teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,176 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_varmax_mle",
3
- "function_r_name": "aa.varmax",
4
- "function_alias_name": "VARMAX",
5
- "input_tables": [
6
- {
7
- "rName": "data",
8
- "name": ["input", "data"],
9
- "useInR": true,
10
- "rOrderNum": 1
11
- },
12
- {
13
- "rName": "data.orders",
14
- "name": ["orders"],
15
- "useInR": true,
16
- "rOrderNum": 14
17
- }
18
- ],
19
- "function_name": "VARMAX",
20
- "function_tdml_name": "VarMax",
21
- "argument_clauses": [
22
- {
23
- "allowsLists": true,
24
- "datatype": "COLUMNS",
25
- "rName": "response.columns",
26
- "name": [
27
- "TargetColumns",
28
- "ResponseColumns"
29
- ],
30
- "useInR": true,
31
- "rOrderNum": 2
32
- },
33
- {
34
- "allowsLists": true,
35
- "datatype": "COLUMNS",
36
- "rName": "exogenous.columns",
37
- "name": ["ExogenousColumns"],
38
- "useInR": true,
39
- "rOrderNum": 3
40
- },
41
- {
42
- "allowsLists": true,
43
- "datatype": "COLUMNS",
44
- "rName": "partition.columns",
45
- "name": ["PartitionColumns"],
46
- "useInR": true,
47
- "rOrderNum": 4
48
- },
49
- {
50
- "datatype": "STRING",
51
- "rName": "orders",
52
- "name": ["PDQ"],
53
- "useInR": true,
54
- "rOrderNum": 5
55
- },
56
- {
57
- "datatype": "STRING",
58
- "rName": "method",
59
- "name": [
60
- "FitMethod",
61
- "Method"
62
- ],
63
- "useInR": true,
64
- "rOrderNum": 13
65
- },
66
- {
67
- "datatype": "STRING",
68
- "rName": "seasonal.orders",
69
- "name": ["SeasonalPDQ"],
70
- "useInR": true,
71
- "rOrderNum": 6
72
- },
73
- {
74
- "datatype": "INTEGER",
75
- "rName": "period",
76
- "name": ["Period"],
77
- "useInR": true,
78
- "rOrderNum": 7
79
- },
80
- {
81
- "datatype": "INTEGER",
82
- "rName": "exogenous.order",
83
- "name": ["ExogenousOrder"],
84
- "useInR": true,
85
- "rOrderNum": 8
86
- },
87
- {
88
- "datatype": "BOOLEAN",
89
- "rName": "include.mean",
90
- "name": ["IncludeMean"],
91
- "useInR": true,
92
- "rOrderNum": 10
93
- },
94
- {
95
- "datatype": "BOOLEAN",
96
- "rName": "include.drift",
97
- "name": ["IncludeDrift"],
98
- "useInR": true,
99
- "rOrderNum": 15
100
- },
101
- {
102
- "datatype": "INTEGER",
103
- "rName": "lag",
104
- "name": ["Lag"],
105
- "useInR": true,
106
- "rOrderNum": 9
107
- },
108
- {
109
- "datatype": "INTEGER",
110
- "rName": "max.iter.num",
111
- "name": ["MaxIterNum"],
112
- "useInR": true,
113
- "rOrderNum": 11
114
- },
115
- {
116
- "datatype": "INTEGER",
117
- "rName": "step.ahead",
118
- "name": ["StepAhead"],
119
- "useInR": true,
120
- "rOrderNum": 12
121
- },
122
- {
123
- "datatype": "INTEGER",
124
- "rName": "order.p",
125
- "name": ["OrderP"],
126
- "useInR": true,
127
- "rOrderNum": 14
128
- },
129
- {
130
- "datatype": "INTEGER",
131
- "rName": "order.d",
132
- "name": ["OrderD"],
133
- "useInR": true,
134
- "rOrderNum": 15
135
- },
136
- {
137
- "datatype": "INTEGER",
138
- "rName": "order.q",
