teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
- def XGBoostPredict(newdata = None, object = None, id_column = None, num_boosted_tree = 1000,
2
- iter_num = 3, accumulate = None, output_prob = False, model_type = "REGRESSION",
3
- output_responses = None, **generic_arguments):
1
+ def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1000,
2
+ iter_num=3, accumulate=None, output_prob=False, model_type="REGRESSION",
3
+ output_responses=None, **generic_arguments):
4
4
  """
5
5
  DESCRIPTION:
6
6
  The XGBoostPredict() function runs the predictive algorithm based on the model generated
@@ -30,17 +30,17 @@ def XGBoostPredict(newdata = None, object = None, id_column = None, num_boosted_
30
30
  compared to the case when all trees fit in memory.
31
31
 
32
32
  PARAMETERS:
33
+ newdata:
34
+ Required Argument.
35
+ Specifies the teradataml DataFrame containing the input data.
36
+ Types: teradataml DataFrame
37
+
33
38
  object:
34
39
  Required Argument.
35
40
  Specifies the teradataml DataFrame containing the model data generated by XGBoost()
36
41
  function or the instance of XGBoost.
37
42
  Types: teradataml DataFrame or XGBoost
38
43
 
39
- newdata:
40
- Required Argument.
41
- Specifies the teradataml DataFrame containing the input data.
42
- Types: teradataml DataFrame
43
-
44
44
  id_column:
45
45
  Required Argument.
46
46
  Specifies the input data column name that contains a unique
@@ -272,4 +272,4 @@ def XGBoostPredict(newdata = None, object = None, id_column = None, num_boosted_
272
272
 
273
273
  # Print the result DataFrame.
274
274
  print(XGBoostPredict_out_2.result)
275
- """
275
+ """
@@ -0,0 +1,160 @@
1
+ Species,Weight,Length1,Length2,Length3,Height,Width
2
+ Bream,242,23.2,25.4,30,11.52,4.02
3
+ Bream,290,24,26.3,31.2,12.48,4.3056
4
+ Bream,340,23.9,26.5,31.1,12.3778,4.6961
5
+ Bream,363,26.3,29,33.5,12.73,4.4555
6
+ Bream,430,26.5,29,34,12.444,5.134
7
+ Bream,450,26.8,29.7,34.7,13.6024,4.9274
8
+ Bream,500,26.8,29.7,34.5,14.1795,5.2785
9
+ Bream,390,27.6,30,35,12.67,4.69
10
+ Bream,450,27.6,30,35.1,14.0049,4.8438
11
+ Bream,500,28.5,30.7,36.2,14.2266,4.9594
12
+ Bream,475,28.4,31,36.2,14.2628,5.1042
13
+ Bream,500,28.7,31,36.2,14.3714,4.8146
14
+ Bream,500,29.1,31.5,36.4,13.7592,4.368
15
+ Bream,340,29.5,32,37.3,13.9129,5.0728
16
+ Bream,600,29.4,32,37.2,14.9544,5.1708
17
+ Bream,600,29.4,32,37.2,15.438,5.58
18
+ Bream,700,30.4,33,38.3,14.8604,5.2854
19
+ Bream,700,30.4,33,38.5,14.938,5.1975
20
+ Bream,610,30.9,33.5,38.6,15.633,5.1338
21
+ Bream,650,31,33.5,38.7,14.4738,5.7276
22
+ Bream,575,31.3,34,39.5,15.1285,5.5695
23
+ Bream,685,31.4,34,39.2,15.9936,5.3704
24
+ Bream,620,31.5,34.5,39.7,15.5227,5.2801
25
+ Bream,680,31.8,35,40.6,15.4686,6.1306
26
+ Bream,700,31.9,35,40.5,16.2405,5.589
27
+ Bream,725,31.8,35,40.9,16.36,6.0532
28
+ Bream,720,32,35,40.6,16.3618,6.09
29
+ Bream,714,32.7,36,41.5,16.517,5.8515
30
+ Bream,850,32.8,36,41.6,16.8896,6.1984
31
+ Bream,1000,33.5,37,42.6,18.957,6.603
32
+ Bream,920,35,38.5,44.1,18.0369,6.3063
33
+ Bream,955,35,38.5,44,18.084,6.292
34
+ Bream,925,36.2,39.5,45.3,18.7542,6.7497
35
+ Bream,975,37.4,41,45.9,18.6354,6.7473
36
+ Bream,950,38,41,46.5,17.6235,6.3705
37
+ Roach,40,12.9,14.1,16.2,4.1472,2.268
38
+ Roach,69,16.5,18.2,20.3,5.2983,2.8217
39
+ Roach,78,17.5,18.8,21.2,5.5756,2.9044
40
+ Roach,87,18.2,19.8,22.2,5.6166,3.1746
41
+ Roach,120,18.6,20,22.2,6.216,3.5742
42
+ Roach,0,19,20.5,22.8,6.4752,3.3516
43
+ Roach,110,19.1,20.8,23.1,6.1677,3.3957
44
+ Roach,120,19.4,21,23.7,6.1146,3.2943
45
+ Roach,150,20.4,22,24.7,5.8045,3.7544
46
+ Roach,145,20.5,22,24.3,6.6339,3.5478
47
+ Roach,160,20.5,22.5,25.3,7.0334,3.8203
48
+ Roach,140,21,22.5,25,6.55,3.325
49
+ Roach,160,21.1,22.5,25,6.4,3.8
50
+ Roach,169,22,24,27.2,7.5344,3.8352
51
+ Roach,161,22,23.4,26.7,6.9153,3.6312
52
+ Roach,200,22.1,23.5,26.8,7.3968,4.1272
53
+ Roach,180,23.6,25.2,27.9,7.0866,3.906
54
+ Roach,290,24,26,29.2,8.8768,4.4968
55
+ Roach,272,25,27,30.6,8.568,4.7736
56
+ Roach,390,29.5,31.7,35,9.485,5.355
57
