teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,478 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.10
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.CoxPH import CoxPH
|
|
30
|
-
|
|
31
|
-
class CoxSurvival:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
cox_model_table = None,
|
|
36
|
-
predict_table = None,
|
|
37
|
-
predict_feature_names = None,
|
|
38
|
-
predict_feature_columns = None,
|
|
39
|
-
accumulate = None,
|
|
40
|
-
cox_model_table_sequence_column = None,
|
|
41
|
-
object_sequence_column = None,
|
|
42
|
-
predict_table_sequence_column = None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The CoxSurvival function takes as input the coefficient and linear
|
|
46
|
-
prediction tables generated by the function CoxPH and outputs a
|
|
47
|
-
teradataml DataFrame of survival probabilities.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
object:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies the teradataml DataFrame of the Cox coefficient model, which was
|
|
54
|
-
output by the CoxPH function or instance of CoxPH.
|
|
55
|
-
|
|
56
|
-
cox_model_table:
|
|
57
|
-
Required Argument.
|
|
58
|
-
Specifies the teradataml DataFrame of the Cox linear predictor model, which was
|
|
59
|
-
output by the CoxPH function.
|
|
60
|
-
|
|
61
|
-
predict_table:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies the teradataml DataFrame, which contains new
|
|
64
|
-
prediction feature values for survival calculation.
|
|
65
|
-
|
|
66
|
-
predict_feature_names:
|
|
67
|
-
Required Argument.
|
|
68
|
-
Specifies the names of features in the Cox model.
|
|
69
|
-
Types: str OR list of Strings (str)
|
|
70
|
-
|
|
71
|
-
predict_feature_columns:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies the names of the columns that contain the values for the
|
|
74
|
-
features in the Cox model—one column name for each feature name. The
|
|
75
|
-
ith feature name corresponds to the ith column name. For example,
|
|
76
|
-
consider this pair of arguments: predict.feature.names("name",
|
|
77
|
-
"age"), predict.feature.columns("c1", "c2") The predictive values of
|
|
78
|
-
the feature "name" are in column "c1", and the predictive values of
|
|
79
|
-
the feature "age" are in column "c2".
|
|
80
|
-
Types: str OR list of Strings (str)
|
|
81
|
-
|
|
82
|
-
accumulate:
|
|
83
|
-
Optional Argument.
|
|
84
|
-
Specifies the names of the columns in predict_table that the function
|
|
85
|
-
copies to the output table.
|
|
86
|
-
Types: str OR list of Strings (str)
|
|
87
|
-
|
|
88
|
-
cox_model_table_sequence_column:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
91
|
-
the input argument "cox_model_table". The argument is used to ensure
|
|
92
|
-
deterministic results for functions which produce results that vary
|
|
93
|
-
from run to run.
|
|
94
|
-
Types: str OR list of Strings (str)
|
|
95
|
-
|
|
96
|
-
object_sequence_column:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
99
|
-
the input argument "object". The argument is used to ensure
|
|
100
|
-
deterministic results for functions which produce results that vary
|
|
101
|
-
from run to run.
|
|
102
|
-
Types: str OR list of Strings (str)
|
|
103
|
-
|
|
104
|
-
predict_table_sequence_column:
|
|
105
|
-
Optional Argument.
|
|
106
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
107
|
-
the input argument "predict_table". The argument is used to ensure
|
|
108
|
-
deterministic results for functions which produce results that vary
|
|
109
|
-
from run to run.
|
|
110
|
-
Types: str OR list of Strings (str)
|
|
111
|
-
|
|
112
|
-
RETURNS:
|
|
113
|
-
Instance of CoxSurvival.
|
|
114
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
115
|
-
references, such as CoxSurvivalObj.<attribute_name>.
|
|
116
|
-
Output teradataml DataFrame attribute name is:
|
|
117
|
-
1. output
|
|
118
|
-
2. survival_probability
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
RAISES:
|
|
122
|
-
TeradataMlException
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
EXAMPLES:
|
|
126
|
-
# Load the data to run the example.
|
|
127
|
-
load_example_data("coxsurvival", ["lc_new_predictors", "lungcancer"])
|
|
128
|
-
|
|
129
|
-
# Create teradataml DataFrame objects.
|
|
130
|
-
lungcancer = DataFrame.from_table("lungcancer")
|
|
131
|
-
lc_new_predictors = DataFrame.from_table("lc_new_predictors")
