teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,490 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class RandomWalkSample:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
vertices_data = None,
|
|
34
|
-
edges_data = None,
|
|
35
|
-
target_key = None,
|
|
36
|
-
sample_rate = 0.15,
|
|
37
|
-
flyback_rate = 0.15,
|
|
38
|
-
seed = 1000,
|
|
39
|
-
accumulate = None,
|
|
40
|
-
vertices_data_sequence_column = None,
|
|
41
|
-
edges_data_sequence_column = None,
|
|
42
|
-
vertices_data_partition_column = None,
|
|
43
|
-
edges_data_partition_column = None):
|
|
44
|
-
"""
|
|
45
|
-
DESCRIPTION:
|
|
46
|
-
The RandomWalkSample function takes an input graph (which is typically
|
|
47
|
-
large) and outputs a sample graph.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
vertices_data:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the teradataml DataFrame containing the vertex table.
|
|
54
|
-
|
|
55
|
-
vertices_data_partition_column:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies Partition By columns for vertices_data.
|
|
58
|
-
Values to this argument can be provided as list, if multiple
|
|
59
|
-
columns are used for partition.
|
|
60
|
-
Types: str OR list of Strings (str)
|
|
61
|
-
|
|
62
|
-
edges_data:
|
|
63
|
-
Required Argument.
|
|
64
|
-
Specifies the teradataml DataFrame containing the edge table.
|
|
65
|
-
|
|
66
|
-
edges_data_partition_column:
|
|
67
|
-
Required Argument.
|
|
68
|
-
Specifies Partition By columns for edges_data.
|
|
69
|
-
Values to this argument can be provided as list, if multiple
|
|
70
|
-
columns are used for partition.
|
|
71
|
-
Types: str OR list of Strings (str)
|
|
72
|
-
|
|
73
|
-
target_key:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the names of the columns in the edges teradataml DataFrame that
|
|
76
|
-
identify the target vertex of an edge.
|
|
77
|
-
Types: str OR list of Strings (str)
|
|
78
|
-
|
|
79
|
-
sample_rate:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Specifies the sampling rate. This value must be in the range (0, 1.0).
|
|
82
|
-
Default Value: 0.15
|
|
83
|
-
Types: float
|
|
84
|
-
|
|
85
|
-
flyback_rate:
|
|
86
|
-
Optional Argument.
|
|
87
|
-
Specifies the chance, when visiting a vertex, of flying back to the starting
|
|
88
|
-
vertex. This value must be in the range (0, 1.0).
|
|
89
|
-
Default Value: 0.15
|
|
90
|
-
Types: float
|
|
91
|
-
|
|
92
|
-
seed:
|
|
93
|
-
Optional Argument.
|
|
94
|
-
Specifies the seed used to generate a series of random numbers
|
|
95
|
-
for sample_rate, flyback_rate, and any random number used
|
|
96
|
-
internally. Specifying this value guarantees that the function
|
|
97
|
-
result is repeatable on the same cluster.
|
|
98
|
-
Default Value: 1000
|
|
99
|
-
Types: int
|
|
100
|
-
|
|
101
|
-
accumulate:
|
|
102
|
-
Optional Argument.
|
|
103
|
-
Specifies the names of columns in the input vertex teradataml DataFrame
|
|
104
|
-
to copy to the output vertex teradataml DataFrame.
|
|
105
|
-
Types: str OR list of Strings (str)
|
|
106
|
-
|
|
107
|
-
vertices_data_sequence_column:
|
|
108
|
-
Optional Argument.
|
|
109
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
110
|
-
the input argument "vertices_data". The argument is used to ensure
|
|
111
|
-
deterministic results for functions which produce results that vary
|
|
112
|
-
from run to run.
|
|
113
|
-
Types: str OR list of Strings (str)
|
|
114
|
-
|
|
115
|
-
edges_data_sequence_column:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
118
|
-
the input argument "edges_data". The argument is used to ensure
|
|
119
|
-
deterministic results for functions which produce results that vary
|
|
120
|
-
from run to run.
|
|
121
|
-
Types: str OR list of Strings (str)
|
|
122
|
-
|
|
123
|
-
RETURNS:
|
|
124
|
-
Instance of RandomWalkSample.
|
|
125
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
126
|
-
references, such as RandomWalkSampleObj.<attribute_name>.
