teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -0,0 +1,1668 @@
1
+ # ##################################################################
2
+ #
3
+ # Copyright 2023 Teradata. All rights reserved.
4
+ # TERADATA CONFIDENTIAL AND TRADE SECRET
5
+ #
6
+ # Primary Owner: Adithya Avvaru (adithya.avvaru@teradata.com)
7
+ # Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
+ #
9
+ # Version: 1.0
10
+ # Function Version: 1.0
11
+ #
12
+ # This file contains object wrapper class for opensource packages and child object
13
+ # wrapper classes for each opensource package. Currently, we have child object
14
+ # wrapper class for scikit-learn.
15
+ #
16
+ # ##################################################################
17
+
18
+ from collections import OrderedDict, defaultdict
19
+ from importlib import import_module
20
+
21
+ import base64
22
+ import functools
23
+ import json
24
+ import numpy
25
+ import os
26
+ import pickle
27
+ import time
28
+ import inspect
29
+ import warnings
30
+ import json
31
+ import random
32
+ import pandas as pd
33
+ from teradatasqlalchemy import BLOB, CLOB, FLOAT, TIMESTAMP, VARCHAR, INTEGER
34
+ import pandas.api.types as pt
35
+
36
+ from teradataml import _TDML_DIRECTORY, Script, TeradataMlException, Apply
37
+ from teradataml.dataframe.copy_to import _get_sqlalchemy_mapping
38
+ from teradataml.common import pylogger
39
+ from teradataml.common.utils import UtilFuncs
40
+ from teradataml.context.context import _get_current_databasename, get_connection
41
+ from teradataml.dbutils.filemgr import install_file, remove_file
42
+ from teradataml.utils.utils import execute_sql
43
+ from teradataml.options.configure import configure
44
+ from teradataml.opensource.sklearn._wrapper_utils import _validate_fit_run, _generate_new_name,\
45
+ _validate_opensource_func_args, _derive_df_and_required_columns, _validate_df_query_type
46
+ from teradataml.opensource.sklearn.constants import OpenSourcePackage, _OSML_MODELS_PRIMARY_INDEX,\
47
+ _OSML_MODELS_TABLE_NAME, _OSML_MODELS_TABLE_COLUMNS_TYPE_DICT, OpensourceModels,\
48
+ _OSML_ADDITIONAL_COLUMN_TYPES
49
+ from teradataml.common.messagecodes import MessageCodes
50
+ from teradataml.common.messages import Messages
51
+ from teradataml.catalog.byom import save_byom, retrieve_byom, delete_byom
52
+ from teradataml.dbutils.dbutils import _create_table
53
+ from teradataml.utils.validators import _Validators
54
+ from teradataml.dataframe.dataframe import DataFrame
55
+ from teradataml.dataframe.dataframe_utils import DataFrameUtils
56
+ from teradataml.scriptmgmt.lls_utils import create_env, get_env
57
+ from teradataml.common.garbagecollector import GarbageCollector
58
+ from teradataml.common.constants import TeradataConstants
59
+
60
+
61
+ logger = pylogger.getLogger()
62
+
63
+ validator = _Validators()
64
+
65
+ installed_model_files = defaultdict(int)
66
+
67
+ class _GenericObjectWrapper:
68
+ def __init__(self) -> None:
69
+ self._db_name = _get_current_databasename()
70
+
71
+ self._scripts_path = os.path.join(_TDML_DIRECTORY, "data", "scripts", "sklearn")
72
+
73
+ # Some random number to be used as partition value if partition_columns is None for fit().
74
+ self._default_data_partition_value = -1001
75
+
76
+ self.modelObj = None
77
+ self._model_data = None
78
+
79
+ self._tdml_tmp_dir = os.path.join(os.path.expanduser("~"), ".teradataml")
80
+
81
+ self._env = None
82
+
83
+ self._is_lake_system = UtilFuncs._is_lake()
84
+
85
+ if self._is_lake_system:
86
+ if configure.openml_user_env is not None:
87
+ self._env = configure.openml_user_env
88
+ else:
89
+ self._create_or_get_env()
90
+ else:
91
+ execute_sql(f"SET SESSION SEARCHUIFDBPATH = {self._db_name};")
92
+
93
+ def _create_or_get_env(self):
94
+ """
95
+ Internal function to return the env if already exists else
96
+ creates the environment using template file and return the env.
97
+ """
98
+ # Get the template file path.
99
+ template_dir_path = os.path.join(_TDML_DIRECTORY, "data", "templates",
100
+ "open_source_ml.json")
101
+
102
+ # Read template file.
103
+ with open(template_dir_path, "r") as r_file:
104
+ data = json.load(r_file)
105
+
106
+ # Get env_name.
107
+ _env_name = data["env_specs"][0]["env_name"]
108
+
109
+ try:
110
+ # Call function to 'openml_env' get env.
111
+ self._env = get_env(_env_name)
112
+ except TeradataMlException as tdml_e:
113
+ # We will get here when error says, env does not exist otherwise raise the exception as is.
114
+ # Env does not exist so create one.
115
+
116
+ exc_msg = "Failed to execute get_env(). User environment '{}' not " \
117
+ "found.".format(_env_name)
118
+ if exc_msg in tdml_e.args[0]:
119
+ print(f"No OpenAF environment with name '{_env_name}' found. Creating one with "\
120
+ "latest supported python and required packages.")
121
+ _env = create_env(template=template_dir_path)
122
+ else:
123
+ raise tdml_e
124
+ except Exception as exc:
125
+ raise exc
126
+
127
+ def _get_columns_as_list(self, cols):
128
+ """
129
+ Internal function to get columns as list of strings.
130
+ Empty list is returned if cols is None.
131
+ """
132
+ if cols is None:
133
+ return []
134
+ if not isinstance(cols, list) and not isinstance(cols, tuple):
135
+ return [cols]
136
+ return cols
137
+
138
+ def _get_data_and_data_partition_columns(self, data, feature_columns, label_columns,
139
+ partition_columns=None, group_columns=[]):
140
+ """
141
+ Internal function to generate one new partition column (if not provided) and return
142
+ data and partition columns (either generated or passed one).
143
+ """
144
+ new_partition_columns = self._get_columns_as_list(partition_columns)
145
+
146
+ if not partition_columns:
147
+ # If partition column is not specified, create a partition column and run Script.
148
+ # This runs the Script in one AMP as we are partitioning data using this column
149
+ # which contains only one value.
150
+ new_partition_columns = [_generate_new_name(type="column")]
151
+ data = data.assign(**{new_partition_columns[0]: self._default_data_partition_value})
152
+
153
+ # Filter out partition columns from feature columns and label columns.
154
+ new_partition_columns_filtered = [col for col in new_partition_columns
155
+ if col not in (feature_columns + label_columns + group_columns)]
156
+
157
+ all_columns = feature_columns + label_columns + group_columns + new_partition_columns_filtered
158
+ return data.select(all_columns), new_partition_columns
159
+
160
+ def _run_script(self, data, command, partition_columns, return_types):
161
+ """
162
+ Internal function to run Script(), given the argument needed by STO's or
163
+ Apply's Script.
164
+ """
165
+ if isinstance(partition_columns, list) and len(partition_columns) == 0:
166
+ partition_columns = None
167
+
168
+ if self._is_lake_system:
169
+ obj = Apply(data=data,
170
+ returns=OrderedDict(return_types),
171
+ apply_command=command,
172
+ data_partition_column=partition_columns,
173
+ env_name=self._env,
174
+ delimiter="\t")
175
+ else:
176
+ obj = Script(data=data,
177
+ returns=OrderedDict(return_types),
178
+ script_command=command,
179
+ data_partition_column=partition_columns)
180
+ obj.check_reserved_keyword = False
181
+
182
+ obj.skip_argument_validation = True
183
+ return obj.execute_script(output_style="TABLE")
184
+
185
+ def _install_script_file(self,
186
+ file_identifier=None,
187
+ file_name=None,
188
+ is_binary=False,
189
+ file_location=None):
190
+ """
191
+ Internal function to install script file in Vantage.
192
+ """
193
+ if file_location is None:
194
+ file_location = self._scripts_path
195
+ new_script = os.path.join(file_location, file_name)
196
+
197
+ # _env is set while object creation
198
+ # If not set, it is Vantage Enterprise. Otherwise, it is Vantage Lake.
199
+
200
+ if not self._is_lake_system:
201
+ status = install_file(file_identifier=file_identifier,
202
+ file_path=new_script,
203
+ replace=True,
204
+ suppress_output=True,
205
+ is_binary=is_binary)
206
+ else:
207
+ status = self._env.install_file(file_path=new_script,
208
+ replace=True,
209
+ suppress_output=True)
210
+ if not status:
211
+ raise TeradataMlException(
212
+ f"Script file '{file_name}' failed to get installed/replaced in Vantage."
213
+ )
214
+
215
+ def _get_partition_col_indices_and_types(self, data, partition_columns):
216
+ """
217
+ partition_columns can be from feature columns and label columns.
218
+ So, get the indices and types of these columns from the data columns.
219
+ """
220
+ partition_indices = []
221
+ partition_types = []
222
+ new_partition_columns = []
223
+ for i, col in enumerate(data.columns):
224
+ if col in partition_columns:
225
+ new_partition_columns.append(col)
226
+ partition_indices.append(i)
227
+ partition_types.append(data._td_column_names_and_sqlalchemy_types[col.lower()].\
228
+ python_type.__name__)
229
+ # Converting to string "None" if they are not present as empty string can't be passed
230
+ # to Script script_commands' command line arguments.
