teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
def XGBoostPredict(newdata
|
|
2
|
-
iter_num
|
|
3
|
-
output_responses
|
|
1
|
+
def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1000,
|
|
2
|
+
iter_num=3, accumulate=None, output_prob=False, model_type="REGRESSION",
|
|
3
|
+
output_responses=None, **generic_arguments):
|
|
4
4
|
"""
|
|
5
5
|
DESCRIPTION:
|
|
6
6
|
The XGBoostPredict() function runs the predictive algorithm based on the model generated
|
|
@@ -30,17 +30,17 @@ def XGBoostPredict(newdata = None, object = None, id_column = None, num_boosted_
|
|
|
30
30
|
compared to the case when all trees fit in memory.
|
|
31
31
|
|
|
32
32
|
PARAMETERS:
|
|
33
|
+
newdata:
|
|
34
|
+
Required Argument.
|
|
35
|
+
Specifies the teradataml DataFrame containing the input data.
|
|
36
|
+
Types: teradataml DataFrame
|
|
37
|
+
|
|
33
38
|
object:
|
|
34
39
|
Required Argument.
|
|
35
40
|
Specifies the teradataml DataFrame containing the model data generated by XGBoost()
|
|
36
41
|
function or the instance of XGBoost.
|
|
37
42
|
Types: teradataml DataFrame or XGBoost
|
|
38
43
|
|
|
39
|
-
newdata:
|
|
40
|
-
Required Argument.
|
|
41
|
-
Specifies the teradataml DataFrame containing the input data.
|
|
42
|
-
Types: teradataml DataFrame
|
|
43
|
-
|
|
44
44
|
id_column:
|
|
45
45
|
Required Argument.
|
|
46
46
|
Specifies the input data column name that contains a unique
|
|
@@ -272,4 +272,4 @@ def XGBoostPredict(newdata = None, object = None, id_column = None, num_boosted_
|
|
|
272
272
|
|
|
273
273
|
# Print the result DataFrame.
|
|
274
274
|
print(XGBoostPredict_out_2.result)
|
|
275
|
-
"""
|
|
275
|
+
"""
|
teradataml/data/fish.csv
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
1
|
+
Species,Weight,Length1,Length2,Length3,Height,Width
|
|
2
|
+
Bream,242,23.2,25.4,30,11.52,4.02
|
|
3
|
+
Bream,290,24,26.3,31.2,12.48,4.3056
|
|
4
|
+
Bream,340,23.9,26.5,31.1,12.3778,4.6961
|
|
5
|
+
Bream,363,26.3,29,33.5,12.73,4.4555
|
|
6
|
+
Bream,430,26.5,29,34,12.444,5.134
|
|
7
|
+
Bream,450,26.8,29.7,34.7,13.6024,4.9274
|
|
8
|
+
Bream,500,26.8,29.7,34.5,14.1795,5.2785
|
|
9
|
+
Bream,390,27.6,30,35,12.67,4.69
|
|
10
|
+
Bream,450,27.6,30,35.1,14.0049,4.8438
|
|
11
|
+
Bream,500,28.5,30.7,36.2,14.2266,4.9594
|
|
12
|
+
Bream,475,28.4,31,36.2,14.2628,5.1042
|
|
13
|
+
Bream,500,28.7,31,36.2,14.3714,4.8146
|
|
14
|
+
Bream,500,29.1,31.5,36.4,13.7592,4.368
|
|
15
|
+
Bream,340,29.5,32,37.3,13.9129,5.0728
|
|
16
|
+
Bream,600,29.4,32,37.2,14.9544,5.1708
|
|
17
|
+
Bream,600,29.4,32,37.2,15.438,5.58
|
|
18
|
+
Bream,700,30.4,33,38.3,14.8604,5.2854
|
|
19
|
+
Bream,700,30.4,33,38.5,14.938,5.1975
|
|
20
|
+
Bream,610,30.9,33.5,38.6,15.633,5.1338
|
|
21
|
+
Bream,650,31,33.5,38.7,14.4738,5.7276
|
|
22
|
+
Bream,575,31.3,34,39.5,15.1285,5.5695
|
|
23
|
+
Bream,685,31.4,34,39.2,15.9936,5.3704
|
|
24
|
+
Bream,620,31.5,34.5,39.7,15.5227,5.2801
|
|
25
|
+
Bream,680,31.8,35,40.6,15.4686,6.1306
|
|
26
|
+
Bream,700,31.9,35,40.5,16.2405,5.589
|
|
27
|
+
Bream,725,31.8,35,40.9,16.36,6.0532
|
|
28
|
+
Bream,720,32,35,40.6,16.3618,6.09
|
|
29
|
+
Bream,714,32.7,36,41.5,16.517,5.8515
|
|
30
|
+
Bream,850,32.8,36,41.6,16.8896,6.1984
|
|
31
|
+
Bream,1000,33.5,37,42.6,18.957,6.603
|
|
32
|
+
Bream,920,35,38.5,44.1,18.0369,6.3063
|
|
33
|
+
Bream,955,35,38.5,44,18.084,6.292
|
|
34
|
+
Bream,925,36.2,39.5,45.3,18.7542,6.7497
|
|
35
|
+
Bream,975,37.4,41,45.9,18.6354,6.7473
|
|
36
|
+
Bream,950,38,41,46.5,17.6235,6.3705
|
|
37
|
+
Roach,40,12.9,14.1,16.2,4.1472,2.268
|
|
38
|
+
Roach,69,16.5,18.2,20.3,5.2983,2.8217
|
|
39
|
+
Roach,78,17.5,18.8,21.2,5.5756,2.9044
|
|
40
|
+
Roach,87,18.2,19.8,22.2,5.6166,3.1746
|
|
41
|
+
Roach,120,18.6,20,22.2,6.216,3.5742
|
|
42
|
+
Roach,0,19,20.5,22.8,6.4752,3.3516
|
|
43
|
+
Roach,110,19.1,20.8,23.1,6.1677,3.3957
|
|
44
|
+
Roach,120,19.4,21,23.7,6.1146,3.2943
|
|
45
|
+
Roach,150,20.4,22,24.7,5.8045,3.7544
|
|
46
|
+
Roach,145,20.5,22,24.3,6.6339,3.5478
|
|
47
|
+
Roach,160,20.5,22.5,25.3,7.0334,3.8203
|
|
48
|
+
Roach,140,21,22.5,25,6.55,3.325
|
|
49
|
+
Roach,160,21.1,22.5,25,6.4,3.8
|
|
50
|
+
Roach,169,22,24,27.2,7.5344,3.8352
|
|
51
|
+
Roach,161,22,23.4,26.7,6.9153,3.6312
|
|
52
|
+
Roach,200,22.1,23.5,26.8,7.3968,4.1272
|
|
53
|
+
Roach,180,23.6,25.2,27.9,7.0866,3.906
|
|
54
|
+
Roach,290,24,26,29.2,8.8768,4.4968
|
|
55
|
+
Roach,272,25,27,30.6,8.568,4.7736
|
|
56
|
+
Roach,390,29.5,31.7,35,9.485,5.355
|
|
57
|
+
Whitefish,270,23.6,26,28.7,8.3804,4.2476
|
|
58
|
+
Whitefish,270,24.1,26.5,29.3,8.1454,4.2485
|
|
59
|
+