139
- "name": ["OrderQ"],
140
- "useInR": true,
141
- "rOrderNum": 16
142
- },
143
- {
144
- "datatype": "INTEGER",
145
- "rName": "seasonal.order.p",
146
- "name": ["SeasonalOrderP"],
147
- "useInR": true,
148
- "rOrderNum": 17
149
- },
150
- {
151
- "datatype": "INTEGER",
152
- "rName": "seasonal.order.d",
153
- "name": ["SeasonalOrderD"],
154
- "useInR": true,
155
- "rOrderNum": 18
156
- },
157
- {
158
- "datatype": "INTEGER",
159
- "rName": "seasonal.order.q",
160
- "name": ["SeasonalOrderQ"],
161
- "useInR": true,
162
- "rOrderNum": 19
163
- },
164
- {
165
- "allowsLists": true,
166
- "datatype": "COLUMN_NAMES",
167
- "rName": "sequence.column",
168
- "name": [
169
- "SequenceInputBy",
170
- "UniqueId"
171
- ],
172
- "useInR": true,
173
- "rOrderNum": 50
174
- }
175
- ]
176
- }
@@ -1,179 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_vector_distance_mle",
3
- "function_r_name": "aa.vector.distance",
4
- "function_alias_name": "VectorDistance",
5
- "input_tables": [
6
- {
7
- "rName": "target.data",
8
- "name": [
9
- "target",
10
- "TargetTable"
11
- ],
12
- "useInR": true,
13
- "rOrderNum": 1
14
- },
15
- {
16
- "rName": "ref.data",
17
- "name": [
18
- "ref",
19
- "ReferenceTable"
20
- ],
21
- "useInR": true,
22
- "rOrderNum": 2
23
- }
24
- ],
25
- "function_name": "VectorDistance",
26
- "function_tdml_name": "VectorDistance",
27
- "argument_clauses": [
28
- {
29
- "allowsLists": true,
30
- "datatype": "COLUMNS",
31
- "rName": "target.id",
32
- "name": ["TargetIdColumns"],
33
- "useInR": true,
34
- "rOrderNum": 3
35
- },
36
- {
37
- "datatype": "COLUMNS",
38
- "rName": "target.feature",
39
- "name": [
40
- "TargetAttributeNameColumn",
41
- "TargetFeatureColumn"
42
- ],
43
- "useInR": true,
44
- "rOrderNum": 4
45
- },
46
- {
47
- "datatype": "COLUMNS",
48
- "rName": "target.value",
49
- "name": [
50
- "TargetAttributeValueColumn",
51
- "TargetValueColumn"
52
- ],
53
- "useInR": true,
54
- "rOrderNum": 5
55
- },
56
- {
57
- "allowsLists": true,
58
- "datatype": "COLUMNS",
59
- "rName": "ref.id",
60
- "name": ["RefIdColumns"],
61
- "useInR": true,
62
- "rOrderNum": 6
63
- },
64
- {
65
- "datatype": "COLUMNS",
66
- "rName": "ref.feature",
67
- "name": [
68
- "RefAttributeNameColumn",
69
- "RefFeatureColumn"
70
- ],
71
- "useInR": true,
72
- "rOrderNum": 7
73
- },
74
- {
75
- "datatype": "COLUMNS",
76
- "rName": "ref.value",
77
- "name": [
78
- "RefAttributeValueColumn",
79
- "RefValueColumn"
80
- ],
81
- "useInR": true,
82
- "rOrderNum": 8
83
- },
84
- {
85
- "allowsLists": true,
86
- "datatype": "COLUMNS",
87
- "rName": "target.columns",
88
- "name": ["TargetColumns"],
89
- "useInR": true,
90
- "rOrderNum": 18
91
- },
92
- {
93
- "allowsLists": true,
94
- "datatype": "COLUMNS",
95
- "rName": "ref.columns",
96
- "name": ["RefColumns"],
97
- "useInR": true,
98
- "rOrderNum": 15
99
- },
100
- {
101
- "datatype": "STRING",
102