231
+ # Otherwise, pass the values as comma separated string.
232
+ partition_indices = ",".join([str(x) for x in partition_indices])\
233
+ if partition_indices else "None"
234
+ partition_types = ",".join([x for x in partition_types]) if partition_types else "None"
235
+ return partition_indices, partition_types, new_partition_columns
236
+
237
+ def _get_kwargs_str(self, kwargs):
238
+ """
239
+ Returns string of kwargs in the format:
240
+ key1 val1-type1 key2 val2-type2 ...
241
+ """
242
+ args_str = ""
243
+ for key, val in kwargs.items():
244
+ strr = f"{key} {str(val)}-{type(val).__name__}"
245
+ if args_str == "":
246
+ args_str += strr
247
+ else:
248
+ args_str += f" {strr}"
249
+ return args_str
250
+
251
+ def extract_sklearn_obj(self, n_unique_partitions = 1, n_partition_cols = 1):
252
+ """
253
+ Internal function to extract sklearn object from the model(s) depending on the number of
254
+ partitions. When it is only one model, it is directly used as sklearn object (modelObj).
255
+ When it is multiple models, it is converted to pandas DataFrame and stored in sklearn
256
+ object.
257
+ """
258
+ vals = execute_sql("select * from {}".format(self._model_data._table_name)).fetchall()
259
+
260
+ # pickle will issue a caution warning, if model pickling was done with
261
+ # different library version than used here. The following disables any warnings
262
+ # that might otherwise show in the scriptlog files on the Advanced SQL Engine
263
+ # nodes in this case. Yet, do keep an eye for incompatible pickle versions.
264
+ warnings.filterwarnings("ignore")
265
+
266
+ model_obj = None
267
+ # Extract and unpickle last column which is the model object.
268
+ for i, row in enumerate(vals):
269
+ if self._is_lake_system:
270
+ model_obj = pickle.loads(row[n_partition_cols])
271
+ else:
272
+ model_obj = pickle.loads(base64.b64decode(row[n_partition_cols].partition("'")[2]))
273
+ row[n_partition_cols] = model_obj
274
+ vals[i] = row
275
+ if n_unique_partitions == 1:
276
+ self.modelObj = model_obj
277
+ elif n_unique_partitions > 1:
278
+ self.modelObj = pd.DataFrame(vals, columns=self._model_data.columns)
279
+ else:
280
+ ValueError("Number of partitions should be greater than 0.")
281
+
282
+ warnings.filterwarnings("default")
283
+
284
+
285
+ class _OpenSourceObjectWrapper(_GenericObjectWrapper):
286
+ # This has to be set for every package which subclasses this class.
287
+ OPENSOURCE_PACKAGE_NAME = None
288
+
289
+ def __init__(self, model=None, module_name=None, class_name=None, pos_args=None, kwargs=None):
290
+ if not model and not module_name and not class_name:
291
+ raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "model",
292
+ "module_name and class_name"),
293
+ MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
294
+
295
+ validator._validate_mutually_inclusive_arguments(module_name, "module_name",
296
+ class_name, "class_name")
297
+
298
+ super().__init__()
299
+
300
+ self.module_name = module_name
301
+ self.class_name = class_name
302
+ self.kwargs = kwargs if kwargs is not None else {}
303
+ self.pos_args = pos_args if pos_args is not None else tuple()
304
+
305
+ self._fit_label_columns_types = None
306
+ self._table_name_prefix = None
307
+
308
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
309
+ self._fit_partition_colums_non_default = None
310
+ self._is_default_partition_value_predict = True # False when the user provides partition columns.
311
+
312
+ def _validate_equality_of_partition_values(self, fit_values, trans_values):
313
+ """
314
+ Internal function to compare the partition values in fit() and predict() are same.
315
+ """
316
+ if len(fit_values) != len(trans_values):
317
+ return False
318
+
319
+ for val in fit_values:
320
+ if not all([val in trans_values]):
321
+ return False
322
+
323
+ return True
324
+
325
+ def _validate_unique_partition_values(self, data, partition_columns):
326
+ """
327
+ Internal function to validate if the partition values in partition_columns used in fit()
328
+ and predict() are same.
329
+ """
330
+ data._index_label = None
331
+ unique_values = data.drop_duplicate(partition_columns).get_values()
332
+
333
+ trans_unique_values = sorted(unique_values.tolist(), key=lambda x: tuple(x))
334
+ fit_unique_values = sorted(self._fit_partition_unique_values.tolist() \
335
+ if not isinstance(self._fit_partition_unique_values, list) \
336
+ else self._fit_partition_unique_values, key=lambda x: tuple(x))
337
+ default_unique_values = [[self._default_data_partition_value]]
338
+
339
+ if fit_unique_values == default_unique_values and \
340
+ trans_unique_values != default_unique_values:
341
+ error_msg = Messages.get_message(MessageCodes.PARTITION_IN_BOTH_FIT_AND_PREDICT,
342
+ "without", "with")
343
+ msg_code = MessageCodes.PARTITION_IN_BOTH_FIT_AND_PREDICT
344
+ raise TeradataMlException(error_msg, msg_code)
345
+
346
+ if not self._validate_equality_of_partition_values(fit_unique_values, trans_unique_values):
347
+ raise TeradataMlException(
348
+ Messages.get_message(MessageCodes.PARTITION_VALUES_NOT_MATCHING),
349
+ MessageCodes.PARTITION_VALUES_NOT_MATCHING
350
+ )
351
+
352
+ def fit(self, **kwargs):
353
+ pass
354
+
355
+ def __get_obj_attributes_multi_model(self, name):
356
+ """
357
+ Internal function to get attributes of all sklearn model objects when multiple models are
358
+ generated by fit.
359
+ """
360
+ # Wrapper function to invoke dynamic method, using arguments
361
+ # passed by user, on model in each row.
362
+ def __sklearn_method_invoker_for_multimodel(*c, **kwargs):
363
+ multi_models = self.modelObj.copy()
364
+ for i in range(multi_models.shape[0]):
365
+ curr_model = multi_models.iloc[i]["model"]
366
+ multi_models.at[i, "model"] = getattr(curr_model, name)(*c, **kwargs)
367
+ return multi_models.rename(columns={"model": name})
368
+
369
+ # Identify if attribute is callable or not to avoid
370
+ # this check in loop for every model.
371
+ is_attr_callable = False
372
+ # Assuming that self.modelObj will have at least 1 row.
373
+ is_attr_callable = callable(getattr(self.modelObj.iloc[0]["model"], name))
374
+
375
+ # If attribute is callable, it should be applied on model in each row
376
+ # using passed arguments.
377
+ if is_attr_callable:
378
+ return __sklearn_method_invoker_for_multimodel
379
+
380
+ output_attributes = self.modelObj.copy()
381
+ for i in range(output_attributes.shape[0]):
382
+ model = output_attributes.iloc[i]["model"]
383
+ output_attributes.at[i, "model"] = getattr(model, name)
384
+ return output_attributes.rename(columns={"model": name})
385
+
386
+ def __getattr__(self, name):
387
+ # This just run attributes (functions and properties) from sklearn object.
388
+ def __sklearn_method_invoker(*c, **kwargs):
389
+ return atrribute_instance(*c, **kwargs)
390
+ if isinstance(self.modelObj, pd.DataFrame):
391
+ return self.__get_obj_attributes_multi_model(name)
392
+
393
+ atrribute_instance = getattr(self.modelObj, name)
394
+ if callable(atrribute_instance):
395
+ return __sklearn_method_invoker
396
+ return atrribute_instance
397
+
398
+ @classmethod
399
+ def _validate_model_supportability(cls, model):
400
+ """
401
+ Internal function to validate if the model provided for deployment is supported by
402
+ teradataml's opensourceML.
403
+ """
404
+ error_msg = Messages.get_message(MessageCodes.MODEL_CATALOGING_OPERATION_FAILED, "validate",
405
+ "The given model is not a supported opensource model.")
406
+ msg_code = MessageCodes.MODEL_CATALOGING_OPERATION_FAILED
407
+ try:
408
+ # For scikit-learn, model.__module__ is similar to 'sklearn.linear_model._base'.
409
+ # TODO: check for other supported packages.
410
+ if model.__module__.split(".")[0] not in OpenSourcePackage.values():
411
+ raise TeradataMlException(error_msg, msg_code)
412
+ except Exception as ex:
413
+ # If in case, model.__module__ fails.
414
+ raise TeradataMlException(error_msg, msg_code) from ex
415
+
416
+ def _save_model(self, model_name, replace_if_exists=False):
417
+ """
418
+ Internal function to save the model stored in file at location mentioned by class variable
419
+ "model_file_path_local" to Vantage using BYOM methods save_byom() and delete_byom() based
420
+ on the value of "replace_if_exists" argument.
421
+ """
422
+ # Creating a table, if doesn't exist, in Vantage to store the model info.