Whitefish,306,25.6,28,30.8,8.778,4.6816
|
|
60
|
+
Whitefish,540,28.5,31,34,10.744,6.562
|
|
61
|
+
Whitefish,800,33.7,36.4,39.6,11.7612,6.5736
|
|
62
|
+
Whitefish,1000,37.3,40,43.5,12.354,6.525
|
|
63
|
+
Parkki,55,13.5,14.7,16.5,6.8475,2.3265
|
|
64
|
+
Parkki,60,14.3,15.5,17.4,6.5772,2.3142
|
|
65
|
+
Parkki,90,16.3,17.7,19.8,7.4052,2.673
|
|
66
|
+
Parkki,120,17.5,19,21.3,8.3922,2.9181
|
|
67
|
+
Parkki,150,18.4,20,22.4,8.8928,3.2928
|
|
68
|
+
Parkki,140,19,20.7,23.2,8.5376,3.2944
|
|
69
|
+
Parkki,170,19,20.7,23.2,9.396,3.4104
|
|
70
|
+
Parkki,145,19.8,21.5,24.1,9.7364,3.1571
|
|
71
|
+
Parkki,200,21.2,23,25.8,10.3458,3.6636
|
|
72
|
+
Parkki,273,23,25,28,11.088,4.144
|
|
73
|
+
Parkki,300,24,26,29,11.368,4.234
|
|
74
|
+
Perch,5.9,7.5,8.4,8.8,2.112,1.408
|
|
75
|
+
Perch,32,12.5,13.7,14.7,3.528,1.9992
|
|
76
|
+
Perch,40,13.8,15,16,3.824,2.432
|
|
77
|
+
Perch,51.5,15,16.2,17.2,4.5924,2.6316
|
|
78
|
+
Perch,70,15.7,17.4,18.5,4.588,2.9415
|
|
79
|
+
Perch,100,16.2,18,19.2,5.2224,3.3216
|
|
80
|
+
Perch,78,16.8,18.7,19.4,5.1992,3.1234
|
|
81
|
+
Perch,80,17.2,19,20.2,5.6358,3.0502
|
|
82
|
+
Perch,85,17.8,19.6,20.8,5.1376,3.0368
|
|
83
|
+
Perch,85,18.2,20,21,5.082,2.772
|
|
84
|
+
Perch,110,19,21,22.5,5.6925,3.555
|
|
85
|
+
Perch,115,19,21,22.5,5.9175,3.3075
|
|
86
|
+
Perch,125,19,21,22.5,5.6925,3.6675
|
|
87
|
+
Perch,130,19.3,21.3,22.8,6.384,3.534
|
|
88
|
+
Perch,120,20,22,23.5,6.11,3.4075
|
|
89
|
+
Perch,120,20,22,23.5,5.64,3.525
|
|
90
|
+
Perch,130,20,22,23.5,6.11,3.525
|
|
91
|
+
Perch,135,20,22,23.5,5.875,3.525
|
|
92
|
+
Perch,110,20,22,23.5,5.5225,3.995
|
|
93
|
+
Perch,130,20.5,22.5,24,5.856,3.624
|
|
94
|
+
Perch,150,20.5,22.5,24,6.792,3.624
|
|
95
|
+
Perch,145,20.7,22.7,24.2,5.9532,3.63
|
|
96
|
+
Perch,150,21,23,24.5,5.2185,3.626
|
|
97
|
+
Perch,170,21.5,23.5,25,6.275,3.725
|
|
98
|
+
Perch,225,22,24,25.5,7.293,3.723
|
|
99
|
+
Perch,145,22,24,25.5,6.375,3.825
|
|
100
|
+
Perch,188,22.6,24.6,26.2,6.7334,4.1658
|
|
101
|
+
Perch,180,23,25,26.5,6.4395,3.6835
|
|
102
|
+
Perch,197,23.5,25.6,27,6.561,4.239
|
|
103
|
+
Perch,218,25,26.5,28,7.168,4.144
|
|
104
|
+
Perch,300,25.2,27.3,28.7,8.323,5.1373
|
|
105
|
+
Perch,260,25.4,27.5,28.9,7.1672,4.335
|
|
106
|
+
Perch,265,25.4,27.5,28.9,7.0516,4.335
|
|
107
|
+
Perch,250,25.4,27.5,28.9,7.2828,4.5662
|
|
108
|
+
Perch,250,25.9,28,29.4,7.8204,4.2042
|
|
109
|
+
Perch,300,26.9,28.7,30.1,7.5852,4.6354
|
|
110
|
+
Perch,320,27.8,30,31.6,7.6156,4.7716
|
|
111
|
+
Perch,514,30.5,32.8,34,10.03,6.018
|
|
112
|
+
Perch,556,32,34.5,36.5,10.2565,6.3875
|
|
113
|
+
Perch,840,32.5,35,37.3,11.4884,7.7957
|
|
114
|
+
Perch,685,34,36.5,39,10.881,6.864
|
|
115
|
+
Perch,700,34,36,38.3,10.6091,6.7408
|
|
116
|
+
Perch,700,34.5,37,39.4,10.835,6.2646
|
|
117
|
+
Perch,690,34.6,37,39.3,10.5717,6.3666
|
|
118
|
+
Perch,900,36.5,39,41.4,11.1366,7.4934
|
|
119
|
+
Perch,650,36.5,39,41.4,11.1366,6.003
|
|
120
|
+
Perch,820,36.6,39,41.3,12.4313,7.3514
|
|
121
|
+
Perch,850,36.9,40,42.3,11.9286,7.1064
|
|
122
|
+
Perch,900,37,40,42.5,11.73,7.225
|
|
123
|
+
Perch,1015,37,40,42.4,12.3808,7.4624
|
|
124
|
+
Perch,820,37.1,40,42.5,11.135,6.63
|
|
125
|
+
Perch,1100,39,42,44.6,12.8002,6.8684
|
|
126
|
+
Perch,1000,39.8,43,45.2,11.9328,7.2772
|
|
127
|
+
Perch,1100,40.1,43,45.5,12.5125,7.4165
|
|
128
|
+
Perch,1000,40.2,43.5,46,12.604,8.142
|
|
129
|
+
Perch,1000,41.1,44,46.6,12.4888,7.5958
|
|
130
|
+
Pike,200,30,32.3,34.8,5.568,3.3756
|
|
131
|
+
Pike,300,31.7,34,37.8,5.7078,4.158
|
|
132
|
+
Pike,300,32.7,35,38.8,5.9364,4.3844
|
|
133
|
+
Pike,300,34.8,37.3,39.8,6.2884,4.0198
|
|
134
|
+
Pike,430,35.5,38,40.5,7.29,4.5765
|
|
135
|
+
Pike,345,36,38.5,41,6.396,3.977
|
|
136
|
+
Pike,456,40,42.5,45.5,7.28,4.3225
|
|
137
|
+
Pike,510,40,42.5,45.5,6.825,4.459
|
|
138
|
+
Pike,540,40.1,43,45.8,7.786,5.1296
|
|
139
|
+
Pike,500,42,45,48,6.96,4.896
|
|
140
|
+
Pike,567,43.2,46,48.7,7.792,4.87
|
|
141
|
+
Pike,770,44.8,48,51.2,7.68,5.376
|
|
142
|
+
Pike,950,48.3,51.7,55.1,8.9262,6.1712
|
|
143
|
+
Pike,1250,52,56,59.7,10.6863,6.9849
|
|
144
|
+
Pike,1600,56,60,64,9.6,6.144
|
|
145
|
+
Pike,1550,56,60,64,9.6,6.144
|
|
146
|
+
Pike,1650,59,63.4,68,10.812,7.48
|
|
147
|
+
Smelt,6.7,9.3,9.8,10.8,1.7388,1.0476
|
|
148
|
+
Smelt,7.5,10,10.5,11.6,1.972,1.16
|
|
149
|
+
Smelt,7,10.1,10.6,11.6,1.7284,1.1484
|
|
150
|
+
Smelt,9.7,10.4,11,12,2.196,1.38
|
|
151
|
+
Smelt,9.8,10.7,11.2,12.4,2.0832,1.2772
|
|
152
|
+
Smelt,8.7,10.8,11.3,12.6,1.9782,1.2852
|
|
153
|
+
Smelt,10,11.3,11.8,13.1,2.2139,1.2838
|
|
154
|
+
Smelt,9.9,11.3,11.8,13.1,2.2139,1.1659