+ Whitefish,270,23.6,26,28.7,8.3804,4.2476
58
+ Whitefish,270,24.1,26.5,29.3,8.1454,4.2485
59
+ Whitefish,306,25.6,28,30.8,8.778,4.6816
60
+ Whitefish,540,28.5,31,34,10.744,6.562
61
+ Whitefish,800,33.7,36.4,39.6,11.7612,6.5736
62
+ Whitefish,1000,37.3,40,43.5,12.354,6.525
63
+ Parkki,55,13.5,14.7,16.5,6.8475,2.3265
64
+ Parkki,60,14.3,15.5,17.4,6.5772,2.3142
65
+ Parkki,90,16.3,17.7,19.8,7.4052,2.673
66
+ Parkki,120,17.5,19,21.3,8.3922,2.9181
67
+ Parkki,150,18.4,20,22.4,8.8928,3.2928
68
+ Parkki,140,19,20.7,23.2,8.5376,3.2944
69
+ Parkki,170,19,20.7,23.2,9.396,3.4104
70
+ Parkki,145,19.8,21.5,24.1,9.7364,3.1571
71
+ Parkki,200,21.2,23,25.8,10.3458,3.6636
72
+ Parkki,273,23,25,28,11.088,4.144
73
+ Parkki,300,24,26,29,11.368,4.234
74
+ Perch,5.9,7.5,8.4,8.8,2.112,1.408
75
+ Perch,32,12.5,13.7,14.7,3.528,1.9992
76
+ Perch,40,13.8,15,16,3.824,2.432
77
+ Perch,51.5,15,16.2,17.2,4.5924,2.6316
78
+ Perch,70,15.7,17.4,18.5,4.588,2.9415
79
+ Perch,100,16.2,18,19.2,5.2224,3.3216
80
+ Perch,78,16.8,18.7,19.4,5.1992,3.1234
81
+ Perch,80,17.2,19,20.2,5.6358,3.0502
82
+ Perch,85,17.8,19.6,20.8,5.1376,3.0368
83
+ Perch,85,18.2,20,21,5.082,2.772
84
+ Perch,110,19,21,22.5,5.6925,3.555
85
+ Perch,115,19,21,22.5,5.9175,3.3075
86
+ Perch,125,19,21,22.5,5.6925,3.6675
87
+ Perch,130,19.3,21.3,22.8,6.384,3.534
88
+ Perch,120,20,22,23.5,6.11,3.4075
89
+ Perch,120,20,22,23.5,5.64,3.525
90
+ Perch,130,20,22,23.5,6.11,3.525
91
+ Perch,135,20,22,23.5,5.875,3.525
92
+ Perch,110,20,22,23.5,5.5225,3.995
93
+ Perch,130,20.5,22.5,24,5.856,3.624
94
+ Perch,150,20.5,22.5,24,6.792,3.624
95
+ Perch,145,20.7,22.7,24.2,5.9532,3.63
96
+ Perch,150,21,23,24.5,5.2185,3.626
97
+ Perch,170,21.5,23.5,25,6.275,3.725
98
+ Perch,225,22,24,25.5,7.293,3.723
99
+ Perch,145,22,24,25.5,6.375,3.825
100
+ Perch,188,22.6,24.6,26.2,6.7334,4.1658
101
+ Perch,180,23,25,26.5,6.4395,3.6835
102
+ Perch,197,23.5,25.6,27,6.561,4.239
103
+ Perch,218,25,26.5,28,7.168,4.144
104
+ Perch,300,25.2,27.3,28.7,8.323,5.1373
105
+ Perch,260,25.4,27.5,28.9,7.1672,4.335
106
+ Perch,265,25.4,27.5,28.9,7.0516,4.335
107
+ Perch,250,25.4,27.5,28.9,7.2828,4.5662
108
+ Perch,250,25.9,28,29.4,7.8204,4.2042
109
+ Perch,300,26.9,28.7,30.1,7.5852,4.6354
110
+ Perch,320,27.8,30,31.6,7.6156,4.7716
111
+ Perch,514,30.5,32.8,34,10.03,6.018
112
+ Perch,556,32,34.5,36.5,10.2565,6.3875
113
+ Perch,840,32.5,35,37.3,11.4884,7.7957
114
+ Perch,685,34,36.5,39,10.881,6.864
115
+ Perch,700,34,36,38.3,10.6091,6.7408
116
+ Perch,700,34.5,37,39.4,10.835,6.2646
117
+ Perch,690,34.6,37,39.3,10.5717,6.3666
118
+ Perch,900,36.5,39,41.4,11.1366,7.4934
119
+ Perch,650,36.5,39,41.4,11.1366,6.003
120
+ Perch,820,36.6,39,41.3,12.4313,7.3514
121
+ Perch,850,36.9,40,42.3,11.9286,7.1064
122
+ Perch,900,37,40,42.5,11.73,7.225
123
+ Perch,1015,37,40,42.4,12.3808,7.4624
124
+ Perch,820,37.1,40,42.5,11.135,6.63
125
+ Perch,1100,39,42,44.6,12.8002,6.8684
126
+ Perch,1000,39.8,43,45.2,11.9328,7.2772
127
+ Perch,1100,40.1,43,45.5,12.5125,7.4165
128
+ Perch,1000,40.2,43.5,46,12.604,8.142
129
+ Perch,1000,41.1,44,46.6,12.4888,7.5958
130
+ Pike,200,30,32.3,34.8,5.568,3.3756
131
+ Pike,300,31.7,34,37.8,5.7078,4.158
132
+ Pike,300,32.7,35,38.8,5.9364,4.3844
133
+ Pike,300,34.8,37.3,39.8,6.2884,4.0198
134
+ Pike,430,35.5,38,40.5,7.29,4.5765
135
+ Pike,345,36,38.5,41,6.396,3.977
136
+ Pike,456,40,42.5,45.5,7.28,4.3225
137
+ Pike,510,40,42.5,45.5,6.825,4.459
138
+ Pike,540,40.1,43,45.8,7.786,5.1296
139
+ Pike,500,42,45,48,6.96,4.896
140
+ Pike,567,43.2,46,48.7,7.792,4.87
141
+ Pike,770,44.8,48,51.2,7.68,5.376
142
+ Pike,950,48.3,51.7,55.1,8.9262,6.1712
143
+ Pike,1250,52,56,59.7,10.6863,6.9849
144
+ Pike,1600,56,60,64,9.6,6.144
145
+ Pike,1550,56,60,64,9.6,6.144
146
+ Pike,1650,59,63.4,68,10.812,7.48
147
+ Smelt,6.7,9.3,9.8,10.8,1.7388,1.0476
148
+ Smelt,7.5,10,10.5,11.6,1.972,1.16
149
+ Smelt,7,10.1,10.6,11.6,1.7284,1.1484
150
+ Smelt,9.7,10.4,11,12,2.196,1.38
151
+ Smelt,9.8,10.7,11.2,12.4,2.0832,1.2772
152
+ Smelt,8.7,10.8,11.3,12.6,1.9782,1.2852
153