423
+ conn = get_connection()
424
+ osml_models_table_exists = conn.dialect.has_table(conn,
425
+ table_name=_OSML_MODELS_TABLE_NAME,
426
+ schema=self._db_name)
427
+ if not osml_models_table_exists:
428
+ all_columns = _OSML_MODELS_TABLE_COLUMNS_TYPE_DICT.copy()
429
+ all_columns.update(_OSML_ADDITIONAL_COLUMN_TYPES)
430
+ _create_table(table_name=_OSML_MODELS_TABLE_NAME, columns=all_columns,
431
+ primary_index=_OSML_MODELS_PRIMARY_INDEX, schema_name=self._db_name)
432
+
433
+ model_obj = OpensourceModels(is_default_partition_value=self._is_default_partition_value_fit,
434
+ partition_file_prefix=self._model_file_name_prefix,
435
+ fit_partition_columns_non_default=self._fit_partition_colums_non_default,
436
+ model=self.modelObj,
437
+ pos_args=self.pos_args,
438
+ key_args=self.kwargs)
439
+
440
+ # Saved the model object to a file to be used in save_byom() for writing to Vantage table.
441
+ file_name = os.path.join(self._tdml_tmp_dir, "deployed_file.pickle")
442
+ with open(file_name, "wb+") as fp:
443
+ fp.write(pickle.dumps(model_obj))
444
+
445
+ try:
446
+ save_byom(model_id=model_name,
447
+ model_file=file_name,
448
+ table_name=_OSML_MODELS_TABLE_NAME,
449
+ additional_columns_types=_OSML_ADDITIONAL_COLUMN_TYPES,
450
+ additional_columns={"package": self.OPENSOURCE_PACKAGE_NAME.value})
451
+ except TeradataMlException as ex:
452
+ model_exists_msg = Messages.get_message(MessageCodes.MODEL_ALREADY_EXISTS, model_name)
453
+ if not replace_if_exists and model_exists_msg == str(ex):
454
+ raise
455
+ elif replace_if_exists and model_exists_msg == str(ex):
456
+ # Delete the model from Model table and save again.
457
+ delete_byom(model_id=model_name, table_name=_OSML_MODELS_TABLE_NAME)
458
+ save_byom(model_id=model_name,
459
+ model_file=file_name,
460
+ table_name=_OSML_MODELS_TABLE_NAME,
461
+ additional_columns_types=_OSML_ADDITIONAL_COLUMN_TYPES,
462
+ additional_columns={"package": self.OPENSOURCE_PACKAGE_NAME.value})
463
+ else:
464
+ raise
465
+ finally:
466
+ os.remove(file_name)
467
+
468
+ @classmethod
469
+ def _deploy(cls, model_name, model, replace_if_exists=False):
470
+ """
471
+ Internal function to create an instance of the class using the model and deploy
472
+ the model to Vantage.
473
+ """
474
+ cls._validate_model_supportability(model=model)
475
+
476
+ cls = cls(model=model)
477
+ # Load the model file into Vantage node as file can be used in
478
+ # predict or other operations.
479
+ cls._install_initial_model_file()
480
+
481
+ cls._save_model(model_name, replace_if_exists)
482
+
483
+ return cls
484
+
485
+ @classmethod
486
+ def _load(cls, model_name):
487
+ """
488
+ Internal function to load model corresponding to the package (like sklearn etc)
489
+ from Vantage to client using retrieve_byom() and create an instance of the class if
490
+ the model is from the same package.
491
+ """
492
+ try:
493
+ model = retrieve_byom(model_id=model_name, table_name=_OSML_MODELS_TABLE_NAME,
494
+ return_addition_columns=True)
495
+ except TeradataMlException as ex:
496
+ # Not showing table name in error message as it is an internal table.
497
+ part_msg = f"Model '{model_name}' not found in the table "
498
+ if part_msg in str(ex):
499
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND, model_name, ""),
500
+ MessageCodes.MODEL_NOT_FOUND)
501
+ raise
502
+
503
+ model_vals_list = model.get_values()[0]
504
+ # List of 3 elements -
505
+ # - model name as index column,
506
+ # - 1st contains model object with fields: is_default_partition_value, partition_file_prefix, model. etc
507
+ # - 2nd contains package name.
508
+ model_obj = pickle.loads(model_vals_list[0])
509
+ model = model_obj.model
510
+ package = model_vals_list[1]
511
+
512
+ if package != cls.OPENSOURCE_PACKAGE_NAME.value:
513
+ # Raise error if trying to access model of different package.
514
+ raise TeradataMlException(Messages.get_message(MessageCodes.MODEL_NOT_FOUND, model_name,
515
+ f". Requested model is from '{package}' package"),
516
+ MessageCodes.MODEL_NOT_FOUND)
517
+
518
+ if isinstance(model, pd.DataFrame):
519
+ # Create a new instance of the class and set the model object to the instance.
520
+ # Instantiation can take only model, not model object. Hence, passing one of the model
521
+ # from pandas df. Updating modelObj and other fields later
522
+ cls = cls(model=model.iloc[1,2])
523
+ cls.modelObj = model
524
+ cls._fit_partition_unique_values = [lst[:len(lst)-1] for lst in model.values.tolist()]
525
+ else:
526
+ cls = cls(model=model)
527
+
528
+ cls._model_file_name_prefix = model_obj.partition_file_prefix
529
+ cls._is_default_partition_value_fit = model_obj.is_default_partition_value
530
+ cls._fit_partition_colums_non_default = model_obj.fit_partition_columns_non_default
531
+ cls.pos_args = model_obj.pos_args
532
+ cls.kwargs = model_obj.key_args
533
+
534
+ # Load the model file into Vantage node as file can be used in
535
+ # predict or other operations.
536
+ cls._install_initial_model_file()
537
+
538
+ return cls
539
+
540
+ def deploy(self, model_name, replace_if_exists=False):
541
+ """
542
+ DESCRIPTION:
543
+ Deploys the model held by interface object to Vantage.
544
+
545
+ PARAMETERS:
546
+ model_name:
547
+ Required Argument.
548
+ Specifies the unique name of the model to be deployed.
549
+ Types: str
550
+
551
+ replace_if_exists:
552
+ Optional Argument.
553
+ Specifies whether to replace the model if a model with the same name already
554
+ exists in Vantage. If this argument is set to False and a model with the same
555
+ name already exists, then the function raises an exception.
556
+ Default Value: False
557
+ Types: bool
558
+
559
+ RETURNS:
560
+ The opensource object wrapper.
561
+
562
+ RAISES:
563
+ TeradataMLException if model with "model_name" already exists and the argument
564
+ "replace_if_exists" is set to False.
565
+
566
+ EXAMPLES:
567
+ >>> from teradataml import td_sklearn
568
+ >>> model = td_sklearn.LinearRegression(normalize=True)
569
+ >>> model
570
+ LinearRegression(normalize=True)
571
+
572
+ # Example 1: Deploy the model held by interface object to Vantage.
573
+ >>> lin_reg = model.deploy("linreg_model_ver_2")
574
+ Model is saved.
575
+ >>> lin_reg
576
+ LinearRegression(normalize=True)
577
+
578
+ # Example 2: Deploy the model held by interface object to Vantage with the name same
579
+ # as that of model that already existed in Vantage.
580
+ >>> lin_reg = model.deploy("linreg_model_ver_2", replace_if_exists=True)
581
+ Model is deleted.
582
+ Model is saved.
583
+ >>> lin_reg
584
+ LinearRegression(normalize=True)
585
+ """
586
+
587
+ # Install model file into Vantage, if not installed.
588
+ self._install_initial_model_file()
589
+
590
+ self._save_model(model_name, replace_if_exists)
591
+ return self
592
+
593
+
594
+ class _SkLearnObjectWrapper(_OpenSourceObjectWrapper):
595
+
596
+ OPENSOURCE_PACKAGE_NAME = OpenSourcePackage.SKLEARN
597
+
598
+ def __init__(self, model=None, module_name=None, class_name=None, pos_args=None, kwargs=None):
599
+ super().__init__(model=model, module_name=module_name, class_name=class_name,
600
+ pos_args=pos_args, kwargs=kwargs)
601
+
602
+ self._initialize_variables()
603
+ if model:
604
+ self.modelObj = model
605
+ self.module_name = model.__module__.split("._")[0]
606
+ self.class_name = model.__class__.__name__
607
+ # __dict__ gets all the arguments as dictionary including default ones and positional
608
+ # args.
609
+ self.kwargs = model.__dict__
610
+ self.pos_args = tuple() # Kept empty as all are moved to kwargs.
611
+ else:
612
+ self._initialize_object()
613
+
614
+ def __repr__(self):
615
+ if self._is_default_partition_value_fit:
616
+ # Single model use case.
617
+ return self.modelObj.__repr__()
618
+
619
+ pd.set_option("display.expand_frame_repr", None)
620
+ pd.set_option("display.max_colwidth", None)
621
+ opt = self.modelObj.__repr__()
622
+ pd.reset_option("display.expand_frame_repr")
623
+ pd.reset_option("display.max_colwidth")
624
+ return opt
625
+
626
+ def _validate_args_and_get_data(self, X=None, y=None, groups=None, kwargs={},
627
+ skip_either_or_that=False):
628
+ """
629
+ Internal function to validate arguments passed to exposed opensource APIs and return
630
+ parent DataFrame, feature columns, label columns, group columns, data partition columns.
631
+ """
632
+ _validate_opensource_func_args(X=X, y=y, groups=groups,
633
+ fit_partition_cols=self._fit_partition_colums_non_default,
634
+ kwargs=kwargs,
635
+ skip_either_or_that=skip_either_or_that)
636
+ return _derive_df_and_required_columns(X=X, y=y, groups=groups, kwargs=kwargs,
637
+ fit_partition_cols=self._fit_partition_colums_non_default)
638
+
639
+ def _initialize_object(self):
640
+ """
641
+ Internal function to initialize sklearn object from module name and class name.