|
|
155
|
+
Smelt,9.8,11.4,12,13.2,2.2044,1.1484
|
|
156
|
+
Smelt,12.2,11.5,12.2,13.4,2.0904,1.3936
|
|
157
|
+
Smelt,13.4,11.7,12.4,13.5,2.43,1.269
|
|
158
|
+
Smelt,12.2,12.1,13,13.8,2.277,1.2558
|
|
159
|
+
Smelt,19.7,13.2,14.3,15.2,2.8728,2.0672
|
|
160
|
+
Smelt,19.9,13.8,15,16.2,2.9322,1.8792
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
ri,na,mg,ai,si,k,ca,ba,fe,gtype
|
|
2
|
+
1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
|
|
3
|
+
1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
|
|
4
|
+
1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
|
|
5
|
+
1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,1
|
|
6
|
+
1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,1
|
|
7
|
+
1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,1
|
|
8
|
+
1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,1
|
|
9
|
+
1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,1
|
|
10
|
+
1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,1
|
|
11
|
+
1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,1
|
|
12
|
+
1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,1
|
|
13
|
+
1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,1
|
|
14
|
+
1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,1
|
|
15
|
+
1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,1
|
|
16
|
+
1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,1
|
|
17
|
+
1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,1
|
|
18
|
+
1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,1
|
|
19
|
+
1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,1
|
|
20
|
+
1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,1
|
|
21
|
+
1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,1
|
|
22
|
+
1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,1
|
|
23
|
+
1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,1
|
|
24
|
+
1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,1
|
|
25
|
+
1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,1
|
|
26
|
+
1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,1
|
|
27
|
+
1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,1
|
|
28
|
+
1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,1
|
|
29
|
+
1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,1
|
|
30
|
+
1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,1
|
|
31
|
+
1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,1
|
|
32
|
+
1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,1
|
|
33
|
+
1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,1
|
|
34
|
+
1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,1
|
|
35
|
+
1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,1
|
|
36
|
+
1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,1
|
|
37
|
+
1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,1
|
|
38
|
+
1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,1
|
|
39
|
+
1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,1
|
|
40
|
+
1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
|
|
41
|
+
1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
|
|
42
|
+
1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,1
|
|
43
|
+
1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,1
|
|
44
|
+
1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,1
|
|
45
|
+
1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,1
|
|
46
|
+
1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,1
|
|
47
|
+
1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,1
|
|
48
|
+
1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,1
|
|
49
|
+
1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,1
|
|
50
|
+
1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,1
|
|
51
|
+
1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,1
|
|
52
|
+
1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,1
|
|
53
|
+
1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,1
|
|
54
|
+
1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,1
|
|
55
|
+
1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,1
|
|
56
|
+
1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,1
|
|
57
|
+
1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,1
|
|
58
|
+
1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,1
|
|
59
|
+
1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,1
|
|
60
|
+
1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,1
|
|
61
|
+
1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,1
|
|
62
|
+
1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,1
|
|
63
|
+
