teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,543 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Bhavana N (bhavana.n@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.0
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class MovingAverage:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
target_columns = None,
|
|
35
|
-
alpha = 0.1,
|
|
36
|
-
start_rows = 2,
|
|
37
|
-
window_size = 10,
|
|
38
|
-
include_first = False,
|
|
39
|
-
mavgtype = "C",
|
|
40
|
-
data_partition_column = None,
|
|
41
|
-
data_order_column = None):
|
|
42
|
-
"""
|
|
43
|
-
DESCRIPTION:
|
|
44
|
-
The MovingAverage function calculates the moving average of the
|
|
45
|
-
target columns based on the moving average types ("mvgtype").
|
|
46
|
-
Possible moving average types:
|
|
47
|
-
'C' Cumulative moving average.
|
|
48
|
-
'E' Exponential moving average.
|
|
49
|
-
'M' Modified moving average.
|
|
50
|
-
'S' Simple moving average.
|
|
51
|
-
'T' Triangular moving average.
|
|
52
|
-
'W' Weighted moving average.
|
|
53
|
-
|
|
54
|
-
Note: This function is only available when teradataml is connected
|
|
55
|
-
to Vantage 1.1 or later versions.
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
data:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
61
|
-
columns.
|
|
62
|
-
|
|
63
|
-
data_partition_column:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies Partition By columns for data.
|
|
66
|
-
Values to this argument can be provided as a list, if multiple
|
|
67
|
-
columns are used for partition.
|
|
68
|
-
Types: str OR list of Strings (str)
|
|
69
|
-
|
|
70
|
-
data_order_column:
|
|
71
|
-
Required Argument.
|
|
72
|
-
Specifies Order By columns for data.
|
|
73
|
-
Values to this argument can be provided as a list, if multiple
|
|
74
|
-
columns are used for ordering.
|
|
75
|
-
Types: str OR list of Strings (str)
|
|
76
|
-
|
|
77
|
-
target_columns:
|
|
78
|
-
Optional Argument.
|
|
79
|
-
Specifies the input column names for which the moving average is to
|
|
80
|
-
be computed. If you omit this argument, then the function copies
|
|
81
|
-
every input column to the output teradataml DataFrame but does not
|
|
82
|
-
compute moving average.
|
|
83
|
-
Types: str OR list of Strings (str)
|
|
84
|
-
|
|
85
|
-
alpha:
|
|
86
|
-
Optional Argument.
|
|
87
|
-
Specifies the damping factor, a value in the range [0, 1], which
|
|
88
|
-
represents a percentage in the range [0, 100]. For example, if alpha
|
|
89
|
-
is 0.2, then the damping factor is 20%. A higher alpha discounts
|
|
90
|
-
older observations faster. Only used if "mavgtype" is E.
|
|
91
|
-
For other moving average types this value will be ignored.
|
|
92
|
-
Default Value: 0.1
|
|
93
|
-
Types: float
|
|
94
|
-
|
|
95
|
-
start_rows:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies the number of rows at the beginning of the time series that
|
|
98
|
-
the function skips before it begins the calculation of the
|
|
99
|
-
exponential moving average. The function uses the arithmetic average
|
|
100
|
-
of these rows as the initial value of the exponential moving average.
|
|
101
|
-
Only used if "mavgtype" is E. For other moving average types
|
|
102
|
-
this value will be ignored.
|
|
103
|
-
Default Value: 2
|
|
104
|
-
Types: int
|
|
105
|
-
|
|
106
|
-
window_size:
|
|
107
|
-
Optional Argument.
|
|
108
|
-
Specifies the number of previous values to include in the computation
|
|
109
|
-
of the moving average if "mavgtype" is M, S, T, and W.
|
|
110
|
-
For other moving average types this value will be ignored.
|
|
111
|
-
Default Value: 10
|
|
112
|
-
Types: int
|
|
113
|
-
|
|
114
|
-
include_first:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies whether the first START_ROWS rows should be included in the
|
|
117
|
-
output or not. Only used if "mavgtype" is S, M, W, E, T.