642
+ """
643
+ # Needed when writing imported modules to generated file. TODO: Remove later.
644
+ imported_args = {}
645
+ # If there are any objects of class `_SkLearnObjectWrapper`, it is modified to
646
+ # corresponding sklearn object.
647
+ new_sklearn_pos_args = self.modify_args(None, self.pos_args, imported_args)
648
+ new_sklearn_kwargs = self.modify_args(None, self.kwargs, imported_args)
649
+
650
+ # Create model object from new positional and keyword arguments.
651
+ class_obj = getattr(import_module(self.module_name), self.class_name)
652
+ if new_sklearn_pos_args:
653
+ self.modelObj = class_obj(*new_sklearn_pos_args, **new_sklearn_kwargs)
654
+ else:
655
+ self.modelObj = class_obj(**new_sklearn_kwargs)
656
+
657
+ # All arguments are moved to kwargs and kept pos_args empty.
658
+ # Might help in set_params() bug fix.
659
+ self.pos_args = tuple()
660
+ _arguments = self.modelObj.__dict__
661
+
662
+ if hasattr(self.modelObj, "get_params"):
663
+ # Update kwargs that are both in modelObj and get_params() as there are
664
+ # some classes which return other internals variables also.
665
+ # Hence, filtering them using get_params().
666
+ for k, v in _arguments.items():
667
+ if type(v).__name__ in ["function", "generator"]:
668
+ # TODO: ELE-6351: Skipping adding functions and generators to kwargs as these
669
+ # are not supported yet due to pickling issue.
670
+ continue
671
+ if k in self.get_params():
672
+ self.kwargs[k] = v
673
+ else:
674
+ # Model selection classes will not have `get_params`, in which case modelObj's __dict__
675
+ # is saved as kwargs.
676
+ self.kwargs = _arguments
677
+
678
+ def _initialize_variables(self):
679
+ """
680
+ Internal function to initialize variables used in this class.
681
+ """
682
+ self.feature_names_in_ = None
683
+ self._table_name_prefix = "td_sklearn_"
684
+ self._model_file_name_prefix = _generate_new_name(type="file")
685
+ self.model_file_paths_local = set()
686
+
687
+ self._fit_execution_time = None
688
+ self._fit_predict_execution_time = None
689
+ self._partial_fit_execution_time = None
690
+ self._predict_execution_time = None
691
+ self._transform_execution_time = None
692
+ self._score_execution_time = None
693
+
694
+ # Set to partition columns when training is done with partition columns.
695
+ self._fit_partition_colums_non_default = None
696
+
697
+ self._is_model_installed = False
698
+ self._fit_partition_unique_values = [[self._default_data_partition_value]]
699
+
700
+ def modify_args(self, fp1, arg, imported_args):
701
+ """
702
+ Internal function to recursively (if "arg" is list/tuple/dict) check if any sklearn object
703
+ of opensourceML is present in the argument "arg" and modify it to corresponding sklearn
704
+ object.
705
+ This function can also be used to write import statements to file (if "fp1" is not
706
+ None). Update "imported_args" dictionary with imported module and class name to avoid
707
+ importing same module and class again when writing to file. This is useful when we want to
708
+ generate script from template file.
709
+ Pass None to "fp1" if we don't want to write to file and just modify opensourceML sklearn
710
+ object to corresponding sklearn object.
711
+ """
712
+ if isinstance(arg, type(self)):
713
+ imported_tuple = (arg.module_name, arg.class_name)
714
+ already_imported = imported_args.get(imported_tuple, False)
715
+ if not already_imported:
716
+ imported_args[imported_tuple] = True
717
+ if fp1:
718
+ fp1.write(f"from {arg.module_name} import {arg.class_name}\n")
719
+ self.modify_args(fp1, arg.pos_args, imported_args)
720
+ self.modify_args(fp1, arg.kwargs, imported_args)
721
+ return arg.modelObj
722
+ elif isinstance(arg, list):
723
+ return [self.modify_args(fp1, val, imported_args) for val in arg]
724
+ elif isinstance(arg, tuple):
725
+ return tuple([self.modify_args(fp1, val, imported_args) for val in arg])
726
+ elif type(arg).__name__ == "generator":
727
+ # Raising exception as generator object can't be pickled.
728
+ # TODO: ELE-6351 - Find ways to pickle generator object later.
729
+ raise ValueError("Generator type/iterator is not supported for any argument. "\
730
+ "Support will be added later.")
731
+ elif type(arg).__name__ == "function":
732
+ # Raising exception as functions/lambda functions can't be pickled.
733
+ # TODO: ELE-6351 - Find ways to pickle functions later.
734
+ raise ValueError("Functions are not supported for any argument. "\
735
+ "Support will be added later.")
736
+ elif isinstance(arg, dict):
737
+ return dict(
738
+ (
739
+ self.modify_args(fp1, k, imported_args),
740
+ self.modify_args(fp1, v, imported_args),
741
+ )
742
+ for k, v in arg.items()
743
+ )
744
+ else:
745
+ return arg
746
+
747
+ def _install_initial_model_file(self):
748
+ """
749
+ If model file(s) is/are not installed in Vantage, then install it/them.
750
+ """
751
+ if isinstance(self.modelObj, pd.DataFrame):
752
+ # Get list of unique partition values and corresponding model object as dict.
753
+ partition_values_model_dict = {}
754
+ obj_list = self.modelObj.values.tolist()
755
+ for lst in obj_list:
756
+ partition_values_model_dict[tuple(lst[:len(lst)-1])] = lst[len(lst)-1]
757
+
758
+ for partition in self._fit_partition_unique_values:
759
+ # Create a new file with file name with partition values and
760
+ # dump sklearn object into it. Finally install the file to Vantage.
761
+ partition_join = "_".join([str(x) for x in partition])
762
+ file_name = f"{self._model_file_name_prefix}_{partition_join}"
763
+ # Replace '-' with '_' as '-' can't be present in file identifier.
764
+ # Needed this replace because partition_columns can be negative.
765
+ file_name = file_name.replace("-", "_")
766
+ full_file_name = os.path.join(self._tdml_tmp_dir, file_name)
767
+ with open(full_file_name, "wb+") as fp:
768
+ # Write sklearn object to file.
769
+ if isinstance(self.modelObj, pd.DataFrame):
770
+ # If multiple models, then write the model corresponding to the partition value.
771
+ fp.write(pickle.dumps(partition_values_model_dict[tuple(partition)]))
772
+ else:
773
+ fp.write(pickle.dumps(self.modelObj))
774
+ self.model_file_paths_local.add(file_name)
775
+
776
+ self._install_script_file(file_identifier=file_name,
777
+ file_name=file_name,
778
+ is_binary=True,
779
+ file_location=self._tdml_tmp_dir)
780
+
781
+ if self._is_lake_system:
782
+ # Need to pass env_name along with file_name for cleaning up the files in env.
783
+ obj = f"{self._env.env_name}::{file_name}"
784
+ if installed_model_files[obj] == 0:
785
+ # Add to GC for the first time the model file (along with env name) is encountered.
786
+ installed_model_files[obj] = 1
787
+ GarbageCollector._add_to_garbagecollector(object_name=obj,
788
+ object_type=TeradataConstants.TERADATA_APPLY)
789
+ else:
790
+ if installed_model_files[file_name] == 0:
791
+ # Add to GC for the first time the model file is encountered.
792
+ installed_model_files[file_name] = 1
793
+ GarbageCollector._add_to_garbagecollector(object_name=file_name,
794
+ object_type=TeradataConstants.TERADATA_SCRIPT)
795
+
796
+ self._is_model_installed = True
797
+
798
+ def _run_fit_related_functions(self,
799
+ data,
800
+ feature_columns,
801
+ label_columns,
802
+ partition_columns,
803
+ func,
804
+ classes=None):
805
+ """
806
+ Internal function to run fit() and partial_fit() functions.
807
+ """
808
+ label_columns = self._get_columns_as_list(label_columns)
809
+
810
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
811
+ feature_columns,
812
+ label_columns,
813
+ partition_columns)
814
+
815
+ model_type = BLOB() if self._is_lake_system else CLOB()
816
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
817
+ for col in new_partition_columns] + [("model", model_type)]
818
+
819
+ file_name = "sklearn_fit.py"
820
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
821
+
822
+ if classes:
823
+ class_type = type(classes[0]).__name__
824
+ classes = "--".join([str(x) for x in classes])
825
+ else:
826
+ classes = str(None)
827
+ class_type = str(None)
828
+
829
+ partition_indices, partition_types, new_partition_columns = \
830
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
831
+
832
+ # db_name is applicable for enterprise system.
833
+ db_file_name = file_name if self._is_lake_system else f"./{self._db_name}/{file_name}"
834
+ py_exc = UtilFuncs._get_python_execution_path()
835
+ script_command = f"{py_exc} {db_file_name} {func} {len(feature_columns)} "\
836
+ f"{len(label_columns)} {partition_indices} {partition_types} "\
837
+ f"{self._model_file_name_prefix} {classes} {class_type} {self._is_lake_system}"
838
+
839
+ # Get unique values in partitioning columns.