1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,1
|
|
64
|
+
1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,1
|
|
65
|
+
1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,1
|
|
66
|
+
1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,1
|
|
67
|
+
1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,1
|
|
68
|
+
1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,1
|
|
69
|
+
1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,1
|
|
70
|
+
1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,1
|
|
71
|
+
1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,1
|
|
72
|
+
1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,2
|
|
73
|
+
1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,2
|
|
74
|
+
1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,2
|
|
75
|
+
1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,2
|
|
76
|
+
1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,2
|
|
77
|
+
1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,2
|
|
78
|
+
1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,2
|
|
79
|
+
1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,2
|
|
80
|
+
1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,2
|
|
81
|
+
1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,2
|
|
82
|
+
1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,2
|
|
83
|
+
1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,2
|
|
84
|
+
1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,2
|
|
85
|
+
1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,2
|
|
86
|
+
1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,2
|
|
87
|
+
1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,2
|
|
88
|
+
1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,2
|
|
89
|
+
1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,2
|
|
90
|
+
1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,2
|
|
91
|
+
1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,2
|
|
92
|
+
1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,2
|
|
93
|
+
1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,2
|
|
94
|
+
1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,2
|
|
95
|
+
1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,2
|
|
96
|
+
1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,2
|
|
97
|
+
1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,2
|
|
98
|
+
1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,2
|
|
99
|
+
1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,2
|
|
100
|
+
1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,2
|
|
101
|
+
1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,2
|
|
102
|
+
1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,2
|
|
103
|
+
1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,2
|
|
104
|
+
1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,2
|
|
105
|
+
1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,2
|
|
106
|
+
1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,2
|
|
107
|
+
1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,2
|
|
108
|
+
1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,2
|
|
109
|
+
1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,2
|
|
110
|
+
1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,2
|
|
111
|
+
1.51818,13.72,0,0.56,74.45,0,10.99,0,0,2
|
|
112
|
+
1.52664,11.23,0,0.77,73.21,0,14.68,0,0,2
|
|
113
|
+
1.52739,11.02,0,0.75,73.08,0,14.96,0,0,2
|
|
114
|
+
1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,2
|
|
115
|
+
1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,2
|
|
116
|
+
1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,2
|
|
117
|
+
1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,2
|
|
118
|
+
1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,2
|
|
119
|
+
1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,2
|
|
120
|
+
1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,2
|
|
121
|
+
1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,2
|
|
122
|
+
1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,2
|
|
123
|
+
1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,2
|
|
124
|
+
1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,2
|
|
125
|
+
1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,2
|
|
126
|
+
1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,2
|
|
127
|
+
1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,2
|
|
128
|
+
1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,2
|
|
129
|
+
1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,2
|
|
130
|
+
1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,2
