teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,543 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Bhavana N (bhavana.n@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.0
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class MovingAverage:
31
-
32
- def __init__(self,
33
- data = None,
34
- target_columns = None,
35
- alpha = 0.1,
36
- start_rows = 2,
37
- window_size = 10,
38
- include_first = False,
39
- mavgtype = "C",
40
- data_partition_column = None,
41
- data_order_column = None):
42
- """
43
- DESCRIPTION:
44
- The MovingAverage function calculates the moving average of the
45
- target columns based on the moving average types ("mvgtype").
46
- Possible moving average types:
47
- 'C' Cumulative moving average.
48
- 'E' Exponential moving average.
49
- 'M' Modified moving average.
50
- 'S' Simple moving average.
51
- 'T' Triangular moving average.
52
- 'W' Weighted moving average.
53
-
54
- Note: This function is only available when teradataml is connected
55
- to Vantage 1.1 or later versions.
56
-
57
- PARAMETERS:
58
- data:
59
- Required Argument.
60
- Specifies the name of the teradataml DataFrame that contains the
61
- columns.
62
-
63
- data_partition_column:
64
- Required Argument.
65
- Specifies Partition By columns for data.
66
- Values to this argument can be provided as a list, if multiple
67
- columns are used for partition.
68
- Types: str OR list of Strings (str)
69
-
70
- data_order_column:
71
- Required Argument.
72
- Specifies Order By columns for data.
73
- Values to this argument can be provided as a list, if multiple
74
- columns are used for ordering.
75
- Types: str OR list of Strings (str)
76
-
77
- target_columns:
78
- Optional Argument.
79
- Specifies the input column names for which the moving average is to
80
- be computed. If you omit this argument, then the function copies
81
- every input column to the output teradataml DataFrame but does not
82
- compute moving average.
83
- Types: str OR list of Strings (str)
84
-
85
- alpha:
86
- Optional Argument.
87
- Specifies the damping factor, a value in the range [0, 1], which
88
- represents a percentage in the range [0, 100]. For example, if alpha
89
- is 0.2, then the damping factor is 20%. A higher alpha discounts
90
- older observations faster. Only used if "mavgtype" is E.
91
- For other moving average types this value will be ignored.
92
- Default Value: 0.1
93
- Types: float
94
-
95
- start_rows:
96
- Optional Argument.
97
- Specifies the number of rows at the beginning of the time series that
98
- the function skips before it begins the calculation of the
99
- exponential moving average. The function uses the arithmetic average
100
- of these rows as the initial value of the exponential moving average.
101
- Only used if "mavgtype" is E. For other moving average types
102
- this value will be ignored.
103
- Default Value: 2
104
- Types: int
105
-
106
- window_size:
107
- Optional Argument.
108
- Specifies the number of previous values to include in the computation
109
- of the moving average if "mavgtype" is M, S, T, and W.
110
- For other moving average types this value will be ignored.
111
- Default Value: 10
112
- Types: int
113
-
114
- include_first:
115
- Optional Argument.
116
- Specifies whether the first START_ROWS rows should be included in the
117
- output or not. Only used if "mavgtype" is S, M, W, E, T.
118
- For cumulative moving average types this value will be ignored.
119
- Default Value: False
120
- Types: bool
121
-
122
- mavgtype:
123
- Optional Argument.
124
- Specify the moving average type that needs to be used for computing
125
- moving averages of "target_columns".
126
- Following are the different type of averages calculated by MovingAverage function:
127
- S: The MovingAverage function computes the simple moving average of points in a
128
- series.
129
- W: The MovingAverage function computes the weighted moving average the average of
130
- points in a time series, applying weights to older values. The
131
- weights for the older values decrease arithmetically.
132
- E: The MovingAverage function computes the exponential moving average
133
- of the points in a time series, exponentially decreasing the
134
- weights of older values.
135
- C: The MovingAverage function computes the cumulative moving average of a value
136
- from the beginning of a series.
137
- M: The MovingAverage function computes moving average of points in series.
138
- T: The MovingAverage function computes double-smoothed average of points in series.
139
- Default Value: "C"
140
- Permitted Values: C, S, M, W, E, T
141
- Types: str
142
-
143
- RETURNS:
144
- Instance of MovingAverage.
145
- Output teradataml DataFrames can be accessed using attribute
146
- references, such as MovingAverageObj.<attribute_name>.