|
|
132
|
-
|
|
133
|
-
# Generate CoxPH model object.
|
|
134
|
-
coxph_out = CoxPH(data = lungcancer,
|
|
135
|
-
feature_columns = ["trt","celltype","karno","diagtime","age","prior"],
|
|
136
|
-
time_interval_column = "time_int",
|
|
137
|
-
event_column = "status",
|
|
138
|
-
categorical_columns = ["trt","celltype","prior"])
|
|
139
|
-
|
|
140
|
-
# linear model predictor table and coefficient table that are generated from the td_coxph function
|
|
141
|
-
# are used to determine the survival probabilities of the new patients.
|
|
142
|
-
# Example 1 - Pass generated coefficient table and linear predictor dataframes
|
|
143
|
-
cox_survival_out = CoxSurvival(object = coxph_out.coefficient_table,
|
|
144
|
-
cox_model_table = coxph_out.linear_predictor_table,
|
|
145
|
-
predict_table = lc_new_predictors,
|
|
146
|
-
predict_feature_names = ["trt", "celltype","karno","diagtime","age","prior"],
|
|
147
|
-
predict_feature_columns = ["trt","celltype","karno","diagtime","age", "prior"],
|
|
148
|
-
accumulate = ["id", "name"])
|
|
149
|
-
|
|
150
|
-
# Print the results.
|
|
151
|
-
print(cox_survival_out.output)
|
|
152
|
-
print(cox_survival_out.survival_probability)
|
|
153
|
-
|
|
154
|
-
# Example 2 - Pass output of coxph_out directly as object argument.
|
|
155
|
-
cox_survival_out = CoxSurvival(object = coxph_out,
|
|
156
|
-
cox_model_table = coxph_out.linear_predictor_table,
|
|
157
|
-
predict_table = lc_new_predictors,
|
|
158
|
-
predict_feature_names = ["trt", "celltype","karno","diagtime","age","prior"],
|
|
159
|
-
predict_feature_columns = ["trt","celltype","karno","diagtime","age", "prior"],
|
|
160
|
-
accumulate = ["id", "name"])
|
|
161
|
-
|
|
162
|
-
# Print the results.
|
|
163
|
-
print(cox_survival_out.output)
|
|
164
|
-
print(cox_survival_out.survival_probability)
|
|
165
|
-
|
|
166
|
-
"""
|
|
167
|
-
|
|
168
|
-
# Start the timer to get the build time
|
|
169
|
-
_start_time = time.time()
|
|
170
|
-
|
|
171
|
-
self.object = object
|
|
172
|
-
self.cox_model_table = cox_model_table
|
|
173
|
-
self.predict_table = predict_table
|
|
174
|
-
self.predict_feature_names = predict_feature_names
|
|
175
|
-
self.predict_feature_columns = predict_feature_columns
|
|
176
|
-
self.accumulate = accumulate
|
|
177
|
-
self.cox_model_table_sequence_column = cox_model_table_sequence_column
|
|
178
|
-
self.object_sequence_column = object_sequence_column
|
|
179
|
-
self.predict_table_sequence_column = predict_table_sequence_column
|
|
180
|
-
|
|
181
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
182
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
183
|
-
self.__aed_utils = AedUtils()
|
|
184
|
-
|
|
185
|
-
# Create argument information matrix to do parameter checking
|
|
186
|
-
self.__arg_info_matrix = []
|
|
187
|
-
self.__arg_info_matrix.append(["object", self.object, False, (DataFrame)])
|
|
188
|
-
self.__arg_info_matrix.append(["cox_model_table", self.cox_model_table, False, (DataFrame)])
|
|
189
|
-
self.__arg_info_matrix.append(["predict_table", self.predict_table, False, (DataFrame)])
|
|
190
|
-
self.__arg_info_matrix.append(["predict_feature_names", self.predict_feature_names, False, (str,list)])
|
|
191
|
-
self.__arg_info_matrix.append(["predict_feature_columns", self.predict_feature_columns, False, (str,list)])
|
|
192
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
193
|
-
self.__arg_info_matrix.append(["cox_model_table_sequence_column", self.cox_model_table_sequence_column, True, (str,list)])
|
|
194
|
-
self.__arg_info_matrix.append(["object_sequence_column", self.object_sequence_column, True, (str,list)])
|
|
195
|
-
self.__arg_info_matrix.append(["predict_table_sequence_column", self.predict_table_sequence_column, True, (str,list)])
|
|
196
|
-
|
|
197
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
198
|
-
# Perform the function validations
|
|
199
|
-
self.__validate()
|
|
200
|
-
# Generate the ML query
|
|
201
|
-
self.__form_tdml_query()
|
|
202
|
-
# Execute ML query
|
|
203
|
-
self.__execute()
|
|
204
|
-
# Get the prediction type
|
|
205
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
206
|
-
|
|
207
|
-
# End the timer to get the build time
|
|
208
|
-
_end_time = time.time()
|
|
209
|
-
|
|
210
|
-
# Calculate the build time
|
|
211
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
212
|
-
|
|
213
|
-
def __validate(self):
|
|
214
|
-
"""
|
|
215
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
216
|
-
arguments, input argument and table types. Also processes the
|
|
217
|
-
argument values.