|
|
131
|
+
1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,2
|
|
132
|
+
1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,2
|
|
133
|
+
1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,2
|
|
134
|
+
1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,2
|
|
135
|
+
1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,2
|
|
136
|
+
1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,2
|
|
137
|
+
1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,2
|
|
138
|
+
1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,2
|
|
139
|
+
1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,2
|
|
140
|
+
1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,2
|
|
141
|
+
1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,2
|
|
142
|
+
1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,2
|
|
143
|
+
1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,2
|
|
144
|
+
1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,2
|
|
145
|
+
1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,2
|
|
146
|
+
1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,2
|
|
147
|
+
1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,2
|
|
148
|
+
1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,3
|
|
149
|
+
1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,3
|
|
150
|
+
1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,3
|
|
151
|
+
1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,3
|
|
152
|
+
1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,3
|
|
153
|
+
1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,3
|
|
154
|
+
1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,3
|
|
155
|
+
1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,3
|
|
156
|
+
1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,3
|
|
157
|
+
1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,3
|
|
158
|
+
1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,3
|
|
159
|
+
1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,3
|
|
160
|
+
1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,3
|
|
161
|
+
1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,3
|
|
162
|
+
1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,3
|
|
163
|
+
1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,3
|
|
164
|
+
1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,3
|
|
165
|
+
1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,5
|
|
166
|
+
1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,5
|
|
167
|
+
1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,5
|
|
168
|
+
1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,5
|
|
169
|
+
1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,5
|
|
170
|
+
1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,5
|
|
171
|
+
1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,5
|
|
172
|
+
1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,5
|
|
173
|
+
1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,5
|
|
174
|
+
1.51321,13,0,3.02,70.7,6.21,6.93,0,0,5
|
|
175
|
+
1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,5
|
|
176
|
+
1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,5
|
|
177
|
+
1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,5
|
|
178
|
+
1.51905,14,2.39,1.56,72.37,0,9.57,0,0,6
|
|
179
|
+
1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,6
|
|
180
|
+
1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,6
|
|
181
|
+
1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,6
|
|
182
|
+
1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,6
|
|
183
|
+
1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,6
|
|
184
|
+
1.51916,14.15,0,2.09,72.74,0,10.88,0,0,6
|
|
185
|
+
1.51969,14.56,0,0.56,73.48,0,11.22,0,0,6
|
|
186
|
+
1.51115,17.38,0,0.34,75.41,0,6.65,0,0,6
|
|
187
|
+
1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,7
|
|
188
|
+
1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,7
|
|
189
|
+
1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,7
|
|
190
|
+
1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,7
|
|
191
|
+
1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,7
|
|
192
|
+
1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,7
|
|
193
|
+
1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,7
|
|
194
|
+
1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,7
|
|
195
|
+
1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,7
|
|
196
|
+
1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,7
|
|
197
|
+
1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,7