147
- Output teradataml DataFrame attribute name is:
148
- result
149
-
150
-
151
- RAISES:
152
- TeradataMlException
153
-
154
-
155
- EXAMPLES:
156
- # Load the data to run the example.
157
- load_example_data("movavg", "ibm_stock")
158
-
159
- # Create teradataml DataFrame objects.
160
- ibm_stock = DataFrame.from_table("ibm_stock")
161
-
162
- # Example1 - Calculating the cumulative moving average for data in
163
- # the stockprice column.
164
- movingaverage_cmavg = MovingAverage(data=ibm_stock,
165
- data_order_column='name',
166
- data_partition_column='name',
167
- target_columns='stockprice',
168
- mavgtype='C'
169
- )
170
-
171
- # Print the results.
172
- print(movingaverage_cmavg.result)
173
-
174
- # Example2 - Calculating the exponential moving average for data in
175
- # the stockprice column.
176
- movingaverage_emavg = MovingAverage(data=ibm_stock,
177
- data_partition_column='name',
178
- data_order_column='name',
179
- target_columns='stockprice',
180
- include_first=False,
181
- alpha=0.1,
182
- start_rows=10,
183
- mavgtype='E'
184
- )
185
- # Print the results.
186
- print(movingaverage_emavg.result)
187
-
188
- # Example3 - Calculating the simple moving average for data in
189
- # the stockprice column.
190
- movingaverage_smavg = MovingAverage(data=ibm_stock,
191
- data_partition_column='name',
192
- data_order_column='name',
193
- target_columns='stockprice',
194
- include_first=False,
195
- window_size=6,
196
- mavgtype='S'
197
- )
198
- # Print the results.
199
- print(movingaverage_smavg.result)
200
-
201
- """
202
-
203
- # Start the timer to get the build time
204
- _start_time = time.time()
205
-
206
- self.data = data
207
- self.target_columns = target_columns
208
- self.alpha = alpha
209
- self.start_rows = start_rows
210
- self.window_size = window_size
211
- self.include_first = include_first
212
- self.mavgtype = mavgtype
213
- self.data_partition_column = data_partition_column
214
- self.data_order_column = data_order_column
215
-
216
- # Create TeradataPyWrapperUtils instance which contains validation functions.
217
- self.__awu = AnalyticsWrapperUtils()
218
- self.__aed_utils = AedUtils()
219
-
220
- # Create argument information matrix to do parameter checking
221
- self.__arg_info_matrix = []
222
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
223
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
224
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
225
- self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
226
- self.__arg_info_matrix.append(["alpha", self.alpha, True, (float)])
227
- self.__arg_info_matrix.append(["start_rows", self.start_rows, True, (int)])
228
- self.__arg_info_matrix.append(["window_size", self.window_size, True, (int)])
229
- self.__arg_info_matrix.append(["include_first", self.include_first, True, (bool)])
230
- self.__arg_info_matrix.append(["mavgtype", self.mavgtype, True, (str)])
231
-
232
- if inspect.stack()[1][3] != '_from_model_catalog':
233
- # Perform the function validations
234
- self.__validate()
235
- # Generate the ML query
236
- self.__form_tdml_query()
237
- # Process output table schema
238
- self.__process_output_column_info()
239
- # Execute ML query
240
- self.__execute()
241
- # Get the prediction type
242
- self._prediction_type = self.__awu._get_function_prediction_type(self)
243
-
244
- # End the timer to get the build time
245
- _end_time = time.time()
246
-
247
- # Calculate the build time
248
- self._build_time = (int)(_end_time - _start_time)
249
-
250
- def __validate(self):
251
- """
252
- Function to validate sqlmr function arguments, which verifies missing
253
- arguments, input argument and table types. Also processes the
254
- argument values.
255
- """
256
-
257
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
258
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
259
-
260
- # Make sure that a non-NULL value has been supplied correct type of argument
261
- self.__awu._validate_argument_types(self.__arg_info_matrix)
262
-
263
- # Check to make sure input table types are strings or data frame objects or of valid type.
264
- self.__awu._validate_input_table_datatype(self.data, "data", None)
265
-
266
- # Check for permitted values
267
- mavgtype_permitted_values = ["C", "S", "M", "W", "E", "T"]
268
- self.__awu._validate_permitted_values(self.mavgtype, mavgtype_permitted_values, "mavgtype")
269
-
270
- # Check whether the input columns passed to the argument are not empty.
271
- # Also check whether the input columns passed to the argument valid or not.