|
|
118
|
-
For cumulative moving average types this value will be ignored.
|
|
119
|
-
Default Value: False
|
|
120
|
-
Types: bool
|
|
121
|
-
|
|
122
|
-
mavgtype:
|
|
123
|
-
Optional Argument.
|
|
124
|
-
Specify the moving average type that needs to be used for computing
|
|
125
|
-
moving averages of "target_columns".
|
|
126
|
-
Following are the different type of averages calculated by MovingAverage function:
|
|
127
|
-
S: The MovingAverage function computes the simple moving average of points in a
|
|
128
|
-
series.
|
|
129
|
-
W: The MovingAverage function computes the weighted moving average the average of
|
|
130
|
-
points in a time series, applying weights to older values. The
|
|
131
|
-
weights for the older values decrease arithmetically.
|
|
132
|
-
E: The MovingAverage function computes the exponential moving average
|
|
133
|
-
of the points in a time series, exponentially decreasing the
|
|
134
|
-
weights of older values.
|
|
135
|
-
C: The MovingAverage function computes the cumulative moving average of a value
|
|
136
|
-
from the beginning of a series.
|
|
137
|
-
M: The MovingAverage function computes moving average of points in series.
|
|
138
|
-
T: The MovingAverage function computes double-smoothed average of points in series.
|
|
139
|
-
Default Value: "C"
|
|
140
|
-
Permitted Values: C, S, M, W, E, T
|
|
141
|
-
Types: str
|
|
142
|
-
|
|
143
|
-
RETURNS:
|
|
144
|
-
Instance of MovingAverage.
|
|
145
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
146
|
-
references, such as MovingAverageObj.<attribute_name>.
|
|
147
|
-
Output teradataml DataFrame attribute name is:
|
|
148
|
-
result
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
RAISES:
|
|
152
|
-
TeradataMlException
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
EXAMPLES:
|
|
156
|
-
# Load the data to run the example.
|
|
157
|
-
load_example_data("movavg", "ibm_stock")
|
|
158
|
-
|
|
159
|
-
# Create teradataml DataFrame objects.
|
|
160
|
-
ibm_stock = DataFrame.from_table("ibm_stock")
|
|
161
|
-
|
|
162
|
-
# Example1 - Calculating the cumulative moving average for data in
|
|
163
|
-
# the stockprice column.
|
|
164
|
-
movingaverage_cmavg = MovingAverage(data=ibm_stock,
|
|
165
|
-
data_order_column='name',
|
|
166
|
-
data_partition_column='name',
|
|
167
|
-
target_columns='stockprice',
|
|
168
|
-
mavgtype='C'
|
|
169
|
-
)
|
|
170
|
-
|
|
171
|
-
# Print the results.
|
|
172
|
-
print(movingaverage_cmavg.result)
|
|
173
|
-
|
|
174
|
-
# Example2 - Calculating the exponential moving average for data in
|
|
175
|
-
# the stockprice column.
|
|
176
|
-
movingaverage_emavg = MovingAverage(data=ibm_stock,
|
|
177
|
-
data_partition_column='name',
|
|
178
|
-
data_order_column='name',
|
|
179
|
-
target_columns='stockprice',
|
|
180
|
-
include_first=False,
|
|
181
|
-
alpha=0.1,
|
|
182
|
-
start_rows=10,
|
|
183
|
-
mavgtype='E'
|
|
184
|
-
)
|
|
185
|
-
# Print the results.
|
|
186
|
-
print(movingaverage_emavg.result)