|
|
218
|
-
"""
|
|
219
|
-
if isinstance(self.object, CoxPH):
|
|
220
|
-
self.object = self.object._mlresults[0]
|
|
221
|
-
|
|
222
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
223
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
224
|
-
|
|
225
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
226
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
227
|
-
|
|
228
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
229
|
-
self.__awu._validate_input_table_datatype(self.cox_model_table, "cox_model_table", None)
|
|
230
|
-
self.__awu._validate_input_table_datatype(self.object, "object", CoxPH)
|
|
231
|
-
self.__awu._validate_input_table_datatype(self.predict_table, "predict_table", None)
|
|
232
|
-
|
|
233
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
234
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
235
|
-
self.__awu._validate_input_columns_not_empty(self.predict_feature_columns, "predict_feature_columns")
|
|
236
|
-
self.__awu._validate_dataframe_has_argument_columns(self.predict_feature_columns, "predict_feature_columns", self.predict_table, "predict_table", False)
|
|
237
|
-
|
|
238
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
239
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.predict_table, "predict_table", False)
|
|
240
|
-
|
|
241
|
-
self.__awu._validate_input_columns_not_empty(self.cox_model_table_sequence_column, "cox_model_table_sequence_column")
|
|
242
|
-
self.__awu._validate_dataframe_has_argument_columns(self.cox_model_table_sequence_column, "cox_model_table_sequence_column", self.cox_model_table, "cox_model_table", False)
|
|
243
|
-
|
|
244
|
-
self.__awu._validate_input_columns_not_empty(self.object_sequence_column, "object_sequence_column")
|
|
245
|
-
self.__awu._validate_dataframe_has_argument_columns(self.object_sequence_column, "object_sequence_column", self.object, "object", False)
|
|
246
|
-
|
|
247
|
-
self.__awu._validate_input_columns_not_empty(self.predict_table_sequence_column, "predict_table_sequence_column")
|
|
248
|
-
self.__awu._validate_dataframe_has_argument_columns(self.predict_table_sequence_column, "predict_table_sequence_column", self.predict_table, "predict_table", False)
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
def __form_tdml_query(self):
|
|
252
|
-
"""
|
|
253
|
-
Function to generate the analytical function queries. The function defines
|
|
254
|
-
variables and list of arguments required to form the query.
|
|
255
|
-
"""
|
|
256
|
-
# Generate temp table names for output table parameters if any.
|
|
257
|
-
self.__survival_probability_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_coxsurvival0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
258
|
-
|
|
259
|
-
# Output table arguments list
|
|
260
|
-
self.__func_output_args_sql_names = ["OutputTable"]
|
|
261
|
-
self.__func_output_args = [self.__survival_probability_temp_tablename]