- "rName": "replace.invalid",
103
- "name": [
104
- "ReplaceInvalid",
105
- "InvalidReturnValue"
106
- ],
107
- "useInR": true,
108
- "rOrderNum": 12
109
- },
110
- {
111
- "datatype": "STRING",
112
- "rName": "reftable.size",
113
- "name": ["RefTableSize"],
114
- "useInR": true,
115
- "rOrderNum": 9
116
- },
117
- {
118
- "allowsLists": true,
119
- "datatype": "STRING",
120
- "rName": "distance.measure",
121
- "name": [
122
- "DistanceMeasure",
123
- "Measure"
124
- ],
125
- "useInR": true,
126
- "rOrderNum": 10
127
- },
128
- {
129
- "allowsLists": true,
130
- "datatype": "DOUBLE",
131
- "rName": "max.distance",
132
- "name": [
133
- "MaxDistance",
134
- "Threshold"
135
- ],
136
- "useInR": true,
137
- "rOrderNum": 14
138
- },
139
- {
140
- "datatype": "BOOLEAN",
141
- "rName": "ignore.mismatch",
142
- "name": ["IgnoreMismatch"],
143
- "useInR": true,
144
- "rOrderNum": 11
145
- },
146
- {
147
- "datatype": "INTEGER",
148
- "rName": "top.k",
149
- "name": ["TopK"],
150
- "useInR": true,
151
- "rOrderNum": 13
152
- },
153
- {
154
- "datatype": "STRING",
155
- "rName": "output.format",
156
- "name": ["OutputFormat"],
157
- "useInR": true,
158
- "rOrderNum": 16
159
- },
160
- {
161
- "datatype": "BOOLEAN",
162
- "rName": "input.data.same",
163
- "name": ["InputTablesSame"],
164
- "useInR": true,
165
- "rOrderNum": 17
166
- },
167
- {
168
- "allowsLists": true,
169
- "datatype": "COLUMN_NAMES",
170
- "rName": "sequence.column",
171
- "name": [
172
- "SequenceInputBy",
173
- "UniqueId"
174
- ],
175
- "useInR": true,
176
- "rOrderNum": 50
177
- }
178
- ]
179
- }
@@ -1,48 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_weighted_mov_avg_mle",
3
- "function_r_name": "aa.wmavg",
4
- "function_alias_name": "WeightedMovAvg",
5
- "input_tables": [{
6
- "rName": "data",
7
- "name": ["input"],
8
- "useInR": true,
9
- "rOrderNum": 1
10
- }],
11
- "function_name": "WMAVG",
12
- "function_tdml_name": "WeightedMovAvg",
13
- "argument_clauses": [
14
- {
15
- "allowsLists": true,
16
- "datatype": "COLUMNS",
17
- "rName": "target.columns",
18
- "name": ["TargetColumns"],
19
- "useInR": true,
20
- "rOrderNum": 2
21
- },
22
- {
23
- "datatype": "INTEGER",
24
- "rName": "window.size",
25
- "name": ["WindowSize"],
26
- "useInR": true,
27
- "rOrderNum": 4
28
- },
29
- {
30
- "datatype": "BOOLEAN",
31
- "rName": "include.first",
32
- "name": ["IncludeFirst"],
33
- "useInR": true,
34
- "rOrderNum": 3
35
- },
36
- {
37
- "allowsLists": true,
38
- "datatype": "COLUMN_NAMES",
39
- "rName": "sequence.column",
40
- "name": [
41
- "SequenceInputBy",
42
- "UniqueId"
43
- ],
44
- "useInR": true,
45
- "rOrderNum": 50
46
- }
47
- ]
48
- }
@@ -1,178 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_xgboost_mle",
3
- "function_r_name": "aa.xgboost.drive",
4
- "function_alias_name": "XGBoost",
5
- "input_tables": [
6
- {
7
- "rName": "data",
8
- "name": ["InputTable"],
9
- "useInR": true,