|
|
187
|
-
|
|
188
|
-
# Example3 - Calculating the simple moving average for data in
|
|
189
|
-
# the stockprice column.
|
|
190
|
-
movingaverage_smavg = MovingAverage(data=ibm_stock,
|
|
191
|
-
data_partition_column='name',
|
|
192
|
-
data_order_column='name',
|
|
193
|
-
target_columns='stockprice',
|
|
194
|
-
include_first=False,
|
|
195
|
-
window_size=6,
|
|
196
|
-
mavgtype='S'
|
|
197
|
-
)
|
|
198
|
-
# Print the results.
|
|
199
|
-
print(movingaverage_smavg.result)
|
|
200
|
-
|
|
201
|
-
"""
|
|
202
|
-
|
|
203
|
-
# Start the timer to get the build time
|
|
204
|
-
_start_time = time.time()
|
|
205
|
-
|
|
206
|
-
self.data = data
|
|
207
|
-
self.target_columns = target_columns
|
|
208
|
-
self.alpha = alpha
|
|
209
|
-
self.start_rows = start_rows
|
|
210
|
-
self.window_size = window_size
|
|
211
|
-
self.include_first = include_first
|
|
212
|
-
self.mavgtype = mavgtype
|
|
213
|
-
self.data_partition_column = data_partition_column
|
|
214
|
-
self.data_order_column = data_order_column
|
|
215
|
-
|
|
216
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
217
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
218
|
-
self.__aed_utils = AedUtils()
|
|
219
|
-
|
|
220
|
-
# Create argument information matrix to do parameter checking
|
|
221
|
-
self.__arg_info_matrix = []
|
|
222
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
223
|
-
self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
|
|
224
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
|
|
225
|
-
self.__arg_info_matrix.append(["target_columns", self.target_columns, True, (str,list)])
|
|
226
|
-
self.__arg_info_matrix.append(["alpha", self.alpha, True, (float)])
|
|
227
|
-
self.__arg_info_matrix.append(["start_rows", self.start_rows, True, (int)])
|
|
228
|
-
self.__arg_info_matrix.append(["window_size", self.window_size, True, (int)])
|
|
229
|
-
self.__arg_info_matrix.append(["include_first", self.include_first, True, (bool)])
|
|
230
|
-
self.__arg_info_matrix.append(["mavgtype", self.mavgtype, True, (str)])
|
|
231
|
-
|
|
232
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
233
|
-
# Perform the function validations
|
|
234
|
-
self.__validate()
|
|
235
|
-
# Generate the ML query
|
|
236
|
-
self.__form_tdml_query()
|
|
237
|
-
# Process output table schema
|
|
238
|
-
self.__process_output_column_info()
|
|
239
|
-
# Execute ML query
|
|
240
|
-
self.__execute()
|
|
241
|
-
# Get the prediction type
|
|
242
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
243
|
-
|
|
244
|
-
# End the timer to get the build time
|
|
245
|
-
_end_time = time.time()
|
|
246
|
-
|
|
247
|
-
# Calculate the build time
|
|
248
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
249
|
-
|
|
250
|
-
def __validate(self):
|
|
251
|
-
"""
|
|
252
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
253
|
-
arguments, input argument and table types. Also processes the
|
|
254
|
-
argument values.
|
|
255
|
-
"""
|
|
256
|
-
|
|
257
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
258
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
259
|
-
|
|
260
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
261
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
262
|
-
|
|
263
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
264
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
265
|
-
|
|
266
|
-
# Check for permitted values
|
|
267
|
-
mavgtype_permitted_values = ["C", "S", "M", "W", "E", "T"]
|
|
268
|
-
self.__awu._validate_permitted_values(self.mavgtype, mavgtype_permitted_values, "mavgtype")
|
|
269
|
-
|
|
270
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
271
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
272
|
-
self.__awu._validate_input_columns_not_empty(self.target_columns, "target_columns")
|
|
273
|
-
self.__awu._validate_dataframe_has_argument_columns(self.target_columns, "target_columns", self.data, "data", False)
|
|
274
|
-
|
|
275
|
-
self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
|
|
276
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
|
|
277
|
-
|
|
278
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
279
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
def __form_tdml_query(self):
|
|
283
|
-
"""
|
|
284
|
-
Function to generate the analytical function queries. The function defines
|
|
285
|
-
variables and list of arguments required to form the query.