|
|
127
|
-
Output teradataml DataFrame attribute names are:
|
|
128
|
-
1. output_vertex_table
|
|
129
|
-
2. output_edge_table
|
|
130
|
-
3. output
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
RAISES:
|
|
134
|
-
TeradataMlException
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
EXAMPLES:
|
|
138
|
-
# Load example data.
|
|
139
|
-
load_example_data("randomwalksample", ["citvertices_2", "citedges_2"])
|
|
140
|
-
|
|
141
|
-
# Create teradataml DataFrame objects.
|
|
142
|
-
# The RandomWalkSample function has two required input tables:
|
|
143
|
-
# • Vertices, which defines the set of vertices in the input graph.
|
|
144
|
-
# • Edges, which defines the set of edges in the input graph.
|
|
145
|
-
citvertices_2 = DataFrame.from_table("citvertices_2")
|
|
146
|
-
citedges_2 = DataFrame.from_table("citedges_2")
|
|
147
|
-
|
|
148
|
-
# Example 1 - This function takes an input graph (which is typically
|
|
149
|
-
# large) and outputs a sample graph that preserves graph properties.
|
|
150
|
-
RandomWalkSample_out = RandomWalkSample(vertices_data = citvertices_2,
|
|
151
|
-
vertices_data_partition_column = ["id"],
|
|
152
|
-
edges_data = citedges_2,
|
|
153
|
-
edges_data_partition_column = ["from_id"],
|
|
154
|
-
target_key = ["to_id"],
|
|
155
|
-
sample_rate = 0.15,
|
|
156
|
-
flyback_rate = 0.15,
|
|
157
|
-
seed = 1000
|
|
158
|
-
)
|
|
159
|
-
|
|
160
|
-
# Print the result DataFrame
|
|
161
|
-
print(RandomWalkSample_out)
|
|
162
|
-
|
|
163
|
-
"""
|
|
164
|
-
|
|
165
|
-
# Start the timer to get the build time
|
|
166
|
-
_start_time = time.time()
|
|
167
|
-
|
|
168
|
-
self.vertices_data = vertices_data
|
|
169
|
-
self.edges_data = edges_data
|
|
170
|
-
self.target_key = target_key
|
|
171
|
-
self.accumulate = accumulate
|
|
172
|
-
self.sample_rate = sample_rate
|
|
173
|
-
self.flyback_rate = flyback_rate
|
|
174
|
-
self.seed = seed
|
|
175
|
-
self.vertices_data_sequence_column = vertices_data_sequence_column
|
|
176
|
-
self.edges_data_sequence_column = edges_data_sequence_column
|
|
177
|
-
self.vertices_data_partition_column = vertices_data_partition_column
|
|
178
|
-
self.edges_data_partition_column = edges_data_partition_column
|
|
179
|
-
|
|
180
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
181
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
182
|
-
self.__aed_utils = AedUtils()
|
|
183
|
-
|
|
184
|
-
# Create argument information matrix to do parameter checking
|
|
185
|
-
self.__arg_info_matrix = []
|
|
186
|
-
self.__arg_info_matrix.append(["vertices_data", self.vertices_data, False, (DataFrame)])
|
|
187
|
-
self.__arg_info_matrix.append(["vertices_data_partition_column", self.vertices_data_partition_column, False, (str,list)])
|
|
188
|
-
self.__arg_info_matrix.append(["edges_data", self.edges_data, False, (DataFrame)])
|
|
189
|
-
self.__arg_info_matrix.append(["edges_data_partition_column", self.edges_data_partition_column, False, (str,list)])
|
|
190
|
-
self.__arg_info_matrix.append(["target_key", self.target_key, False, (str,list)])
|
|
191
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
192
|
-
self.__arg_info_matrix.append(["sample_rate", self.sample_rate, True, (float)])
|
|
193
|
-
self.__arg_info_matrix.append(["flyback_rate", self.flyback_rate, True, (float)])
|
|
194
|
-
self.__arg_info_matrix.append(["seed", self.seed, True, (int)])
|
|
195
|
-
self.__arg_info_matrix.append(["vertices_data_sequence_column", self.vertices_data_sequence_column, True, (str,list)])
|
|
196
|
-
self.__arg_info_matrix.append(["edges_data_sequence_column", self.edges_data_sequence_column, True, (str,list)])
|
|
197
|
-
|
|
198
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
199
|
-
# Perform the function validations
|
|
200
|
-
self.__validate()
|
|
201
|
-
# Generate the ML query
|
|
202
|
-
self.__form_tdml_query()
|
|
203
|
-
# Execute ML query
|
|
204
|
-
self.__execute()
|
|
205
|
-
# Get the prediction type
|
|
206
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
207
|
-
|
|
208
|
-
# End the timer to get the build time
|
|
209
|
-
_end_time = time.time()
|
|
210
|
-
|
|
211
|
-
# Calculate the build time
|
|
212
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
213
|
-
|
|
214
|
-
def __validate(self):
|
|
215
|
-
"""
|
|
216
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
217
|
-
arguments, input argument and table types. Also processes the
|
|
218
|
-
argument values.