|
|
198
|
+
1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,7
|
|
199
|
+
1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,7
|
|
200
|
+
1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,7
|
|
201
|
+
1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,7
|
|
202
|
+
1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,7
|
|
203
|
+
1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,7
|
|
204
|
+
1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,7
|
|
205
|
+
1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,7
|
|
206
|
+
1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,7
|
|
207
|
+
1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,7
|
|
208
|
+
1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,7
|
|
209
|
+
1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,7
|
|
210
|
+
1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,7
|
|
211
|
+
1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,7
|
|
212
|
+
1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,7
|
|
213
|
+
1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,7
|
|
214
|
+
1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,7
|
|
215
|
+
1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,7
|
teradataml/data/insurance.csv
CHANGED
|
@@ -1336,4 +1336,4 @@ age,sex,bmi,children,smoker,region,charges
|
|
|
1336
1336
|
18,female,31.92,0,no,northeast,2205.9808
|
|
1337
1337
|
18,female,36.85,0,no,southeast,1629.8335
|
|
1338
1338
|
21,female,25.8,0,no,southwest,2007.945
|
|
1339
|
-
61,female,29.07,0,yes,northwest,29141.3603
|
|
1339
|
+
61,female,29.07,0,yes,northwest,29141.3603
|
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
sepal_length,sepal_width,petal_length,petal_width,species
|
|
2
|
+
5.1,3.5,1.4,0.2,Iris-setosa
|
|
3
|
+
4.9,3,1.4,0.2,Iris-setosa
|
|
4
|
+
4.7,3.2,1.3,0.2,Iris-setosa
|
|
5
|
+
4.6,3.1,1.5,0.2,Iris-setosa
|
|
6
|
+
5,3.6,1.4,0.2,Iris-setosa
|
|
7
|
+
5.4,3.9,1.7,0.4,Iris-setosa
|
|
8
|
+
4.6,3.4,1.4,0.3,Iris-setosa
|
|
9
|
+
5,3.4,1.5,0.2,Iris-setosa
|
|
10
|
+
4.4,2.9,1.4,0.2,Iris-setosa
|
|
11
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
12
|
+
5.4,3.7,1.5,0.2,Iris-setosa
|
|
13
|
+
4.8,3.4,1.6,0.2,Iris-setosa
|
|
14
|
+
4.8,3,1.4,0.1,Iris-setosa
|
|
15
|
+
4.3,3,1.1,0.1,Iris-setosa
|
|
16
|
+
5.8,4,1.2,0.2,Iris-setosa
|
|
17
|
+
5.7,4.4,1.5,0.4,Iris-setosa
|
|
18
|
+
5.4,3.9,1.3,0.4,Iris-setosa
|
|
19
|
+
5.1,3.5,1.4,0.3,Iris-setosa
|
|
20
|
+
5.7,3.8,1.7,0.3,Iris-setosa
|
|
21
|
+
5.1,3.8,1.5,0.3,Iris-setosa
|
|
22
|
+
5.4,3.4,1.7,0.2,Iris-setosa
|
|
23
|
+
5.1,3.7,1.5,0.4,Iris-setosa
|
|
24
|
+
4.6,3.6,1,0.2,Iris-setosa
|
|
25
|
+
5.1,3.3,1.7,0.5,Iris-setosa
|
|
26
|
+
4.8,3.4,1.9,0.2,Iris-setosa
|
|
27
|
+
5,3,1.6,0.2,Iris-setosa
|
|
28
|
+
5,3.4,1.6,0.4,Iris-setosa
|
|
29
|
+
5.2,3.5,1.5,0.2,Iris-setosa
|
|
30
|
+
5.2,3.4,1.4,0.2,Iris-setosa
|
|
31
|
+
4.7,3.2,1.6,0.2,Iris-setosa
|
|
32
|
+
4.8,3.1,1.6,0.2,Iris-setosa
|
|
33
|
+
5.4,3.4,1.5,0.4,Iris-setosa
|
|
34
|
+
5.2,4.1,1.5,0.1,Iris-setosa
|
|
35
|
+
5.5,4.2,1.4,0.2,Iris-setosa
|
|
36
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
37
|
+
5,3.2,1.2,0.2,Iris-setosa
|
|
38
|
+
5.5,3.5,1.3,0.2,Iris-setosa
|
|
39
|
+
4.9,3.1,1.5,0.1,Iris-setosa
|
|
40
|
+
4.4,3,1.3,0.2,Iris-setosa
|
|
41
|
+
5.1,3.4,1.5,0.2,Iris-setosa
|
|
42
|
+
5,3.5,1.3,0.3,Iris-setosa
|
|
43
|
+
4.5,2.3,1.3,0.3,Iris-setosa
|
|
44
|
+
4.4,3.2,1.3,0.2,Iris-setosa
|
|
45
|
+
5,3.5,1.6,0.6,Iris-setosa
|
|
46
|
+
5.1,3.8,1.9,0.4,Iris-setosa
|
|
47
|
+
4.8,3,1.4,0.3,Iris-setosa
|
|
48
|
+
5.1,3.8,1.6,0.2,Iris-setosa
|
|
49
|
+
4.6,3.2,1.4,0.2,Iris-setosa
|
|
50
|
+
5.3,3.7,1.5,0.2,Iris-setosa
|
|
51
|
+
5,3.3,1.4,0.2,Iris-setosa
|
|
52
|
+
7,3.2,4.7,1.4,Iris-versicolor
|
|
53
|
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
|
54
|
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
|
55
|
+
5.5,2.3,4,1.3,Iris-versicolor
|
|
56
|
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
|
57
|
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
|
58
|
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
|
59
|
+
4.9,2.4,3.3,1,Iris-versicolor
|
|
60
|
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
|
61
|
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
|
62
|
+
5,2,3.5,1,Iris-versicolor
|
|
63
|
+
5.9,3,4.2,1.5,Iris-versicolor
|
|
64
|
+
6,2.2,4,1,Iris-versicolor
|
|
65
|
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
|
66
|
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
|
67
|
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
