging attributes.
811
- obj._sql_specific_attributes = None
812
- obj._target_column = target_column
813
- obj._prediction_type = prediction_type
814
- obj._algorithm_name = algorithm_name
815
- obj._build_time = build_time
816
-
817
- # Initialize the formula.
818
- if obj.formula is not None:
819
- obj.formula = Formula._from_formula_attr(obj.formula,
820
- __response_column,
821
- __all_columns,
822
- __categorical_columns,
823
- __numeric_columns)
824
-
825
- # Update output table data frames.
826
- obj._mlresults = []
827
- obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
828
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
829
- obj._mlresults.append(obj.model_table)
830
- obj._mlresults.append(obj.output)
831
- return obj
832
-
833
- def __repr__(self):
834
- """
835
- Returns the string representation for a XGBoost class instance.
836
- """
837
- repr_string="############ STDOUT Output ############"
838
- repr_string = "{}\n\n{}".format(repr_string,self.output)
839
- repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
840
- repr_string = "{}\n\n{}".format(repr_string,self.model_table)
841
- return repr_string
842
-