840
+ self._fit_partition_unique_values = data.drop_duplicate(new_partition_columns).get_values()
841
+
842
+ self._install_initial_model_file()
843
+
844
+ self._model_data = self._run_script(data, script_command, new_partition_columns,
845
+ return_types)
846
+
847
+ # Extract sklearn object(s) from the depending on the number of unique partitioning values.
848
+ self.extract_sklearn_obj(n_unique_partitions=len(self._fit_partition_unique_values),
849
+ n_partition_cols=len(new_partition_columns))
850
+
851
+ # Need this label columns types in prediction.
852
+ self._fit_label_columns_types = [data._td_column_names_and_sqlalchemy_types[l_c.lower()]
853
+ for l_c in label_columns]
854
+
855
+ def partial_fit(self, X=None, y=None, classes=None, **kwargs):
856
+ """
857
+ Please check the description in Docs/OpensourceML/sklearn.py.
858
+ """
859
+ st_time = time.time()
860
+
861
+ # "classes" argument validation.
862
+ arg_info_matrix = []
863
+ arg_info_matrix.append(["classes", classes, True, (list)])
864
+ _Validators._validate_function_arguments(arg_info_matrix)
865
+
866
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
867
+
868
+ data, feature_columns, label_columns, _, partition_columns = \
869
+ self._validate_args_and_get_data(X=X, y=y, groups=None, kwargs=kwargs)
870
+
871
+ if partition_columns:
872
+ self._is_default_partition_value_fit = False
873
+ self._fit_partition_colums_non_default = partition_columns
874
+
875
+ self._run_fit_related_functions(data,
876
+ feature_columns,
877
+ label_columns,
878
+ partition_columns,
879
+ inspect.stack()[0][3],
880
+ classes)
881
+
882
+ self._partial_fit_execution_time = time.time() - st_time
883
+
884
+ return self
885
+
886
+ def fit(self, X=None, y=None, **kwargs):
887
+ """
888
+ Please check the description in Docs/OpensourceML/sklearn.py.
889
+ """
890
+ st_time = time.time()
891
+
892
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
893
+
894
+ data, feature_columns, label_columns, _, partition_columns = \
895
+ self._validate_args_and_get_data(X=X, y=y, groups=None, kwargs=kwargs)
896
+
897
+ if partition_columns:
898
+ self._is_default_partition_value_fit = False
899
+ self._fit_partition_colums_non_default = partition_columns
900
+
901
+ self._run_fit_related_functions(data,
902
+ feature_columns,
903
+ label_columns,
904
+ partition_columns,
905
+ inspect.stack()[0][3])
906
+
907
+ self._fit_execution_time = time.time() - st_time
908
+
909
+ return self
910
+
911
+ def set_params(self, **params):
912
+ """
913
+ Please check the description in Docs/OpensourceML/sklearn.py.
914
+ """
915
+ for key, val in params.items():
916
+ self.kwargs[key] = val
917
+
918
+ # Initialize with new arguments and return the class/model object.
919
+ # set_params takes all keyword arguments and no positional arguments.
920
+ self.__init__(None, self.module_name, self.class_name, tuple(), self.kwargs)
921
+ return self
922
+
923
+ # get_params() will be executed through __getattr__().
924
+
925
+ # @_validate_fit_run
926
+ def __getattr__(self, name):
927
+ def __run_transform(*c, **kwargs):
928
+ kwargs["name"] = name
929
+ return self._transform(*c, **kwargs)
930
+
931
+ def __run_function_needing_all_rows(*c, **kwargs):
932
+ kwargs["name"] = name
933
+ return self._run_function_needing_all_rows(*c, **kwargs)
934
+
935
+ def __run_kneighbors(*c, **kwargs):
936
+ kwargs["name"] = name
937
+ return self._run_neighbors(*c, **kwargs)
938
+
939
+ if name in ["score", "aic", "bic", "perplexity"]:
940
+ # TODO: ELE-6352 - Implement error_norm() function later.
941
+ return __run_function_needing_all_rows
942
+
943
+ if name in ["kneighbors",
944
+ "radius_neighbors",
945
+ "kneighbors_graph",
946
+ "radius_neighbors_graph"]:
947
+ return __run_kneighbors
948
+
949
+ if name in ["predict",
950
+ "transform",
951
+ "inverse_transform",
952
+ "predict_proba",
953
+ "predict_log_proba",
954
+ "decision_function",
955
+ "score_samples",
956
+ "decision_path",
957
+ "apply",
958
+ "cost_complexity_pruning_path",
959
+ "gibbs",
960
+ "kneighbors_graph",
961
+ "radius_neighbors_graph",
962
+ "mahalanobis",
963
+ "correct_covariance",
964
+ "reweight_covariance",
965
+ "path"]:
966
+ return __run_transform
967
+
968
+ return super().__getattr__(name)
969
+
970
+ def _get_return_columns_for_function_(self,
971
+ data,
972
+ feature_columns,
973
+ label_columns,
974
+ func_name,
975
+ n_partitions,
976
+ kwargs):
977
+ """
978
+ Internal function to return list of column names and their sqlalchemy types
979
+ which should be used in return_types of Script.
980
+ """
981
+ if func_name == "fit_predict":
982
+ """
983
+ Get return columns using label_columns.
984
+ """
985
+ return [(f"{self.class_name.lower()}_{func_name}_{(i + 1)}",
986
+ data._td_column_names_and_sqlalchemy_types[col.lower()])
987
+ for i, col in enumerate(label_columns)]
988
+ if func_name == "predict":
989
+ """
990
+ Return predict columns using either label_columns (if provided) or
991
+ self._fit_label_columns_types (if the function is trained using label columns).
992
+ Otherwise run predict on ten rows of data to get the number of columns and their types
993
+ after this if condition.
994
+ """
995
+ if label_columns:
996
+ return [(f"{self.class_name.lower()}_{func_name}_{(i + 1)}",
997
+ data._td_column_names_and_sqlalchemy_types[col.lower()])
998
+ for i, col in enumerate(label_columns)]
999
+ if self._fit_label_columns_types:
1000
+ return [(f"{self.class_name.lower()}_{func_name}_{(i + 1)}", col_type)
1001
+ for i, col_type in enumerate(self._fit_label_columns_types)]
1002
+
1003
+ data = data.select(feature_columns + label_columns)
1004
+
1005
+ ## If function is not `fit_predict`:
1006
+ # then take one row of transform/other functions to execute in client
1007
+ # to get number of columns in return clause and their Vantage types.
1008
+ n_f = len(feature_columns)
1009
+ n_c = len(label_columns)
1010
+
1011
+ # For paritioning columns, it will be a dataframe and getattr(modelObj, func_name) fails.
1012
+ # Just for getting the number of columns and their types, using only one model of all.
1013
+ if n_partitions == 1:
1014
+ # Single model case.
1015
+ skl_obj = self.modelObj
1016
+ else:
1017
+ # Multi model case.
1018
+ skl_obj = self.modelObj.iloc[0]["model"]
1019
+
1020
+ ten_row_data = data.head(10).get_values()
1021
+ X = numpy.array(ten_row_data)
1022
+ if label_columns:
1023
+ y = X[:,n_f : n_f + n_c]
1024
+ X = X[:,:n_f]
1025
+ # predict() now takes 'y' also for it to return the labels from script. Skipping 'y'
1026
+ # in local run if passed. Generally, 'y' is passed to return y along with actual output.
1027
+ try:
1028
+ trans_opt = getattr(skl_obj, func_name)(X, y, **kwargs)
1029
+ except TypeError as ex:
1030
+ # Function which does not accept 'y' like predict_proba() raises error like
1031
+ # "predict_proba() takes 2 positional arguments but 3 were given".
1032
+ trans_opt = getattr(skl_obj, func_name)(X, **kwargs)
1033
+ else:
1034
+ trans_opt = getattr(skl_obj, func_name)(X, **kwargs)
1035
+
1036
+ if func_name == "path":
1037
+ raise NotImplementedError(
1038
+ "path() returns tuple of ndarrays of different shapes. Not Implemented yet."
1039
+ )
1040
+
1041
+ # This import is as per scipy version 1.10.x in local machine as teradataml does not
1042
+ # impose restrictions on this package in setup.py. TODO
1043
+ from scipy.sparse import csr_matrix
1044
+
1045
+ if isinstance(trans_opt, csr_matrix):
1046
+ no_of_columns = trans_opt.get_shape()[1]
1047
+ trans_opt = trans_opt.toarray()
1048
+ elif isinstance(trans_opt, dict):
1049
+ raise NotImplementedError(f"Output returns dictionary {trans_opt}. NOT implemented yet.")
1050
+ elif isinstance(trans_opt[0], numpy.ndarray) \
1051
+ or isinstance(trans_opt[0], list) \
1052
+ or isinstance(trans_opt[0], tuple):
1053
+ no_of_columns = len(trans_opt[0])
1054
+ else:
1055
+ no_of_columns = 1
1056
+
1057
+ # Special handling required for cross_decomposition classes's transform function, which
1058
+ # takes label columns also. In this case, output is a tuple of numpy arrays - x_scores and
1059
+ # y_scores. If label columns are not provided, only x_scores are returned.
1060
+ if self.module_name == "sklearn.cross_decomposition" and func_name == "transform":
1061
+ # For cross_decomposition, output is a tuple of arrays when label columns are provided
1062
+ # along with feature columns for transform function. In this case, concatenate the
1063
+ # arrays and return the column names accordingly.