272
- self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
273
- self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data, "data", False)
274
-
275
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
276
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
277
-
278
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
279
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
280
-
281
-
282
- def __form_tdml_query(self):
283
- """
284
- Function to generate the analytical function queries. The function defines
285
- variables and list of arguments required to form the query.
286
- """
287
-
288
- # Output table arguments list
289
- self.__func_output_args_sql_names = []
290
- self.__func_output_args = []
291
-
292
- # Model Cataloging related attributes.
293
- self._sql_specific_attributes = {}
294
- self._sql_formula_attribute_mapper = {}
295
- self._target_column = None
296
- self._algorithm_name = None
297
-
298
- # Generate lists for rest of the function arguments
299
- self.__func_other_arg_sql_names = []
300
- self.__func_other_args = []
301
- self.__func_other_arg_json_datatypes = []
302
-
303
- if self.target_columns is not None:
304
- self.__func_other_arg_sql_names.append("TargetColumns")
305
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.target_columns, "'"))
306
- self.__func_other_arg_json_datatypes.append("COLUMNS")
307
-
308
- if self.include_first is not None and self.include_first != False:
309
- self.__func_other_arg_sql_names.append("IncludeFirst")
310
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_first, "'"))
311
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
312
-
313
- if self.alpha is not None and self.alpha != 0.1:
314
- self.__func_other_arg_sql_names.append("Alpha")
315
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.alpha, ""))
316
- self.__func_other_arg_json_datatypes.append("DOUBLE PRECISION")
317
-
318
- if self.start_rows is not None and self.start_rows != 2:
319
- self.__func_other_arg_sql_names.append("StartRows")
320
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.start_rows, ""))
321
- self.__func_other_arg_json_datatypes.append("INTEGER")
322
-
323
- if self.window_size is not None and self.window_size != 10:
324
- self.__func_other_arg_sql_names.append("WindowSize")
325
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, ""))
326
- self.__func_other_arg_json_datatypes.append("INTEGER")
327
-
328
- if self.mavgtype is not None and self.mavgtype != "C":
329
- self.__func_other_arg_sql_names.append("MavgType")
330
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mavgtype, "'"))
331
- self.__func_other_arg_json_datatypes.append("STRING")
332
-
333
-
334
- # Declare empty lists to hold input table information.
335
- self.__func_input_arg_sql_names = []
336
- self.__func_input_table_view_query = []
337
- self.__func_input_dataframe_type = []
338
- self.__func_input_distribution = []
339
- self.__func_input_partition_by_cols = []
340
- self.__func_input_order_by_cols = []
341
-
342
- # Process data
343
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
344
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
345
- self.__func_input_distribution.append("FACT")
346
- self.__func_input_arg_sql_names.append("input")
347
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
348
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
349
- self.__func_input_partition_by_cols.append(self.data_partition_column)
350
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
351
-
352
- function_name = "MovingAverage"
353
- # Create instance to generate SQLMR.
354
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
355
- self.__func_input_arg_sql_names,
356
- self.__func_input_table_view_query,
357
- self.__func_input_dataframe_type,
358
- self.__func_input_distribution,
359
- self.__func_input_partition_by_cols,
360
- self.__func_input_order_by_cols,
361
- self.__func_other_arg_sql_names,
362
- self.__func_other_args,
363
- self.__func_other_arg_json_datatypes,
364
- self.__func_output_args_sql_names,
365
- self.__func_output_args,
366
- engine="ENGINE_SQL")
367
- # Invoke call to SQL-MR generation.
368
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
369
-
370
- # Print SQL-MR query if requested to do so.
371
- if display.print_sqlmr_query:
372
- print(self.sqlmr_query)
373
-
374
- # Set the algorithm name for Model Cataloging.
375
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
376
-
377
- def __execute(self):
378
- """
379
- Function to generate AED nodes for output tables.
380
- This makes a call aed_ml_query() and then output table dataframes are created.
381
- """
382
- # Create a list of input node ids contributing to a query.
383
- self.__input_nodeids = []
384
- self.__input_nodeids.append(self.data._nodeid)
385
-
386
- # Generate STDOUT table name and add it to the output table list.
387
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
388
- self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
389
- try:
390
- # Call aed_ml_query and generate AED nodes.
391
- node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "MovingAverage", self.__aqg_obj._multi_query_input_nodes)
392
- except Exception as emsg:
393
- raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
394
-
395
-
396
- # Update output table data frames.