|
|
286
|
-
"""
|
|
287
|
-
|
|
288
|
-
# Output table arguments list
|
|
289
|
-
self.__func_output_args_sql_names = []
|
|
290
|
-
self.__func_output_args = []
|
|
291
|
-
|
|
292
|
-
# Model Cataloging related attributes.
|
|
293
|
-
self._sql_specific_attributes = {}
|
|
294
|
-
self._sql_formula_attribute_mapper = {}
|
|
295
|
-
self._target_column = None
|
|
296
|
-
self._algorithm_name = None
|
|
297
|
-
|
|
298
|
-
# Generate lists for rest of the function arguments
|
|
299
|
-
self.__func_other_arg_sql_names = []
|
|
300
|
-
self.__func_other_args = []
|
|
301
|
-
self.__func_other_arg_json_datatypes = []
|
|
302
|
-
|
|
303
|
-
if self.target_columns is not None:
|
|
304
|
-
self.__func_other_arg_sql_names.append("TargetColumns")
|
|
305
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.target_columns, "'"))
|
|
306
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
307
|
-
|
|
308
|
-
if self.include_first is not None and self.include_first != False:
|
|
309
|
-
self.__func_other_arg_sql_names.append("IncludeFirst")
|
|
310
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_first, "'"))
|
|
311
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
312
|
-
|
|
313
|
-
if self.alpha is not None and self.alpha != 0.1:
|
|
314
|
-
self.__func_other_arg_sql_names.append("Alpha")
|
|
315
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.alpha, ""))
|
|
316
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE PRECISION")
|
|
317
|
-
|
|
318
|
-
if self.start_rows is not None and self.start_rows != 2:
|
|
319
|
-
self.__func_other_arg_sql_names.append("StartRows")
|
|
320
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.start_rows, ""))
|
|
321
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
322
|
-
|
|
323
|
-
if self.window_size is not None and self.window_size != 10:
|
|
324
|
-
self.__func_other_arg_sql_names.append("WindowSize")
|
|
325
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, ""))
|
|
326
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
327
|
-
|
|
328
|
-
if self.mavgtype is not None and self.mavgtype != "C":
|
|
329
|
-
self.__func_other_arg_sql_names.append("MavgType")
|
|
330
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mavgtype, "'"))
|
|
331
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
# Declare empty lists to hold input table information.
|
|
335
|
-
self.__func_input_arg_sql_names = []
|
|
336
|
-
self.__func_input_table_view_query = []
|
|
337
|
-
self.__func_input_dataframe_type = []
|
|
338
|
-
self.__func_input_distribution = []
|
|
339
|
-
self.__func_input_partition_by_cols = []
|
|
340
|
-
self.__func_input_order_by_cols = []
|
|
341
|
-
|
|
342
|
-
# Process data
|
|
343
|
-
self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
|
|
344
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data)
|
|
345
|
-
self.__func_input_distribution.append("FACT")
|
|
346
|
-
self.__func_input_arg_sql_names.append("input")
|
|
347
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
348
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
349
|
-
self.__func_input_partition_by_cols.append(self.data_partition_column)
|
|
350
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
351
|
-
|
|
352
|
-
function_name = "MovingAverage"
|
|
353
|
-
# Create instance to generate SQLMR.
|
|
354
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
355
|
-
self.__func_input_arg_sql_names,
|
|
356
|
-
self.__func_input_table_view_query,
|
|
357
|
-
self.__func_input_dataframe_type,
|
|
358
|
-
self.__func_input_distribution,
|
|
359
|
-
self.__func_input_partition_by_cols,
|
|
360
|
-
self.__func_input_order_by_cols,
|
|
361
|
-
self.__func_other_arg_sql_names,
|
|
362
|
-
self.__func_other_args,
|
|
363
|
-
self.__func_other_arg_json_datatypes,
|
|
364
|
-
self.__func_output_args_sql_names,
|
|
365
|
-
self.__func_output_args,
|
|
366
|
-
engine="ENGINE_SQL")