+ Smelt,10,11.3,11.8,13.1,2.2139,1.2838
154
+ Smelt,9.9,11.3,11.8,13.1,2.2139,1.1659
155
+ Smelt,9.8,11.4,12,13.2,2.2044,1.1484
156
+ Smelt,12.2,11.5,12.2,13.4,2.0904,1.3936
157
+ Smelt,13.4,11.7,12.4,13.5,2.43,1.269
158
+ Smelt,12.2,12.1,13,13.8,2.277,1.2558
159
+ Smelt,19.7,13.2,14.3,15.2,2.8728,2.0672
160
+ Smelt,19.9,13.8,15,16.2,2.9322,1.8792
@@ -0,0 +1,215 @@
1
+ ri,na,mg,ai,si,k,ca,ba,fe,gtype
2
+ 1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
3
+ 1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
4
+ 1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
5
+ 1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,1
6
+ 1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,1
7
+ 1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,1
8
+ 1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,1
9
+ 1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,1
10
+ 1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,1
11
+ 1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,1
12
+ 1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,1
13
+ 1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,1
14
+ 1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,1
15
+ 1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,1
16
+ 1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,1
17
+ 1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,1
18
+ 1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,1
19
+ 1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,1
20
+ 1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,1
21
+ 1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,1
22
+ 1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,1
23
+ 1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,1
24
+ 1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,1
25
+ 1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,1
26
+ 1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,1
27
+ 1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,1
28
+ 1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,1
29
+ 1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,1
30
+ 1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,1
31
+ 1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,1
32
+ 1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,1
33
+ 1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,1
34
+ 1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,1
35
+ 1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,1
36
+ 1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,1
37
+ 1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,1
38
+ 1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,1
39
+ 1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,1
40
+ 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
41
+ 1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
42
+ 1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,1
43
+ 1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,1
44
+ 1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,1
45
+ 1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,1
46
+ 1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,1
47
+ 1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,1
48
+ 1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,1
49
+ 1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,1
50
+ 1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,1
51
+ 1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,1
52
+ 1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,1
53
+ 1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,1
54
+ 1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,1
55
+ 1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,1
56
+ 1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,1
57
+ 1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,1
58
+ 1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,1
59
+ 1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,1
60
+ 1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,1