|
|
262
|
-
|
|
263
|
-
# Model Cataloging related attributes.
|
|
264
|
-
self._sql_specific_attributes = {}
|
|
265
|
-
self._sql_formula_attribute_mapper = {}
|
|
266
|
-
self._target_column = None
|
|
267
|
-
self._algorithm_name = None
|
|
268
|
-
|
|
269
|
-
# Generate lists for rest of the function arguments
|
|
270
|
-
self.__func_other_arg_sql_names = []
|
|
271
|
-
self.__func_other_args = []
|
|
272
|
-
self.__func_other_arg_json_datatypes = []
|
|
273
|
-
|
|
274
|
-
self.__func_other_arg_sql_names.append("PredictFeatureColumns")
|
|
275
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.predict_feature_columns, "\""), "'"))
|
|
276
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
277
|
-
|
|
278
|
-
if self.accumulate is not None:
|
|
279
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
280
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
281
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
282
|
-
|
|
283
|
-
self.__func_other_arg_sql_names.append("PredictFeatureNames")
|
|
284
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.predict_feature_names, "'"))
|
|
285
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
286
|
-
|
|
287
|
-
# Generate lists for rest of the function arguments
|
|
288
|
-
sequence_input_by_list = []
|
|
289
|
-
if self.cox_model_table_sequence_column is not None:
|
|
290
|
-
sequence_input_by_list.append("CoxLinearPredictorModelTable:" + UtilFuncs._teradata_collapse_arglist(self.cox_model_table_sequence_column, ""))
|
|
291
|
-
|
|
292
|
-
if self.object_sequence_column is not None:
|
|
293
|
-
sequence_input_by_list.append("CoxCoefModelTable:" + UtilFuncs._teradata_collapse_arglist(self.object_sequence_column, ""))
|
|
294
|
-
|
|
295
|
-
if self.predict_table_sequence_column is not None:
|
|
296
|
-
sequence_input_by_list.append("PredictTable:" + UtilFuncs._teradata_collapse_arglist(self.predict_table_sequence_column, ""))
|
|
297
|
-
|
|
298
|
-
if len(sequence_input_by_list) > 0:
|
|
299
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
300
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
301
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
302
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
303
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
# Declare empty lists to hold input table information.
|
|
307
|
-
self.__func_input_arg_sql_names = []
|
|
308
|
-
self.__func_input_table_view_query = []
|
|
309
|
-
self.__func_input_dataframe_type = []
|
|
310
|
-
self.__func_input_distribution = []
|
|
311
|
-
self.__func_input_partition_by_cols = []
|
|
312
|
-
self.__func_input_order_by_cols = []
|
|
313
|
-
|
|
314
|
-
# Process cox_model_table
|
|
315
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.cox_model_table, False)
|
|
316
|
-
self.__func_input_distribution.append("NONE")
|
|
317
|
-
self.__func_input_arg_sql_names.append("CoxLinearPredictorModelTable")
|
|
318
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
319
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
320
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
321
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
322
|
-
|
|
323
|
-
# Process object
|
|
324
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.object, False)
|
|
325
|
-
self.__func_input_distribution.append("NONE")
|
|
326
|
-
self.__func_input_arg_sql_names.append("CoxCoefModelTable")
|
|
327
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
328
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
329
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
330
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
331
|
-
|
|
332
|
-
# Process predict_table
|
|
333
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.predict_table, False)
|
|
334
|
-
self.__func_input_distribution.append("NONE")
|
|
335
|
-
self.__func_input_arg_sql_names.append("PredictTable")
|
|
336
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
337
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
338
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
339
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
340
|
-
|
|
341
|
-
function_name = "CoxSurvival"
|
|
342
|
-
# Create instance to generate SQLMR.
|
|
343
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
344
|
-
self.__func_input_arg_sql_names,
|
|
345
|
-
self.__func_input_table_view_query,
|
|
346
|
-
self.__func_input_dataframe_type,
|
|
347
|
-
self.__func_input_distribution,
|
|
348
|
-
self.__func_input_partition_by_cols,
|
|
349
|
-
self.__func_input_order_by_cols,
|
|
350
|
-
self.__func_other_arg_sql_names,
|
|
351
|
-
self.__func_other_args,
|
|
352
|
-
self.__func_other_arg_json_datatypes,
|
|
353
|
-
self.__func_output_args_sql_names,
|
|
354
|
-
self.__func_output_args,
|
|
355
|
-
engine="ENGINE_ML")
|
|
356
|
-
# Invoke call to SQL-MR generation.
|
|
357
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
358
|
-
|
|
359
|
-
# Print SQL-MR query if requested to do so.
|
|
360
|
-
if display.print_sqlmr_query:
|
|
361
|
-
print(self.sqlmr_query)
|
|
362
|
-
|
|
363
|
-
# Set the algorithm name for Model Cataloging.
|
|
364
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
365
|
-
|
|
366
|
-
def __execute(self):
|
|
367
|
-
"""
|
|
368
|
-
Function to execute SQL-MR queries.