397
- self._mlresults = []
398
- self.result = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
399
- self._mlresults.append(self.result)
400
-
401
- def __process_output_column_info(self):
402
- """
403
- Function to process the output schema for all the ouptut tables.
404
- This function generates list of column names and column types
405
- for each generated output tables, which can be used to create metaexpr.
406
- """
407
- # Collecting STDOUT output column information.
408
- stdout_column_info_name = []
409
- stdout_column_info_type = []
410
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=None, columns=None):
411
- stdout_column_info_name.append(column_name)
412
- stdout_column_info_type.append(column_type)
413
-
414
- if self.mavgtype == "C":
415
- if self.target_columns is not None:
416
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
417
- stdout_column_info_name.append(column_name + "_cmavg")
418
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
419
-
420
-
421
- if self.mavgtype == "S":
422
- if self.target_columns is not None:
423
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
424
- stdout_column_info_name.append(column_name + "_smavg")
425
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
426
-
427
-
428
- if self.mavgtype == "E":
429
- if self.target_columns is not None:
430
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
431
- stdout_column_info_name.append(column_name + "_emavg")
432
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
433
-
434
-
435
- if self.mavgtype == "W":
436
- if self.target_columns is not None:
437
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
438
- stdout_column_info_name.append(column_name + "_wmavg")
439
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
440
-
441
-
442
- if self.mavgtype == "M":
443
- if self.target_columns is not None:
444
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
445
- stdout_column_info_name.append(column_name + "_mmavg")
446
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
447
-
448
-
449
- if self.mavgtype == "T":
450
- if self.target_columns is not None:
451
- for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
452
- stdout_column_info_name.append(column_name + "_tmavg")
453
- stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
454
-
455
-
456
- self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
457
-
458
- def show_query(self):
459
- """
460
- Function to return the underlying SQL query.
461
- When model object is created using retrieve_model(), then None is returned.
462
- """
463
- return self.sqlmr_query
464
-
465
- def get_prediction_type(self):
466
- """
467
- Function to return the Prediction type of the algorithm.
468
- When model object is created using retrieve_model(), then the value returned is
469
- as saved in the Model Catalog.
470
- """
471
- return self._prediction_type
472
-
473
- def get_target_column(self):
474
- """
475
- Function to return the Target Column of the algorithm.
476
- When model object is created using retrieve_model(), then the value returned is
477
- as saved in the Model Catalog.
478
- """
479
- return self._target_column
480
-
481
- def get_build_time(self):
482
- """
483
- Function to return the build time of the algorithm in seconds.
484
- When model object is created using retrieve_model(), then the value returned is
485
- as saved in the Model Catalog.
486
- """
487
- return self._build_time
488
-
489
- def _get_algorithm_name(self):
490
- """
491
- Function to return the name of the algorithm.
492
- """
493
- return self._algorithm_name
494
-
495
- def _get_sql_specific_attributes(self):
496
- """
497
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
498
- """
499
- return self._sql_specific_attributes
500
-
501
- @classmethod
502
- def _from_model_catalog(cls,
503
- result = None,
504
- **kwargs):
505
- """
506
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
507
- """
508
- kwargs.pop("result", None)
509
-
510
- # Model Cataloging related attributes.
511
- target_column = kwargs.pop("__target_column", None)
512
- prediction_type = kwargs.pop("__prediction_type", None)
513
- algorithm_name = kwargs.pop("__algorithm_name", None)
514
- build_time = kwargs.pop("__build_time", None)
515
-
516
- # Let's create an object of this class.
517
- obj = cls(**kwargs)
518
- obj.result = result
519
-
520
- # Initialize the sqlmr_query class attribute.
521
- obj.sqlmr_query = None
522
-
523
- # Initialize the SQL specific Model Cataloging attributes.
524
- obj._sql_specific_attributes = None
525
- obj._target_column = target_column
526
- obj._prediction_type = prediction_type
527
- obj._algorithm_name = algorithm_name
528
- obj._build_time = build_time
529
-
530
- # Update output table data frames.
531
- obj._mlresults = []
532
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
533
- obj._mlresults.append(obj.result)
534
- return obj
535
-
536
- def __repr__(self):
537
- """
538
- Returns the string representation for a MovingAverage class instance.
539
- """
540
- repr_string="############ STDOUT Output ############"
541
- repr_string = "{}\n\n{}".format(repr_string,self.result)
542
- return repr_string
543
-