10
- "rOrderNum": 1
11
- },
12
- {
13
- "rName": "attribute.table",
14
- "name": ["AttributeTable"],
15
- "useInR": true,
16
- "rOrderNum": 14
17
- }
18
- ],
19
- "function_name": "XGBoost_Drive",
20
- "function_tdml_name": "XGBoost",
21
- "output_tables": [{
22
- "rName": "model.table",
23
- "name": ["OutputTable"],
24
- "useInR": true,
25
- "rOrderNum": 100
26
- }],
27
- "argument_clauses": [
28
- {
29
- "datatype": "COLUMN_NAMES",
30
- "rName": "response.column",
31
- "name": ["ResponseColumn"],
32
- "useInR": true,
33
- "rFormulaUsage": true,
34
- "rOrderNum": 0
35
- },
36
- {
37
- "datatype": "COLUMN_NAMES",
38
- "rName": "response.column",
39
- "name": ["ResponseColumn"],
40
- "useInR": true,
41
- "rOrderNum": 17
42
- },
43
- {
44
- "allowsLists": true,
45
- "datatype": "COLUMN_NAMES",
46
- "rName": "numeric.inputs",
47
- "name": ["NumericInputs"],
48
- "useInR": true,
49
- "rFormulaUsage": true,
50
- "rOrderNum": -1
51
- },
52
- {
53
- "allowsLists": true,
54
- "datatype": "COLUMN_NAMES",
55
- "rName": "categorical.inputs",
56
- "name": ["CategoricalInputs"],
57
- "useInR": true,
58
- "rFormulaUsage": true,
59
- "rOrderNum": -2
60
- },
61
- {
62
- "datatype": "COLUMN_NAMES",
63
- "rName": "id.column",
64
- "name": ["IdColumn"],
65
- "useInR": true,
66
- "rOrderNum": 2
67
- },
68
- {
69
- "datatype": "COLUMN_NAMES",
70
- "rName": "attribute.name.column",
71
- "name": ["AttributeNameColumn"],
72
- "useInR": true,
73
- "rOrderNum": 12
74
- },
75
- {
76
- "datatype": "COLUMN_NAMES",
77
- "rName": "attribute.value.column",
78
- "name": ["AttributeValueColumn"],
79
- "useInR": true,
80
- "rOrderNum": 15
81
- },
82
- {
83
- "datatype": "INTEGER",
84
- "rName": "num.boosted.trees",
85
- "name": ["NumBoostedTrees"],
86
- "useInR": true,
87
- "rOrderNum": 13
88
- },
89
- {
90
- "datatype": "BOOLEAN",
91
- "rName": "output.accuracy",
92
- "name": ["OutputAccuracy"],
93
- "useInR": true,
94
- "rOrderNum": 18
95
- },
96
- {
97
- "datatype": "STRING",
98
- "rName": "loss.function",
99
- "name": ["LossFunction"],
100
- "useInR": true,
101
- "rOrderNum": 3
102
- },
103
- {
104
- "datatype": "STRING",
105
- "rName": "prediction.type",
106
- "name": ["PredictionType"],
107
- "useInR": true,
108
- "rOrderNum": 4
109
- },
110
- {
111
- "datatype": "DOUBLE",
112
- "rName": "reg.lambda",
113
- "name": ["RegularizationLambda"],
114
- "useInR": true,
115
- "rOrderNum": 5
116
- },
117
- {
118
- "datatype": "DOUBLE",
119
- "rName": "shrinkage.factor",
120
- "name": ["ShrinkageFactor"],
121
- "useInR": true,
122
- "rOrderNum": 6
123
- },
124
- {
125
- "datatype": "DOUBLE",
126
- "rName": "column.subsampling",
127
- "name": ["ColumnSubSampling"],
128
- "useInR": true,
129
- "rOrderNum": 16
130
- },
131
- {
132
- "datatype": "INTEGER",
133
- "rName": "iter.num",
134
- "name": ["IterNum"],
135
- "useInR": true,
136
- "rOrderNum": 7
137
- },
138
- {
139
- "datatype": "INTEGER",