1064
+ if isinstance(trans_opt, tuple): # tuple when label_columns is provided.
1065
+ assert trans_opt[0].shape == trans_opt[1].shape,\
1066
+ "Output arrays should be of same shape when transform/fit_transform is run "\
1067
+ "with label columns for cross_decomposition classes.."
1068
+ first_cols = [f"x_scores_{(i + 1)}" for i in range(trans_opt[0].shape[1])]
1069
+ second_cols = [f"y_scores_{(i + 1)}" for i in range(trans_opt[1].shape[1])]
1070
+ no_of_columns = trans_opt[0].shape[1] + trans_opt[1].shape[1]
1071
+ col_names = first_cols + second_cols
1072
+
1073
+ trans_opt = numpy.concatenate(trans_opt, axis=1)
1074
+ else:
1075
+ assert isinstance(trans_opt, numpy.ndarray), "When transform/fit_transform is run "\
1076
+ "without label columns for cross_decomposition classes, "\
1077
+ "output should be a numpy array."
1078
+ no_of_columns = trans_opt.shape[1]
1079
+ col_names =[f"x_scores_{(i + 1)}" for i in range(trans_opt.shape[1])]
1080
+ else:
1081
+ # Generate list of new column names.
1082
+ col_names = [f"{self.class_name.lower()}_{func_name}_{(i + 1)}" for i in range(no_of_columns)]
1083
+
1084
+ # Get new column sqlalchemy types for pandas df columns of transform output.
1085
+ opt_pd = pd.DataFrame(trans_opt)
1086
+
1087
+ # If the datatype is not specified then check if the datatype is datetime64 and timezone is present then map it to
1088
+ # TIMESTAMP(timezone=True) else map it according to default value.
1089
+ col_types = [TIMESTAMP(timezone=True)
1090
+ if pt.is_datetime64_ns_dtype(opt_pd.dtypes[key]) and (opt_pd[col_name].dt.tz is not None)
1091
+ else _get_sqlalchemy_mapping(str(opt_pd.dtypes[key]))
1092
+ for key, col_name in enumerate(list(opt_pd.columns))]
1093
+
1094
+ return [(c_name, c_type) for c_name, c_type in zip(col_names, col_types)]
1095
+
1096
+ @_validate_fit_run
1097
+ def _run_function_needing_all_rows(self, X=None, y=None, **kwargs):
1098
+ """
1099
+ Internal function to run functions like score, aic, bic which needs all rows and return
1100
+ one floating number as result.
1101
+ """
1102
+ st_time = time.time()
1103
+
1104
+ assert kwargs["name"], "function name should be passed."
1105
+ func_name = kwargs["name"]
1106
+
1107
+ # Remove 'name' to pass other kwargs to script. TODO: Not passing it now.
1108
+ kwargs.pop("name")
1109
+
1110
+ data, feature_columns, label_columns, _, partition_columns = \
1111
+ self._validate_args_and_get_data(X=X, y=y, groups=None, kwargs=kwargs)
1112
+
1113
+ label_columns = self._get_columns_as_list(label_columns)
1114
+
1115
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
1116
+ feature_columns,
1117
+ label_columns,
1118
+ partition_columns)
1119
+
1120
+ file_name = "sklearn_score.py"
1121
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
1122
+
1123
+ script_file_path = f"{file_name}" if self._is_lake_system \
1124
+ else f"./{self._db_name}/{file_name}"
1125
+
1126
+ partition_indices, partition_types, new_partition_columns = \
1127
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
1128
+
1129
+ self._validate_unique_partition_values(data, new_partition_columns)
1130
+
1131
+ py_exc = UtilFuncs._get_python_execution_path()
1132
+ script_command = f"{py_exc} {script_file_path} {func_name} {len(feature_columns)} "\
1133
+ f"{len(label_columns)} {partition_indices} {partition_types} "\
1134
+ f"{self._model_file_name_prefix} {self._is_lake_system}"
1135
+
1136
+ # score, aic, bic returns float values.
1137
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1138
+ for col in new_partition_columns] + [(func_name, FLOAT())]
1139
+
1140
+ self._install_initial_model_file()
1141
+
1142
+ opt = self._run_script(data, script_command, new_partition_columns, return_types)
1143
+
1144
+ self._score_execution_time = time.time() - st_time
1145
+
1146
+ if self._is_default_partition_value_fit:
1147
+ # For single model case, partition column is internally generated and
1148
+ # no point in returning it to the user.
1149
+ return opt.select(func_name)
1150
+
1151
+ return opt
1152
+
1153
+ @_validate_fit_run
1154
+ def _transform(self, X=None, y=None, **kwargs):
1155
+ """
1156
+ Internal function to run predict/transform and similar functions, which returns
1157
+ multiple columns. This function will return data row along with the generated
1158
+ columns' row data, unlike sklearn's functions which returns just output data.
1159
+ """
1160
+ st_time = time.time()
1161
+
1162
+ assert kwargs["name"], "function name should be passed."
1163
+ func_name = kwargs["name"]
1164
+
1165
+ # Remove 'name' to pass other kwargs to script. TODO: Not passing it now.
1166
+ kwargs.pop("name")
1167
+
1168
+ data, feature_columns, label_columns, _, partition_columns = \
1169
+ self._validate_args_and_get_data(X=X, y=y, groups=None, kwargs=kwargs)
1170
+
1171
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
1172
+ feature_columns,
1173
+ label_columns,
1174
+ partition_columns)
1175
+
1176
+ # Since kwargs are passed to transform, removing additional unrelated arguments from kwargs.
1177
+ if "data" in kwargs:
1178
+ kwargs.pop("data")
1179
+ if "feature_columns" in kwargs:
1180
+ kwargs.pop("feature_columns")
1181
+ if "group_columns" in kwargs:
1182
+ kwargs.pop("group_columns")
1183
+ if "partition_columns" in kwargs:
1184
+ kwargs.pop("partition_columns")
1185
+ if "label_columns" in kwargs:
1186
+ kwargs.pop("label_columns")
1187
+
1188
+ file_name = "sklearn_transform.py"
1189
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
1190
+
1191
+ script_file_path = f"{file_name}" if self._is_lake_system \
1192
+ else f"./{self._db_name}/{file_name}"
1193
+
1194
+ partition_indices, partition_types, new_partition_columns = \
1195
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
1196
+
1197
+ self._validate_unique_partition_values(data, new_partition_columns)
1198
+
1199
+ py_exc = UtilFuncs._get_python_execution_path()
1200
+ script_command = f"{py_exc} {script_file_path} {func_name} {len(feature_columns)} "\
1201
+ f"{len(label_columns)} {partition_indices} {partition_types} "\
1202
+ f"{self._model_file_name_prefix} {self._is_lake_system}"
1203
+
1204
+ # Returning feature columns also along with transformed columns because we don't know the
1205
+ # mapping of feature columns to the transformed columns.
1206
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1207
+ for col in (new_partition_columns + feature_columns)]
1208
+ if func_name in ["predict", "decision_function"] and label_columns:
1209
+ return_types += [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1210
+ for col in label_columns]
1211
+ return_types += self._get_return_columns_for_function_(data,
1212
+ feature_columns,
1213
+ label_columns,
1214
+ func_name,
1215
+ len(new_partition_columns),
1216
+ kwargs)
1217
+
1218
+ # Installing model files before running sklearn_transform.py.
1219
+ self._install_initial_model_file()
1220
+
1221
+ opt = self._run_script(data, script_command, new_partition_columns, return_types)
1222
+
1223
+ self._transform_execution_time = time.time() - st_time
1224
+
1225
+ return self._get_returning_df(opt, new_partition_columns, return_types)
1226
+
1227
+ def fit_predict(self, X=None, y=None, **kwargs):
1228
+ """
1229
+ Please check the description in Docs/OpensourceML/sklearn.py.
1230
+ """
1231
+ st_time = time.time()
1232
+
1233
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
1234
+
1235
+ data, feature_columns, label_columns, _, partition_columns = \
1236
+ self._validate_args_and_get_data(X=X, y=y, groups=None, kwargs=kwargs)
1237
+
1238
+ if partition_columns:
1239
+ self._is_default_partition_value_fit = False
1240
+
1241
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
1242
+ feature_columns,
1243
+ label_columns,
1244
+ partition_columns)
1245
+
1246
+ # Return label_columns also if user provides in the function call.
1247
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1248
+ for col in (new_partition_columns + feature_columns + label_columns)]
1249
+
1250
+ func_name = inspect.stack()[0][3]
1251
+ if label_columns:
1252
+ return_types += self._get_return_columns_for_function_(data,
1253
+ feature_columns,
1254
+ label_columns,
1255
+ func_name,
1256
+ len(new_partition_columns),
1257
+ {})
1258
+ else:
1259
+ # If there are no label_columns, we will have only one
1260
+ # predicted column.
1261
+ return_types += [(f"{self.class_name.lower()}_{func_name}_1", FLOAT())]
1262
+
1263
+ file_name = "sklearn_fit_predict.py"
1264
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
1265
+
1266
+ partition_indices, partition_types, new_partition_columns = \
1267
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
1268
+
1269
+ script_file_name = f"{file_name}" if self._is_lake_system \
1270
+ else f"./{self._db_name}/{file_name}"
1271
+ py_exc = UtilFuncs._get_python_execution_path()
1272
+ script_command = f"{py_exc} {script_file_name} {len(feature_columns)} "\
1273
+ f"{len(label_columns)} {partition_indices} {partition_types} "\
1274
+ f"{self._model_file_name_prefix} {self._is_lake_system}"
1275
+
1276
+ # Get unique values in partitioning columns.