|
|
367
|
-
# Invoke call to SQL-MR generation.
|
|
368
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
369
|
-
|
|
370
|
-
# Print SQL-MR query if requested to do so.
|
|
371
|
-
if display.print_sqlmr_query:
|
|
372
|
-
print(self.sqlmr_query)
|
|
373
|
-
|
|
374
|
-
# Set the algorithm name for Model Cataloging.
|
|
375
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
376
|
-
|
|
377
|
-
def __execute(self):
|
|
378
|
-
"""
|
|
379
|
-
Function to generate AED nodes for output tables.
|
|
380
|
-
This makes a call aed_ml_query() and then output table dataframes are created.
|
|
381
|
-
"""
|
|
382
|
-
# Create a list of input node ids contributing to a query.
|
|
383
|
-
self.__input_nodeids = []
|
|
384
|
-
self.__input_nodeids.append(self.data._nodeid)
|
|
385
|
-
|
|
386
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
387
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
388
|
-
self.__func_output_args.insert(0, sqlmr_stdout_temp_tablename)
|
|
389
|
-
try:
|
|
390
|
-
# Call aed_ml_query and generate AED nodes.
|
|
391
|
-
node_id_list = self.__aed_utils._aed_ml_query(self.__input_nodeids, self.sqlmr_query, self.__func_output_args, "MovingAverage", self.__aqg_obj._multi_query_input_nodes)
|
|
392
|
-
except Exception as emsg:
|
|
393
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.AED_EXEC_FAILED, str(emsg)), MessageCodes.AED_EXEC_FAILED)
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
# Update output table data frames.
|
|
397
|
-
self._mlresults = []
|
|
398
|
-
self.result = self.__awu._create_data_set_object(df_input=node_id_list[0], metaexpr=UtilFuncs._get_metaexpr_using_columns(node_id_list[0], self.__stdout_column_info))
|
|
399
|
-
self._mlresults.append(self.result)
|
|
400
|
-
|
|
401
|
-
def __process_output_column_info(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to process the output schema for all the ouptut tables.
|
|
404
|
-
This function generates list of column names and column types
|
|
405
|
-
for each generated output tables, which can be used to create metaexpr.
|
|
406
|
-
"""
|
|
407
|
-
# Collecting STDOUT output column information.
|
|
408
|
-
stdout_column_info_name = []
|
|
409
|
-
stdout_column_info_type = []
|
|
410
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=None, columns=None):
|
|
411
|
-
stdout_column_info_name.append(column_name)
|
|
412
|
-
stdout_column_info_type.append(column_type)
|
|
413
|
-
|
|
414
|
-
if self.mavgtype == "C":
|
|
415
|
-
if self.target_columns is not None:
|
|
416
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
417
|
-
stdout_column_info_name.append(column_name + "_cmavg")
|
|
418
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
if self.mavgtype == "S":
|
|
422
|
-
if self.target_columns is not None:
|
|
423
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
424
|
-
stdout_column_info_name.append(column_name + "_smavg")
|
|
425
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
if self.mavgtype == "E":
|
|
429
|
-
if self.target_columns is not None:
|
|
430
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
431
|
-
stdout_column_info_name.append(column_name + "_emavg")
|
|
432
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
if self.mavgtype == "W":
|
|
436
|
-
if self.target_columns is not None:
|
|
437
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
438
|
-
stdout_column_info_name.append(column_name + "_wmavg")
|
|
439
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
if self.mavgtype == "M":
|
|
443
|
-
if self.target_columns is not None:
|
|
444
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
445
|
-
stdout_column_info_name.append(column_name + "_mmavg")
|
|
446
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
if self.mavgtype == "T":
|
|
450
|
-
if self.target_columns is not None:
|
|
451
|
-
for column_name, column_type in self.__awu._retrieve_column_info(df_input=self.data, parameter=self.target_columns, columns=None):
|
|
452
|
-
stdout_column_info_name.append(column_name + "_tmavg")
|
|
453
|
-
stdout_column_info_type.append(self.__awu._get_json_to_sqlalchemy_mapping("double precision"))
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
self.__stdout_column_info = zip(stdout_column_info_name, stdout_column_info_type)
|
|
457
|
-
|
|
458
|
-
def show_query(self):
|
|
459
|
-
"""
|
|
460
|
-
Function to return the underlying SQL query.