140
- "rName": "min.node.size",
141
- "name": ["MinNodeSize"],
142
- "useInR": true,
143
- "rOrderNum": 8
144
- },
145
- {
146
- "datatype": "INTEGER",
147
- "rName": "max.depth",
148
- "name": ["MaxDepth"],
149
- "useInR": true,
150
- "rOrderNum": 9
151
- },
152
- {
153
- "datatype": "DOUBLE",
154
- "rName": "variance",
155
- "name": ["Variance"],
156
- "useInR": true,
157
- "rOrderNum": 10
158
- },
159
- {
160
- "datatype": "LONG",
161
- "rName": "seed",
162
- "name": ["Seed"],
163
- "useInR": true,
164
- "rOrderNum": 11
165
- },
166
- {
167
- "allowsLists": true,
168
- "datatype": "COLUMN_NAMES",
169
- "rName": "sequence.column",
170
- "name": [
171
- "SequenceInputBy",
172
- "UniqueId"
173
- ],
174
- "useInR": true,
175
- "rOrderNum": 50
176
- }
177
- ]
178
- }
@@ -1,104 +0,0 @@
1
- {
2
- "function_tdplyr_name": "td_xgboost_predict_mle",
3
- "function_r_name": "aa.xgboost.predict",
4
- "function_alias_name": "XGBoostPredict",
5
- "input_tables": [
6
- {
7
- "rName": "newdata",
8
- "name": [
9
- "InputTable",
10
- "input"
11
- ],
12
- "useInR": true,
13
- "rOrderNum": 2
14
- },
15
- {
16
- "rName": "object",
17
- "name": [
18
- "Model",
19
- "ModelTable"
20
- ],
21
- "useInR": true,
22
- "rOrderNum": 1
23
- }
24
- ],
25
- "function_name": "XGBoost_Predict",
26
- "function_tdml_name": "XGBoostPredict",
27
- "argument_clauses": [
28
- {
29
- "datatype": "COLUMNS",
30
- "rName": "id.column",
31
- "name": [
32
- "IdColumn",
33
- "IdCol"
34
- ],
35
- "useInR": true,
36
- "rOrderNum": 3
37
- },
38
- {
39
- "allowsLists": true,
40
- "datatype": "COLUMNS",
41
- "rName": "terms",
42
- "name": ["Accumulate"],
43
- "useInR": true,
44
- "rOrderNum": 4
45
- },
46
- {
47
- "datatype": "COLUMNS",
48
- "rName": "attribute.name.column",
49
- "name": ["AttributeNameColumn"],
50
- "useInR": true,
51
- "rOrderNum": 7
52
- },
53
- {
54
- "datatype": "COLUMNS",
55
- "rName": "attribute.value.column",
56
- "name": ["AttributeValueColumn"],
57
- "useInR": true,
58
- "rOrderNum": 8
59
- },
60
- {
61
- "datatype": "INTEGER",
62
- "rName": "iter.num",
63
- "name": ["IterNum"],
64
- "useInR": true,
65
- "rOrderNum": 5
66
- },
67
- {
68
- "datatype": "INTEGER",
69
- "rName": "num.boosted.trees",
70
- "name": ["NumBoostedTrees"],
71
- "useInR": true,
72
- "rOrderNum": 6
73
- },
74
- {
75
- "datatype": "BOOLEAN",
76
- "rName": "output.response.probdist",
77
- "name": [
78
- "OutputProb",
79
- "OutputResponseProbDist"
80
- ],
81
- "useInR": true,
82
- "rOrderNum": 9
83
- },
84
- {
85
- "allowsLists": true,
86
- "datatype": "STRING",
87
- "rName": "output.responses",
88
- "name": ["Responses"],
89
- "useInR": true,
90
- "rOrderNum": 10
91
- },
92
- {
93
- "allowsLists": true,
94
- "datatype": "COLUMN_NAMES",
95
- "rName": "sequence.column",
96
- "name": [
97
- "SequenceInputBy",
98
- "UniqueId"
99
- ],
100
- "useInR": true,
101
- "rOrderNum": 50
102
- }
103
- ]
104
- }