|
68
|
+
5.6,3,4.5,1.5,Iris-versicolor
|
|
69
|
+
5.8,2.7,4.1,1,Iris-versicolor
|
|
70
|
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
|
71
|
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
|
72
|
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
|
73
|
+
6.1,2.8,4,1.3,Iris-versicolor
|
|
74
|
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
|
75
|
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
|
76
|
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
|
77
|
+
6.6,3,4.4,1.4,Iris-versicolor
|
|
78
|
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
|
79
|
+
6.7,3,5,1.7,Iris-versicolor
|
|
80
|
+
6,2.9,4.5,1.5,Iris-versicolor
|
|
81
|
+
5.7,2.6,3.5,1,Iris-versicolor
|
|
82
|
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
|
83
|
+
5.5,2.4,3.7,1,Iris-versicolor
|
|
84
|
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
|
85
|
+
6,2.7,5.1,1.6,Iris-versicolor
|
|
86
|
+
5.4,3,4.5,1.5,Iris-versicolor
|
|
87
|
+
6,3.4,4.5,1.6,Iris-versicolor
|
|
88
|
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
|
89
|
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
|
90
|
+
5.6,3,4.1,1.3,Iris-versicolor
|
|
91
|
+
5.5,2.5,4,1.3,Iris-versicolor
|
|
92
|
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
|
93
|
+
6.1,3,4.6,1.4,Iris-versicolor
|
|
94
|
+
5.8,2.6,4,1.2,Iris-versicolor
|
|
95
|
+
5,2.3,3.3,1,Iris-versicolor
|
|
96
|
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
|
97
|
+
5.7,3,4.2,1.2,Iris-versicolor
|
|
98
|
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
|
99
|
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
|
100
|
+
5.1,2.5,3,1.1,Iris-versicolor
|
|
101
|
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
|
102
|
+
6.3,3.3,6,2.5,Iris-virginica
|
|
103
|
+
5.8,2.7,5.1,1.9,Iris-virginica
|
|
104
|
+
7.1,3,5.9,2.1,Iris-virginica
|
|
105
|
+
6.3,2.9,5.6,1.8,Iris-virginica
|
|
106
|
+
6.5,3,5.8,2.2,Iris-virginica
|
|
107
|
+
7.6,3,6.6,2.1,Iris-virginica
|
|
108
|
+
4.9,2.5,4.5,1.7,Iris-virginica
|
|
109
|
+
7.3,2.9,6.3,1.8,Iris-virginica
|
|
110
|
+
6.7,2.5,5.8,1.8,Iris-virginica
|
|
111
|
+
7.2,3.6,6.1,2.5,Iris-virginica
|
|
112
|
+
6.5,3.2,5.1,2,Iris-virginica
|
|
113
|
+
6.4,2.7,5.3,1.9,Iris-virginica
|
|
114
|
+
6.8,3,5.5,2.1,Iris-virginica
|
|
115
|
+
5.7,2.5,5,2,Iris-virginica
|
|
116
|
+
5.8,2.8,5.1,2.4,Iris-virginica
|
|
117
|
+
6.4,3.2,5.3,2.3,Iris-virginica
|
|
118
|
+
6.5,3,5.5,1.8,Iris-virginica
|
|
119
|
+
7.7,3.8,6.7,2.2,Iris-virginica
|
|
120
|
+
7.7,2.6,6.9,2.3,Iris-virginica
|
|
121
|
+
6,2.2,5,1.5,Iris-virginica
|
|
122
|
+
6.9,3.2,5.7,2.3,Iris-virginica
|
|
123
|
+
5.6,2.8,4.9,2,Iris-virginica
|
|
124
|
+
7.7,2.8,6.7,2,Iris-virginica
|
|
125
|
+
6.3,2.7,4.9,1.8,Iris-virginica
|
|
126
|
+
6.7,3.3,5.7,2.1,Iris-virginica
|
|
127
|
+
7.2,3.2,6,1.8,Iris-virginica
|
|
128
|
+
6.2,2.8,4.8,1.8,Iris-virginica
|
|
129
|
+
6.1,3,4.9,1.8,Iris-virginica
|
|
130
|
+
6.4,2.8,5.6,2.1,Iris-virginica
|
|
131
|
+
7.2,3,5.8,1.6,Iris-virginica
|
|
132
|
+
7.4,2.8,6.1,1.9,Iris-virginica
|
|
133
|
+
7.9,3.8,6.4,2,Iris-virginica
|
|
134
|
+
6.4,2.8,5.6,2.2,Iris-virginica
|
|
135
|
+
6.3,2.8,5.1,1.5,Iris-virginica
|
|
136
|
+
6.1,2.6,5.6,1.4,Iris-virginica
|
|
137
|
+
7.7,3,6.1,2.3,Iris-virginica
|
|
138
|
+
6.3,3.4,5.6,2.4,Iris-virginica
|
|
139
|
+
6.4,3.1,5.5,1.8,Iris-virginica
|
|
140
|
+
6,3,4.8,1.8,Iris-virginica
|
|
141
|
+
6.9,3.1,5.4,2.1,Iris-virginica
|
|
142
|
+
6.7,3.1,5.6,2.4,Iris-virginica
|
|
143
|
+
6.9,3.1,5.1,2.3,Iris-virginica
|
|
144
|
+
5.8,2.7,5.1,1.9,Iris-virginica
|
|
145
|
+
6.8,3.2,5.9,2.3,Iris-virginica
|
|
146
|
+
6.7,3.3,5.7,2.5,Iris-virginica
|
|
147
|
+
6.7,3,5.2,2.3,Iris-virginica
|
|
148
|
+
6.3,2.5,5,1.9,Iris-virginica
|
|
149
|
+
6.5,3,5.2,2,Iris-virginica
|
|
150
|
+
6.2,3.4,5.4,2.3,Iris-virginica
|
|
151
|
+
5.9,3,5.1,1.8,Iris-virginica
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category": "Feature Engineering Transform",
|
|
9
9
|
"function_alias_name": "TD_FunctionTransform",
|
|
10
10
|
"function_r_name": "aa.td_functiontransform",
|
|
11
|
+
"ref_function_r_name": "aa.td_functionfit",
|
|
11
12
|
"short_description": "fastpath function that performs transformations on the InputTable depending on the parameters in the FitTable.",
|
|
12
13
|
"long_description": "fastpath function that performs transformations on the InputTable depending on the parameters in the FitTable.",
|
|
13
14
|
"input_tables": [
|
|
@@ -9,6 +9,7 @@
|
|
|
9
9
|
"supports_view": false,
|
|
10
10
|
"function_alias_name": "TD_OneHotEncodingTransform",
|
|
11
11
|