|
|
219
|
-
"""
|
|
220
|
-
|
|
221
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
222
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
223
|
-
|
|
224
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
225
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
226
|
-
|
|
227
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
228
|
-
self.__awu._validate_input_table_datatype(self.vertices_data, "vertices_data", None)
|
|
229
|
-
self.__awu._validate_input_table_datatype(self.edges_data, "edges_data", None)
|
|
230
|
-
|
|
231
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
232
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
233
|
-
self.__awu._validate_input_columns_not_empty(self.target_key, "target_key")
|
|
234
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_key, "target_key", self.edges_data, "edges_data", False)
|
|
235
|
-
|
|
236
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
237
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.vertices_data, "vertices_data", False)
|
|
238
|
-
|
|
239
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_sequence_column, "vertices_data_sequence_column")
|
|
240
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_sequence_column, "vertices_data_sequence_column", self.vertices_data, "vertices_data", False)
|
|
241
|
-
|
|
242
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_sequence_column, "edges_data_sequence_column")
|
|
243
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_sequence_column, "edges_data_sequence_column", self.edges_data, "edges_data", False)
|
|
244
|
-
|
|
245
|
-
self.__awu._validate_input_columns_not_empty(self.vertices_data_partition_column, "vertices_data_partition_column")
|
|
246
|
-
self.__awu._validate_dataframe_has_argument_columns(self.vertices_data_partition_column, "vertices_data_partition_column", self.vertices_data, "vertices_data", True)
|
|
247
|
-
|
|
248
|
-
self.__awu._validate_input_columns_not_empty(self.edges_data_partition_column, "edges_data_partition_column")
|
|
249
|
-
self.__awu._validate_dataframe_has_argument_columns(self.edges_data_partition_column, "edges_data_partition_column", self.edges_data, "edges_data", True)
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
def __form_tdml_query(self):
|
|
253
|
-
"""
|
|
254
|
-
Function to generate the analytical function queries. The function defines
|
|
255
|
-
variables and list of arguments required to form the query.
|
|
256
|
-
"""
|
|
257
|
-
# Generate temp table names for output table parameters if any.
|
|
258
|
-
self.__output_vertex_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_randomwalksample0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
259
|
-
self.__output_edge_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_randomwalksample1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
260
|
-
|
|
261
|
-
# Output table arguments list
|
|
262
|
-
self.__func_output_args_sql_names = ["VertexOutputTable", "EdgeOutputTable"]
|
|
263
|
-
self.__func_output_args = [self.__output_vertex_table_temp_tablename, self.__output_edge_table_temp_tablename]
|
|
264
|
-
|
|
265
|
-
# Model Cataloging related attributes.
|
|
266
|
-
self._sql_specific_attributes = {}
|
|
267
|
-
self._sql_formula_attribute_mapper = {}
|
|
268
|
-
self._target_column = None
|
|
269
|
-
self._algorithm_name = None
|
|
270
|
-
|
|
271
|
-
# Generate lists for rest of the function arguments
|
|
272
|
-
self.__func_other_arg_sql_names = []
|
|
273
|
-
self.__func_other_args = []
|
|
274
|
-
self.__func_other_arg_json_datatypes = []
|
|
275
|
-
|
|
276
|
-
self.__func_other_arg_sql_names.append("TargetKey")
|
|
277
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.target_key, "\""), "'"))
|
|
278
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
279
|
-
|
|
280
|
-
if self.accumulate is not None:
|
|
281
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
282
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
283
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
284
|
-
|
|
285
|
-
if self.sample_rate is not None and self.sample_rate != 0.15:
|
|
286
|
-
self.__func_other_arg_sql_names.append("SampleRate")
|
|
287
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sample_rate, "'"))
|
|
288
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
289
|
-
|
|
290
|
-
if self.flyback_rate is not None and self.flyback_rate != 0.15:
|
|
291
|
-
self.__func_other_arg_sql_names.append("FlybackRate")
|
|
292
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.flyback_rate, "'"))
|
|
293
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
294
|
-
|
|
295
|
-
if self.seed is not None and self.seed != 1000:
|
|
296
|
-
self.__func_other_arg_sql_names.append("Seed")
|
|
297
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seed, "'"))
|
|
298
|
-
self.__func_other_arg_json_datatypes.append("LONG")
|
|
299
|
-
|
|
300
|
-
# Generate lists for rest of the function arguments
|
|
301
|
-
sequence_input_by_list = []
|
|
302
|
-
if self.vertices_data_sequence_column is not None:
|
|
303
|
-
sequence_input_by_list.append("vertices:" + UtilFuncs._teradata_collapse_arglist(self.vertices_data_sequence_column, ""))
|
|
304
|
-
|
|
305
|
-
if self.edges_data_sequence_column is not None:
|
|
306
|
-
sequence_input_by_list.append("edges:" + UtilFuncs._teradata_collapse_arglist(self.edges_data_sequence_column, ""))
|
|
307
|
-
|
|
308
|
-
if len(sequence_input_by_list) > 0:
|
|
309
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
310
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
311
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
312
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
313
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
# Declare empty lists to hold input table information.
|
|
317
|
-
self.__func_input_arg_sql_names = []
|
|
318
|
-
self.__func_input_table_view_query = []
|
|
319
|
-
self.__func_input_dataframe_type = []
|
|
320
|
-
self.__func_input_distribution = []
|
|
321
|
-
self.__func_input_partition_by_cols = []
|
|
322
|
-
self.__func_input_order_by_cols = []
|
|
323
|
-
|
|
324
|
-
# Process vertices_data
|
|
325
|
-
self.vertices_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.vertices_data_partition_column, "\"")
|
|
326
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.vertices_data, False)
|
|
327
|
-
self.__func_input_distribution.append("FACT")
|
|
328
|
-
self.__func_input_arg_sql_names.append("vertices")
|
|
329
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
330
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
331
|
-
self.__func_input_partition_by_cols.append(self.vertices_data_partition_column)
|
|
332
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
333
|
-
|
|
334
|
-
# Process edges_data
|
|
335
|
-
self.edges_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.edges_data_partition_column, "\"")
|
|
336
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.edges_data, False)
|
|
337
|
-
self.__func_input_distribution.append("FACT")
|
|
338
|
-
self.__func_input_arg_sql_names.append("edges")
|
|
339
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
340
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
341
|
-
self.__func_input_partition_by_cols.append(self.edges_data_partition_column)
|
|
342
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
343
|
-
|
|
344
|
-
function_name = "RandomWalkSample"
|
|
345
|
-
# Create instance to generate SQLMR.
|
|
346
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
347
|
-
self.__func_input_arg_sql_names,
|
|
348
|
-
self.__func_input_table_view_query,
|
|
349
|
-
self.__func_input_dataframe_type,
|
|
350
|
-
self.__func_input_distribution,
|
|
351
|
-
self.__func_input_partition_by_cols,
|
|
352
|
-
self.__func_input_order_by_cols,
|
|
353
|
-
self.__func_other_arg_sql_names,
|
|
354
|
-
self.__func_other_args,
|
|
355
|
-
self.__func_other_arg_json_datatypes,
|
|
356
|
-
self.__func_output_args_sql_names,
|
|
357
|
-
self.__func_output_args,
|
|
358
|
-
engine="ENGINE_ML")
|
|
359
|
-
# Invoke call to SQL-MR generation.
|
|
360
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
361
|
-
|
|
362
|
-
# Print SQL-MR query if requested to do so.
|
|
363
|
-
if display.print_sqlmr_query:
|
|
364
|
-
print(self.sqlmr_query)
|
|
365
|
-
|
|
366
|
-
# Set the algorithm name for Model Cataloging.
|
|
367
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
368
|
-
|
|
369
|
-
def __execute(self):
|
|
370
|
-
"""
|
|
371
|
-
Function to execute SQL-MR queries.
|
|
372
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
373
|
-
"""
|
|
374
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
375
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
376
|
-
try:
|
|
377
|
-
# Generate the output.
|
|
378
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
379
|
-
except Exception as emsg:
|
|
380
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
381
|
-
|
|
382
|
-
# Update output table data frames.
|
|
383
|
-
self._mlresults = []
|
|
384
|
-
self.output_vertex_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_vertex_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_vertex_table_temp_tablename))
|
|
385
|
-
self.output_edge_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__output_edge_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__output_edge_table_temp_tablename))
|
|
386
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
387
|
-
self._mlresults.append(self.output_vertex_table)
|
|
388
|
-
self._mlresults.append(self.output_edge_table)
|
|
389
|
-
self._mlresults.append(self.output)
|
|
390
|
-
|
|
391
|
-
def show_query(self):
|
|
392
|
-
"""
|
|
393
|
-
Function to return the underlying SQL query.