61
+ 1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,1
62
+ 1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,1
63
+ 1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,1
64
+ 1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,1
65
+ 1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,1
66
+ 1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,1
67
+ 1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,1
68
+ 1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,1
69
+ 1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,1
70
+ 1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,1
71
+ 1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,1
72
+ 1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,2
73
+ 1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,2
74
+ 1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,2
75
+ 1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,2
76
+ 1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,2
77
+ 1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,2
78
+ 1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,2
79
+ 1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,2
80
+ 1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,2
81
+ 1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,2
82
+ 1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,2
83
+ 1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,2
84
+ 1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,2
85
+ 1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,2
86
+ 1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,2
87
+ 1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,2
88
+ 1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,2
89
+ 1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,2
90
+ 1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,2
91
+ 1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,2
92
+ 1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,2
93
+ 1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,2
94
+ 1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,2
95
+ 1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,2
96
+ 1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,2
97
+ 1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,2
98
+ 1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,2
99
+ 1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,2
100
+ 1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,2
101
+ 1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,2
102
+ 1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,2
103
+ 1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,2
104
+ 1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,2
105
+ 1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,2
106
+ 1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,2
107
+ 1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,2
108
+ 1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,2
109
+ 1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,2
110
+ 1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,2
111
+ 1.51818,13.72,0,0.56,74.45,0,10.99,0,0,2
112
+ 1.52664,11.23,0,0.77,73.21,0,14.68,0,0,2
113
+ 1.52739,11.02,0,0.75,73.08,0,14.96,0,0,2
114
+ 1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,2
115
+ 1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,2
116
+ 1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,2
117
+ 1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,2
118
+ 1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,2
119
+ 1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,2
120
+ 1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,2
121
+ 1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,2
122
+ 1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,2
123
+ 1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,2
124
+ 1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,2
125
+ 1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,2
126