|
|
369
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
370
|
-
"""
|
|
371
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
372
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
373
|
-
try:
|
|
374
|
-
# Generate the output.
|
|
375
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
376
|
-
except Exception as emsg:
|
|
377
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
378
|
-
|
|
379
|
-
# Update output table data frames.
|
|
380
|
-
self._mlresults = []
|
|
381
|
-
self.survival_probability = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__survival_probability_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__survival_probability_temp_tablename))
|
|
382
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
383
|
-
self._mlresults.append(self.survival_probability)
|
|
384
|
-
self._mlresults.append(self.output)
|
|
385
|
-
|
|
386
|
-
def show_query(self):
|
|
387
|
-
"""
|
|
388
|
-
Function to return the underlying SQL query.
|
|
389
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
390
|
-
"""
|
|
391
|
-
return self.sqlmr_query
|
|
392
|
-
|
|
393
|
-
def get_prediction_type(self):
|
|
394
|
-
"""
|
|
395
|
-
Function to return the Prediction type of the algorithm.
|
|
396
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
397
|
-
as saved in the Model Catalog.
|
|
398
|
-
"""
|
|
399
|
-
return self._prediction_type
|
|
400
|
-
|
|
401
|
-
def get_target_column(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to return the Target Column of the algorithm.
|
|
404
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
405
|
-
as saved in the Model Catalog.
|
|
406
|
-
"""
|
|
407
|
-
return self._target_column
|
|
408
|
-
|
|
409
|
-
def get_build_time(self):
|
|
410
|
-
"""
|
|
411
|
-
Function to return the build time of the algorithm in seconds.
|
|
412
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
413
|
-
as saved in the Model Catalog.
|
|
414
|
-
"""
|
|
415
|
-
return self._build_time
|
|
416
|
-
|
|
417
|
-
def _get_algorithm_name(self):
|
|
418
|
-
"""
|
|
419
|
-
Function to return the name of the algorithm.
|
|
420
|
-
"""
|
|
421
|
-
return self._algorithm_name
|
|
422
|
-
|
|
423
|
-
def _get_sql_specific_attributes(self):
|
|
424
|
-
"""
|
|
425
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
426
|
-
"""
|
|
427
|
-
return self._sql_specific_attributes
|
|
428
|
-
|
|
429
|
-
@classmethod
|
|
430
|
-
def _from_model_catalog(cls,
|
|
431
|
-
survival_probability = None,
|
|
432
|
-
output = None,
|
|
433
|
-
**kwargs):
|
|
434
|
-
"""
|
|
435
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
436
|
-
"""
|
|
437
|
-
kwargs.pop("survival_probability", None)
|
|
438
|
-
kwargs.pop("output", None)
|
|
439
|
-
|
|
440
|
-
# Model Cataloging related attributes.
|
|
441
|
-
target_column = kwargs.pop("__target_column", None)
|
|
442
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
443
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
444
|
-
build_time = kwargs.pop("__build_time", None)
|
|
445
|
-
|
|
446
|
-
# Let's create an object of this class.
|
|
447
|
-
obj = cls(**kwargs)
|
|
448
|
-
obj.survival_probability = survival_probability
|
|
449
|
-
obj.output = output
|
|
450
|
-
|
|
451
|
-
# Initialize the sqlmr_query class attribute.
|
|
452
|
-
obj.sqlmr_query = None
|
|
453
|
-
|
|
454
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
455
|
-
obj._sql_specific_attributes = None
|
|
456
|
-
obj._target_column = target_column
|
|
457
|
-
obj._prediction_type = prediction_type
|
|
458
|
-
obj._algorithm_name = algorithm_name
|
|
459
|
-
obj._build_time = build_time
|
|
460
|
-
|
|
461
|
-
# Update output table data frames.
|
|
462
|
-
obj._mlresults = []
|
|
463
|
-
obj.survival_probability = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.survival_probability), source_type="table", database_name=UtilFuncs._extract_db_name(obj.survival_probability))
|
|
464
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
465
|
-
obj._mlresults.append(obj.survival_probability)
|
|
466
|
-
obj._mlresults.append(obj.output)
|
|
467
|
-
return obj
|
|
468
|
-
|
|
469
|
-
def __repr__(self):
|
|
470
|
-
"""
|
|
471
|
-
Returns the string representation for a CoxSurvival class instance.
|
|
472
|
-
"""
|
|
473
|
-
repr_string="############ STDOUT Output ############"
|
|
474
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
475
|
-
repr_string="{}\n\n\n############ survival_probability Output ############".format(repr_string)
|
|
476
|
-
repr_string = "{}\n\n{}".format(repr_string,self.survival_probability)
|
|
477
|
-
return repr_string
|
|
478
|
-
|