"function_r_name": "aa.td_one.hot.encoding.transform",
|
|
12
|
+
"ref_function_r_name": "aa.td_one.hot.encoding.fit",
|
|
12
13
|
"short_description": "fastpath function used to encode categorical features as a one-hot numeric vectors using the information from the TD_OneHotEncodingFit function",
|
|
13
14
|
"long_description": "fastpath function used to encode categorical features as a one-hot numeric vectors using the information from the TD_OneHotEncodingFit function",
|
|
14
15
|
"input_tables": [
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category" : "Data Cleaning",
|
|
9
9
|
"function_alias_name": "TD_OutlierFilterTransform",
|
|
10
10
|
"function_r_name": "aa.td_OutlierFilterTransform",
|
|
11
|
+
"ref_function_r_name": "aa.td_outlierfilterfit",
|
|
11
12
|
"short_description": "OutlierFilterTransform Analytical function filters the outliers from the input table. It uses the FitTable from the OutlierFilterFit function to get statistics like median, count of rows, lower_percentile & upper_percentile for every column specified in TargetColumns argument and filters the outliers in the input table.",
|
|
12
13
|
"long_description": "OutlierFilterTransform Analytical function filters the outliers from the input table. It uses the FitTable from the OutlierFilterFit function to get statistics like median, count of rows, lower_percentile & upper_percentile for every column specified in TargetColumns argument and filters the outliers in the input table.",
|
|
13
14
|
"input_tables": [
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category": "Feature Engineering Transform",
|
|
9
9
|
"function_alias_name": "TD_PolynomialFeaturesTransform",
|
|
10
10
|
"function_r_name": "aa.td_polynomialfeaturestransform",
|
|
11
|
+
"ref_function_r_name": "aa.td_polynomialfeaturesfit",
|
|
11
12
|
"short_description": "All polynomial combinations of the features with degree less than or equal to the specified degree are generated.",
|
|
12
13
|
"long_description": "All polynomial combinations of the features with degree less than or equal to the specified degree are generated.",
|
|
13
14
|
"input_tables": [
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category": "Feature Engineering Transform",
|
|
9
9
|
"function_alias_name": "TD_RowNormalizeTransform",
|
|
10
10
|
"function_r_name": "aa.td_rownormalize.transform",
|
|
11
|
+
"ref_function_r_name": "aa.td_rownormalize.fit",
|
|
11
12
|
"short_description": "fastpath function to return row-wise scaled (normalized) data.",
|
|
12
13
|
"long_description": "fastpath function to return row-wise scaled (normalized) data.",
|
|
13
14
|
"input_tables": [
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category": "Feature Engineering Transform",
|
|
9
9
|
"function_alias_name": "TD_ScaleTransform",
|
|
10
10
|
"function_r_name": "aa.td_scale.transform",
|
|
11
|
+
"ref_function_r_name": "aa.td_scale.fit",
|
|
11
12
|
"short_description": "fastpath function to scale/standardize numeric columns.",
|
|
12
13
|
"long_description": "fastpath function to scale/standardize numeric columns.",
|
|
13
14
|
"input_tables": [
|
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
"function_category" : "Data Cleaning",
|
|
9
9
|
"function_alias_name": "TD_SimpleImputeTransform",
|
|
10
10
|
"function_r_name": "aa.TD_SimpleImputeTransform",
|
|
11
|
+
"ref_function_r_name": "aa.TD_SimpleImputeFit",
|
|
11
12
|
"short_description": "TD_SimpleImputeTransform function is used to fill null values in target columns with corresponding values from FitTable (generated by TD_SimpleImputeFit function)",
|
|
12
13
|
"long_description": "TD_SimpleImputeTransform function is used to fill null values in target columns with corresponding values from FitTable (generated by TD_SimpleImputeFit function)",
|
|
13
14
|
"input_tables": [
|
|
@@ -27,11 +27,14 @@ from teradataml.common.sqlbundle import SQLBundle
|
|
|
27
27
|
import teradataml.context.context as tdmlctx
|
|
28
28
|
from teradataml.context.context import _get_context_temp_databasename
|
|
29
29
|
from collections import OrderedDict, defaultdict
|
|
30
|
+
from teradatasqlalchemy.telemetry.queryband import collect_queryband
|
|
30
31
|
|
|
31
32
|
json_data = {}
|
|
32
33
|
col_types_dict = {}
|
|
33
34
|
curr_dir = os.path.dirname(os.path.abspath(__file__))
|
|
34
35
|
|
|
36
|
+
|
|
37
|
+
@collect_queryband(queryband='LoadData')
|
|
35
38
|
def load_example_data(function_name, table_name):
|
|
36
39
|
"""
|
|
37
40
|
This function loads the data to the specified table. This is only used for
|