+ 1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,2
127
+ 1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,2
128
+ 1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,2
129
+ 1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,2
130
+ 1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,2
131
+ 1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,2
132
+ 1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,2
133
+ 1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,2
134
+ 1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,2
135
+ 1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,2
136
+ 1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,2
137
+ 1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,2
138
+ 1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,2
139
+ 1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,2
140
+ 1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,2
141
+ 1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,2
142
+ 1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,2
143
+ 1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,2
144
+ 1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,2
145
+ 1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,2
146
+ 1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,2
147
+ 1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,2
148
+ 1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,3
149
+ 1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,3
150
+ 1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,3
151
+ 1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,3
152
+ 1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,3
153
+ 1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,3
154
+ 1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,3
155
+ 1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,3
156
+ 1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,3
157
+ 1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,3
158
+ 1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,3
159
+ 1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,3
160
+ 1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,3
161
+ 1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,3
162
+ 1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,3
163
+ 1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,3
164
+ 1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,3
165
+ 1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,5
166
+ 1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,5
167
+ 1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,5
168
+ 1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,5
169
+ 1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,5
170
+ 1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,5
171
+ 1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,5
172
+ 1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,5
173
+ 1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,5
174
+ 1.51321,13,0,3.02,70.7,6.21,6.93,0,0,5
175
+ 1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,5
176
+ 1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,5
177
+ 1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,5
178
+ 1.51905,14,2.39,1.56,72.37,0,9.57,0,0,6
179
+ 1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,6
180
+ 1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,6
181
+ 1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,6
182
+ 1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,6
183
+ 1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,6
184
+ 1.51916,14.15,0,2.09,72.74,0,10.88,0,0,6
185
+ 1.51969,14.56,0,0.56,73.48,0,11.22,0,0,6
186
+ 1.51115,17.38,0,0.34,75.41,0,6.65,0,0,6
187
+ 1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,7
188
+ 1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,7
189
+ 1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,7
190
+ 1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,7
191