|
|
461
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
462
|
-
"""
|
|
463
|
-
return self.sqlmr_query
|
|
464
|
-
|
|
465
|
-
def get_prediction_type(self):
|
|
466
|
-
"""
|
|
467
|
-
Function to return the Prediction type of the algorithm.
|
|
468
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
469
|
-
as saved in the Model Catalog.
|
|
470
|
-
"""
|
|
471
|
-
return self._prediction_type
|
|
472
|
-
|
|
473
|
-
def get_target_column(self):
|
|
474
|
-
"""
|
|
475
|
-
Function to return the Target Column of the algorithm.
|
|
476
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
477
|
-
as saved in the Model Catalog.
|
|
478
|
-
"""
|
|
479
|
-
return self._target_column
|
|
480
|
-
|
|
481
|
-
def get_build_time(self):
|
|
482
|
-
"""
|
|
483
|
-
Function to return the build time of the algorithm in seconds.
|
|
484
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
485
|
-
as saved in the Model Catalog.
|
|
486
|
-
"""
|
|
487
|
-
return self._build_time
|
|
488
|
-
|
|
489
|
-
def _get_algorithm_name(self):
|
|
490
|
-
"""
|
|
491
|
-
Function to return the name of the algorithm.
|
|
492
|
-
"""
|
|
493
|
-
return self._algorithm_name
|
|
494
|
-
|
|
495
|
-
def _get_sql_specific_attributes(self):
|
|
496
|
-
"""
|
|
497
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
498
|
-
"""
|
|
499
|
-
return self._sql_specific_attributes
|
|
500
|
-
|
|
501
|
-
@classmethod
|
|
502
|
-
def _from_model_catalog(cls,
|
|
503
|
-
result = None,
|
|
504
|
-
**kwargs):
|
|
505
|
-
"""
|
|
506
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
507
|
-
"""
|
|
508
|
-
kwargs.pop("result", None)
|
|
509
|
-
|
|
510
|
-
# Model Cataloging related attributes.
|
|
511
|
-
target_column = kwargs.pop("__target_column", None)
|
|
512
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
513
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
514
|
-
build_time = kwargs.pop("__build_time", None)
|
|
515
|
-
|
|
516
|
-
# Let's create an object of this class.
|
|
517
|
-
obj = cls(**kwargs)
|
|
518
|
-
obj.result = result
|
|
519
|
-
|
|
520
|
-
# Initialize the sqlmr_query class attribute.
|
|
521
|
-
obj.sqlmr_query = None
|
|
522
|
-
|
|
523
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
524
|
-
obj._sql_specific_attributes = None
|
|
525
|
-
obj._target_column = target_column
|
|
526
|
-
obj._prediction_type = prediction_type
|
|
527
|
-
obj._algorithm_name = algorithm_name
|
|
528
|
-
obj._build_time = build_time
|
|
529
|
-
|
|
530
|
-
# Update output table data frames.
|
|
531
|
-
obj._mlresults = []
|
|
532
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
533
|
-
obj._mlresults.append(obj.result)
|
|
534
|
-
return obj
|
|
535
|
-
|
|
536
|
-
def __repr__(self):
|
|
537
|
-
"""
|
|
538
|
-
Returns the string representation for a MovingAverage class instance.
|
|
539
|
-
"""
|
|
540
|
-
repr_string="############ STDOUT Output ############"
|
|
541
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
542
|
-
return repr_string
|
|
543
|
-
|