1277
+ self._fit_partition_unique_values = data.drop_duplicate(new_partition_columns).get_values()
1278
+
1279
+ self._install_initial_model_file()
1280
+
1281
+ opt = self._run_script(data, script_command, new_partition_columns, return_types)
1282
+
1283
+ self._fit_predict_execution_time = time.time() - st_time
1284
+
1285
+ if self._is_default_partition_value_fit:
1286
+ # For single model case, partition column is internally generated and no point in
1287
+ # returning it to the user.
1288
+
1289
+ # Extract columns from return types.
1290
+ returning_cols = [col[0] for col in return_types[len(new_partition_columns):]]
1291
+ return opt.select(returning_cols)
1292
+
1293
+ return opt
1294
+
1295
+ def fit_transform(self, X=None, y=None, **kwargs):
1296
+ """
1297
+ Please check the description in Docs/OpensourceML/sklearn.py.
1298
+ """
1299
+ # 'y' is not needed for transform().
1300
+ fit_obj = self.fit(X, y, **kwargs)
1301
+ kwargs["label_columns"] = None
1302
+ return fit_obj.transform(X, None, **kwargs)
1303
+
1304
+ @_validate_fit_run
1305
+ def _run_neighbors(self, X=None, **kwargs):
1306
+ """
1307
+ Internal function to run functions like kneighbors, radius_neighbors, kneighbors_graph,
1308
+ radius_neighbors_graph which returns multiple columns. This function will return data row
1309
+ along with the generated columns' row data, unlike sklearn's functions which returns just
1310
+ output data.
1311
+ """
1312
+ assert kwargs["name"], "function name should be passed."
1313
+ func_name = kwargs["name"]
1314
+ kwargs.pop("name")
1315
+
1316
+ if self.module_name != "sklearn.neighbors":
1317
+ raise AttributeError(f"{self.module_name+'.'+self.class_name} does not have {func_name}() method.")
1318
+
1319
+ data = kwargs.get("data", None)
1320
+ partition_columns = kwargs.get("partition_columns", None)
1321
+
1322
+ if not X and not partition_columns and not data:
1323
+ # If data is not passed, then run from client only.
1324
+ # TODO: decide whether to run from client or from Vantage.
1325
+ opt = super().__getattr__(func_name)(**kwargs)
1326
+ from scipy.sparse.csr import csr_matrix
1327
+ if isinstance(opt, csr_matrix):
1328
+ return opt.toarray()
1329
+ return opt
1330
+
1331
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
1332
+
1333
+ data, feature_columns, _, _, new_partition_columns = \
1334
+ self._validate_args_and_get_data(X=X, y=None, groups=None, kwargs=kwargs,
1335
+ skip_either_or_that=True)
1336
+
1337
+ # Remove the kwargs data.
1338
+ input_data = kwargs.pop("data", None)
1339
+ partition_cols = kwargs.pop("partition_columns", None)
1340
+ feature_cols = kwargs.pop("feature_columns", None)
1341
+ label_cols = kwargs.pop("label_columns", None)
1342
+
1343
+ if partition_columns:
1344
+ # kwargs are passed to kneighbors function. So, removing them from kwargs.
1345
+ kwargs.pop("partition_columns")
1346
+ self._is_default_partition_value_fit = False
1347
+
1348
+ # Generating new partition column name.
1349
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
1350
+ feature_columns,
1351
+ [],
1352
+ partition_columns)
1353
+
1354
+ args_str = self._get_kwargs_str(kwargs)
1355
+
1356
+ file_name = "sklearn_neighbors.py"
1357
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
1358
+
1359
+ script_file_path = f"{file_name}" if self._is_lake_system \
1360
+ else f"./{self._db_name}/{file_name}"
1361
+
1362
+ # Returning feature columns also along with new columns.
1363
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1364
+ for col in (new_partition_columns + feature_columns)]
1365
+
1366
+ # `return_distance` is needed as the result is a tuple of two arrays when it is True.
1367
+ return_distance = kwargs.get("return_distance", True) # Default value is True.
1368
+
1369
+ # Though new columns return numpy arrays, we are returning them as strings.
1370
+ # TODO: Will update to columns later, if requested later.
1371
+ if func_name in ['kneighbors', 'radius_neighbors']:
1372
+ if return_distance:
1373
+ return_types += [("neigh_dist", VARCHAR())]
1374
+ return_types += [("neigh_ind", VARCHAR())]
1375
+ elif func_name in ['kneighbors_graph', 'radius_neighbors_graph']:
1376
+ return_types += [("A", VARCHAR())]
1377
+ else:
1378
+ return_types += [("output", VARCHAR())]
1379
+
1380
+ partition_indices, partition_types, new_partition_columns = \
1381
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
1382
+
1383
+ py_exc = UtilFuncs._get_python_execution_path()
1384
+ script_command = f"{py_exc} {script_file_path} {func_name} {len(feature_columns)} "\
1385
+ f"{partition_indices} {partition_types} {self._model_file_name_prefix} {self._is_lake_system} "\
1386
+ f"{args_str}"
1387
+
1388
+ # Get unique values in partitioning columns.
1389
+ self._fit_partition_unique_values = data.drop_duplicate(new_partition_columns).get_values()
1390
+
1391
+ self._install_initial_model_file()
1392
+
1393
+ opt = self._run_script(data, script_command, new_partition_columns, return_types)
1394
+
1395
+ return self._get_returning_df(opt, new_partition_columns, return_types)
1396
+
1397
+ def split(self, X=None, y=None, groups=None, **kwargs):
1398
+ """
1399
+ Please check the description in Docs/OpensourceML/sklearn.py.
1400
+ """
1401
+ opt = self._run_model_selection("split", X=X, y=y, groups=groups,
1402
+ skip_either_or_that=True, kwargs=kwargs)
1403
+
1404
+ # Get number of splits in the result DataFrame.
1405
+ n_splits = opt.drop_duplicate("split_id").shape[0]
1406
+
1407
+ data = kwargs.get("data", None)
1408
+ feature_columns = kwargs.get("feature_columns", [])
1409
+ label_columns = self._get_columns_as_list(kwargs.get("label_columns", []))
1410
+
1411
+ # If there is not X and y, get feature_columns and label_columns for "data".
1412
+ partition_columns = kwargs.get("partition_columns", [])
1413
+ feature_columns = [col for col in X.columns if col not in partition_columns] \
1414
+ if X and not data and not feature_columns else feature_columns
1415
+ label_columns = y.columns if y and not data and not label_columns else label_columns
1416
+
1417
+ # Return iterator of the train and test dataframes for each split.
1418
+ for i in range(1, n_splits+1):
1419
+ train_df = opt[(opt.split_id == i) & (opt.data_type == "train")]\
1420
+ .select(partition_columns + feature_columns + label_columns)
1421
+ train_df._index_label = None
1422
+ test_df = opt[(opt.split_id == i) & (opt.data_type == "test")]\
1423
+ .select(partition_columns + feature_columns + label_columns)
1424
+ test_df._index_label = None
1425
+
1426
+ yield train_df, test_df
1427
+
1428
+ def get_n_splits(self, X=None, y=None, groups=None, **kwargs):
1429
+ """
1430
+ Please check the description in Docs/OpensourceML/sklearn.py.
1431
+ """
1432
+ return self._run_model_selection("get_n_splits", X=X, y=y, groups=groups,
1433
+ skip_either_or_that=True, kwargs=kwargs)
1434
+
1435
+ def _run_model_selection(self,
1436
+ func_name,
1437
+ X=None,
1438
+ y=None,
1439
+ groups=None,
1440
+ skip_either_or_that=False,
1441
+ kwargs={}):
1442
+ """
1443
+ Internal function to run functions like split, get_n_splits of model selection module.
1444
+ - get_n_splits() returns number of splits as value, not as teradataml DataFrame.
1445
+ - split() returns teradataml DataFrame containing train and test data for each split
1446
+ (add partition information if the argument "partition_cols" is provided).
1447
+ """
1448
+ if self.module_name != "sklearn.model_selection":
1449
+ raise AttributeError(f"{self.module_name+'.'+self.class_name} does not "
1450
+ f"have {func_name}() method.")
1451
+
1452
+ data = kwargs.get("data", None)
1453
+
1454
+ if not X and not y and not groups and not data:
1455
+ # If data is not passed, then run from client only.
1456
+ # TODO: decide whether to run from client or from Vantage.
1457
+ return super().__getattr__(func_name)()
1458
+
1459
+ self._is_default_partition_value_fit = True # False when the user provides partition columns.
1460
+
1461
+ data, feature_columns, label_columns, group_columns, partition_columns = \
1462
+ self._validate_args_and_get_data(X=X, y=y, groups=groups, kwargs=kwargs,
1463
+ skip_either_or_that=skip_either_or_that)
1464
+
1465
+ if partition_columns:
1466
+ self._is_default_partition_value_fit = False
1467
+
1468
+ data, new_partition_columns = self._get_data_and_data_partition_columns(data,
1469
+ feature_columns,
1470
+ label_columns,
1471
+ partition_columns,
1472
+ group_columns)
1473
+
1474
+ file_name = "sklearn_model_selection_split.py"
1475
+ self._install_script_file(file_identifier=file_name.split(".")[0], file_name=file_name)
1476
+
1477
+ script_file_path = f"{file_name}" if self._is_lake_system \
1478
+ else f"./{self._db_name}/{file_name}"
1479
+
1480
+ if func_name == "split":
1481
+ # Need to generate data into splits of train and test.