|
|
394
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
395
|
-
"""
|
|
396
|
-
return self.sqlmr_query
|
|
397
|
-
|
|
398
|
-
def get_prediction_type(self):
|
|
399
|
-
"""
|
|
400
|
-
Function to return the Prediction type of the algorithm.
|
|
401
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
402
|
-
as saved in the Model Catalog.
|
|
403
|
-
"""
|
|
404
|
-
return self._prediction_type
|
|
405
|
-
|
|
406
|
-
def get_target_column(self):
|
|
407
|
-
"""
|
|
408
|
-
Function to return the Target Column of the algorithm.
|
|
409
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
410
|
-
as saved in the Model Catalog.
|
|
411
|
-
"""
|
|
412
|
-
return self._target_column
|
|
413
|
-
|
|
414
|
-
def get_build_time(self):
|
|
415
|
-
"""
|
|
416
|
-
Function to return the build time of the algorithm in seconds.
|
|
417
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
418
|
-
as saved in the Model Catalog.
|
|
419
|
-
"""
|
|
420
|
-
return self._build_time
|
|
421
|
-
|
|
422
|
-
def _get_algorithm_name(self):
|
|
423
|
-
"""
|
|
424
|
-
Function to return the name of the algorithm.
|
|
425
|
-
"""
|
|
426
|
-
return self._algorithm_name
|
|
427
|
-
|
|
428
|
-
def _get_sql_specific_attributes(self):
|
|
429
|
-
"""
|
|
430
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
431
|
-
"""
|
|
432
|
-
return self._sql_specific_attributes
|
|
433
|
-
|
|
434
|
-
@classmethod
|
|
435
|
-
def _from_model_catalog(cls,
|
|
436
|
-
output_vertex_table = None,
|
|
437
|
-
output_edge_table = None,
|
|
438
|
-
output = None,
|
|
439
|
-
**kwargs):
|
|
440
|
-
"""
|
|
441
|
-
Classmethod which will be used by Model Cataloging, to instantiate this wrapper class.
|
|
442
|
-
"""
|
|
443
|
-
kwargs.pop("output_vertex_table", None)
|
|
444
|
-
kwargs.pop("output_edge_table", None)
|
|
445
|
-
kwargs.pop("output", None)
|
|
446
|
-
|
|
447
|
-
# Model Cataloging related attributes.
|
|
448
|
-
target_column = kwargs.pop("__target_column", None)
|
|
449
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
450
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
451
|
-
build_time = kwargs.pop("__build_time", None)
|
|
452
|
-
|
|
453
|
-
# Let's create an object of this class.
|
|
454
|
-
obj = cls(**kwargs)
|
|
455
|
-
obj.output_vertex_table = output_vertex_table
|
|
456
|
-
obj.output_edge_table = output_edge_table
|
|
457
|
-
obj.output = output
|
|
458
|
-
|
|
459
|
-
# Initialize the sqlmr_query class attribute.
|
|
460
|
-
obj.sqlmr_query = None
|
|
461
|
-
|
|
462
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
463
|
-
obj._sql_specific_attributes = None
|
|
464
|
-
obj._target_column = target_column
|
|
465
|
-
obj._prediction_type = prediction_type
|
|
466
|
-
obj._algorithm_name = algorithm_name
|
|
467
|
-
obj._build_time = build_time
|
|
468
|
-
|
|
469
|
-
# Update output table data frames.
|
|
470
|
-
obj._mlresults = []
|
|
471
|
-
obj.output_vertex_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_vertex_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_vertex_table))
|
|
472
|
-
obj.output_edge_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output_edge_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output_edge_table))
|
|
473
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
474
|
-
obj._mlresults.append(obj.output_vertex_table)
|
|
475
|
-
obj._mlresults.append(obj.output_edge_table)
|
|
476
|
-
obj._mlresults.append(obj.output)
|
|
477
|
-
return obj
|
|
478
|
-
|
|
479
|
-
def __repr__(self):
|
|
480
|
-
"""
|
|
481
|
-
Returns the string representation for a RandomWalkSample class instance.
|
|
482
|
-
"""
|
|
483
|
-
repr_string="############ STDOUT Output ############"
|
|
484
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
485
|
-
repr_string="{}\n\n\n############ output_vertex_table Output ############".format(repr_string)
|
|
486
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_vertex_table)
|
|
487
|
-
repr_string="{}\n\n\n############ output_edge_table Output ############".format(repr_string)
|
|
488
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output_edge_table)
|
|
489
|
-
return repr_string
|
|
490
|
-
|