1482
+ # split_id - the column which will be used to identify the split.
1483
+ # data_type - the column which will be used to identify whether the row is
1484
+ # train or test row.
1485
+ return_types = [("split_id", INTEGER()), ("data_type", VARCHAR())]
1486
+ # Returning feature columns and label columns as well.
1487
+ return_types += [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1488
+ for col in (feature_columns + label_columns)]
1489
+ else:
1490
+ # Return Varchar by default.
1491
+ # Returns Varchar even for functions like `get_n_splits` which returns large integer
1492
+ # numbers like `4998813702034726525205100` for `LeavePOut` class (when the argument
1493
+ # `p` is 28 and no of data rows is 100) as Vantage cannot scope it to INTEGER.
1494
+ return_types = [(func_name, VARCHAR())]
1495
+
1496
+ return_types = [(col, data._td_column_names_and_sqlalchemy_types[col.lower()])
1497
+ for col in new_partition_columns] + return_types
1498
+
1499
+ partition_indices, partition_types, new_partition_columns = \
1500
+ self._get_partition_col_indices_and_types(data, new_partition_columns)
1501
+
1502
+ py_exc = UtilFuncs._get_python_execution_path()
1503
+ script_command = f"{py_exc} {script_file_path} {func_name} {len(feature_columns)} "\
1504
+ f"{len(label_columns)} {len(group_columns)} {partition_indices} {partition_types} "\
1505
+ f"{self._model_file_name_prefix} {self._is_lake_system}"
1506
+
1507
+ # Get unique values in partitioning columns.
1508
+ self._fit_partition_unique_values = data.drop_duplicate(new_partition_columns).get_values()
1509
+
1510
+ self._install_initial_model_file()
1511
+
1512
+ opt = self._run_script(data, script_command, new_partition_columns, return_types)
1513
+
1514
+ if func_name == "get_n_splits" and not partition_columns:
1515
+ # Return number of splits as value, not as dataframe.
1516
+ vals = execute_sql("select {} from {}".format(func_name, opt._table_name))
1517
+ opt = vals.fetchall()[0][0]
1518
+
1519
+ # Varchar is returned by the script. Convert it to int.
1520
+ return int(opt)
1521
+
1522
+ return opt
1523
+
1524
+ def _get_returning_df(self, script_df, partition_column, returns):
1525
+ """
1526
+ Internal function to return the teradataml Dataframe except
1527
+ partition_column.
1528
+ """
1529
+ if self._is_default_partition_value_fit:
1530
+ # For single model case, partition column is internally generated
1531
+ # and no point in returning it to the user.
1532
+
1533
+ # Extract columns from return types.
1534
+ returning_cols = [col[0] for col in returns[len(partition_column):]]
1535
+ return script_df.select(returning_cols)
1536
+ return script_df
1537
+
1538
+
1539
+ class _SKLearnFunctionWrapper(_GenericObjectWrapper):
1540
+ def __init__(self, module_name, func_name):
1541
+ super().__init__()
1542
+ self.__module_name = module_name
1543
+ self.__func_name = func_name
1544
+ self.__params = None
1545
+ self.__data_args = OrderedDict()
1546
+ self._model_file_name = _generate_new_name(type="file_function", extension="py")
1547
+
1548
+ def __call__(self, **kwargs):
1549
+ """
1550
+ Run the function with all the arguments passed from `td_sklearn.<function_name>` function.
1551
+ """
1552
+ __data_columns = []
1553
+
1554
+ partition_cols = self._get_columns_as_list(kwargs.get("partition_columns", None))
1555
+ if partition_cols:
1556
+ kwargs.pop("partition_columns")
1557
+
1558
+ # Separate dataframe related arguments and their column names from actual kwargs.
1559
+ for k, v in kwargs.items():
1560
+ if isinstance(v, DataFrame):
1561
+ # All dataframes should be select of parent dataframe.
1562
+ _validate_df_query_type(v, "select", k)
1563
+
1564
+ # Save all columns in dataframe related arguments.
1565
+ __data_columns.extend(v.columns)
1566
+
1567
+ self.__data_args[k] = v
1568
+
1569
+
1570
+ # Get common parent dataframe from all dataframes.
1571
+ self.__tdml_df = DataFrameUtils()._get_common_parent_df_from_dataframes(list(self.__data_args.values()))
1572
+
1573
+ self._validate_existence_of_partition_columns(partition_cols, self.__tdml_df.columns)
1574
+
1575
+ self.__tdml_df = self.__tdml_df.select(__data_columns + partition_cols)
1576
+
1577
+ self.__tdml_df, partition_cols = self._get_data_and_data_partition_columns(self.__tdml_df,
1578
+ __data_columns,
1579
+ [],
1580
+ partition_cols
1581
+ )
1582
+
1583
+ # Prepare string of data arguments with name, indices where columns of that argument resides
1584
+ # and types of each of the column.
1585
+ data_args_str = self._prepare_data_args_string(kwargs)
1586
+
1587
+ self.__params = kwargs
1588
+
1589
+ # Get indices and types of partition_columns.
1590
+ idxs, types, partition_cols = self._get_partition_col_indices_and_types(self.__tdml_df,
1591
+ partition_cols)
1592
+
1593
+ script_file_path = f"{self._model_file_name}" if self._is_lake_system \
1594
+ else f"./{self._db_name}/{self._model_file_name}"
1595
+ py_exc = UtilFuncs._get_python_execution_path()
1596
+ script_command = (f"{py_exc} {script_file_path} {idxs}"
1597
+ f" ") + \
1598
+ f"{types} {data_args_str}"
1599
+
1600
+ return_types = [(col, self.__tdml_df._td_column_names_and_sqlalchemy_types[col.lower()])
1601
+ for col in partition_cols] + [(self.__func_name, CLOB())]
1602
+
1603
+ # Generate new file in .teradataml directory and install it to Vantage.
1604
+ self._prepare_and_install_file()
1605
+
1606
+ self._model_data = self._run_script(self.__tdml_df, script_command, partition_cols, return_types)
1607
+ self._model_data._index_label = None
1608
+
1609
+ fit_partition_unique_values = self.__tdml_df.drop_duplicate(partition_cols).get_values()
1610
+
1611
+ self.extract_sklearn_obj(n_unique_partitions=len(fit_partition_unique_values),
1612
+ n_partition_cols=len(partition_cols))
1613
+
1614
+ # File cleanup after processing.
1615
+ os.remove(self._model_file_local)
1616
+ remove_file(file_identifier=self._model_file_name.split(".")[0], suppress_output=True,
1617
+ force_remove=True)
1618
+
1619
+ return self.modelObj
1620
+
1621
+ def _prepare_data_args_string(self, kwargs):
1622
+ data_args_str = []
1623
+ for arg_name in list(self.__data_args.keys()):
1624
+ # Remove DataFrame arguments from kwargs, which will be passed to Script.
1625
+ kwargs.pop(arg_name)
1626
+
1627
+ # Get column indices and their types for each dataframe from parent dataframe.
1628
+ _indices, _types, _ = self._get_partition_col_indices_and_types(self.__tdml_df,
1629
+ self.__data_args[arg_name].columns)
1630
+
1631
+ # Format "<arg_name>-<comma separated indices>-<comma separated types>"
1632
+ data_args_str.append(f"{arg_name}-{_indices}-{_types}")
1633
+
1634
+ # Format "{<arg_name>-<comma separated indices>-<comma separated types>}--
1635
+ # {<arg_name>-<comma separated indices>-<comma separated types>}"
1636
+ return "--".join(data_args_str)
1637
+
1638
+ def _validate_existence_of_partition_columns(self, partition_columns, all_columns):
1639
+ """
1640
+ Validate if columns in "partition_columns" argument are present in any of the given
1641
+ dataframes.
1642
+ """
1643
+ invalid_part_cols = [c for c in partition_columns if c not in all_columns]
1644
+
1645
+ if invalid_part_cols:
1646
+ raise ValueError(Messages.get_message(MessageCodes.INVALID_PARTITIONING_COLS,
1647
+ ", ".join(invalid_part_cols),
1648
+ "', '".join(list(self.__data_args.keys())))
1649
+ )
1650
+
1651
+ def _prepare_and_install_file(self):
1652
+ """
1653
+ Prepare function script file from template file and install it in Vaantage.
1654
+ """
1655
+ with open(os.path.join(self._scripts_path, "sklearn_function.template")) as fp:
1656
+ script_data = fp.read()
1657
+ script_data = script_data.replace("<module_name>",self.__module_name).\
1658
+ replace("<func_name>",self.__func_name).replace("<params>", json.dumps(self.__params))
1659
+
1660
+ self._model_file_local = os.path.join(self._tdml_tmp_dir, self._model_file_name)
1661
+
1662
+ with open(self._model_file_local, "w") as fp:
1663
+ fp.write(script_data)
1664
+
1665
+ self._install_script_file(file_identifier=self._model_file_name.split(".")[0],
1666
+ file_name=self._model_file_name,
1667
+ file_location=self._tdml_tmp_dir)
1668
+