+ 1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,7
192
+ 1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,7
193
+ 1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,7
194
+ 1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,7
195
+ 1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,7
196
+ 1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,7
197
+ 1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,7
198
+ 1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,7
199
+ 1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,7
200
+ 1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,7
201
+ 1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,7
202
+ 1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,7
203
+ 1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,7
204
+ 1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,7
205
+ 1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,7
206
+ 1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,7
207
+ 1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,7
208
+ 1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,7
209
+ 1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,7
210
+ 1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,7
211
+ 1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,7
212
+ 1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,7
213
+ 1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,7
214
+ 1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,7
215
+ 1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,7
@@ -1336,4 +1336,4 @@ age,sex,bmi,children,smoker,region,charges
1336
1336
  18,female,31.92,0,no,northeast,2205.9808
1337
1337
  18,female,36.85,0,no,southeast,1629.8335
1338
1338
  21,female,25.8,0,no,southwest,2007.945
1339
- 61,female,29.07,0,yes,northwest,29141.3603
1339
+ 61,female,29.07,0,yes,northwest,29141.3603
@@ -0,0 +1,151 @@
1
+ sepal_length,sepal_width,petal_length,petal_width,species
2
+ 5.1,3.5,1.4,0.2,Iris-setosa
3
+ 4.9,3,1.4,0.2,Iris-setosa
4
+ 4.7,3.2,1.3,0.2,Iris-setosa
5
+ 4.6,3.1,1.5,0.2,Iris-setosa
6
+ 5,3.6,1.4,0.2,Iris-setosa
7
+ 5.4,3.9,1.7,0.4,Iris-setosa
8
+ 4.6,3.4,1.4,0.3,Iris-setosa
9
+ 5,3.4,1.5,0.2,Iris-setosa
10
+ 4.4,2.9,1.4,0.2,Iris-setosa
11
+ 4.9,3.1,1.5,0.1,Iris-setosa
12
+ 5.4,3.7,1.5,0.2,Iris-setosa
13
+ 4.8,3.4,1.6,0.2,Iris-setosa
14
+ 4.8,3,1.4,0.1,Iris-setosa
15
+ 4.3,3,1.1,0.1,Iris-setosa
16
+ 5.8,4,1.2,0.2,Iris-setosa
17
+ 5.7,4.4,1.5,0.4,Iris-setosa
18
+ 5.4,3.9,1.3,0.4,Iris-setosa
19
+ 5.1,3.5,1.4,0.3,Iris-setosa
20
+ 5.7,3.8,1.7,0.3,Iris-setosa
21
+ 5.1,3.8,1.5,0.3,Iris-setosa
22
+ 5.4,3.4,1.7,0.2,Iris-setosa
23
+ 5.1,3.7,1.5,0.4,Iris-setosa
24
+ 4.6,3.6,1,0.2,Iris-setosa
25
+ 5.1,3.3,1.7,0.5,Iris-setosa
26
+ 4.8,3.4,1.9,0.2,Iris-setosa
27
+ 5,3,1.6,0.2,Iris-setosa
28
+ 5,3.4,1.6,0.4,Iris-setosa
29
+ 5.2,3.5,1.5,0.2,Iris-setosa
30
+ 5.2,3.4,1.4,0.2,Iris-setosa
31
+ 4.7,3.2,1.6,0.2,Iris-setosa
32
+ 4.8,3.1,1.6,0.2,Iris-setosa
33
+ 5.4,3.4,1.5,0.4,Iris-setosa
34
+ 5.2,4.1,1.5,0.1,Iris-setosa
35
+ 5.5,4.2,1.4,0.2,Iris-setosa
36
+ 4.9,3.1,1.5,0.1,Iris-setosa
37
+ 5,3.2,1.2,0.2,Iris-setosa
38
+ 5.5,3.5,1.3,0.2,Iris-setosa
39
+ 4.9,3.1,1.5,0.1,Iris-setosa
40
+ 4.4,3,1.3,0.2,Iris-setosa
41
+ 5.1,3.4,1.5,0.2,Iris-setosa
42
+ 5,3.5,1.3,0.3,Iris-setosa
43
+ 4.5,2.3,1.3,0.3,Iris-setosa
44
+ 4.4,3.2,1.3,0.2,Iris-setosa
45
+ 5,3.5,1.6,0.6,Iris-setosa
46
+ 5.1,3.8,1.9,0.4,Iris-setosa
47
+ 4.8,3,1.4,0.3,Iris-setosa
48
+ 5.1,3.8,1.6,0.2,Iris-setosa
49
+ 4.6,3.2,1.4,0.2,Iris-setosa
50
+ 5.3,3.7,1.5,0.2,Iris-setosa
51
+ 5,3.3,1.4,0.2,Iris-setosa
52
+ 7,3.2,4.7,1.4,Iris-versicolor
53
+ 6.4,3.2,4.5,1.5,Iris-versicolor
54
+ 6.9,3.1,4.9,1.5,Iris-versicolor
55
+ 5.5,2.3,4,1.3,Iris-versicolor
56
+ 6.5,2.8,4.6,1.5,Iris-versicolor
57
+ 5.7,2.8,4.5,1.3,Iris-versicolor
58
+ 6.3,3.3,4.7,1.6,Iris-versicolor
59
+ 4.9,2.4,3.3,1,Iris-versicolor
60
+ 6.6,2.9,4.6,1.3,Iris-versicolor
61
+ 5.2,2.7,3.9,1.4,Iris-versicolor
62
+ 5,2,3.5,1,Iris-versicolor
63
+ 5.9,3,4.2,1.5,Iris-versicolor
64
+ 6,2.2,4,1,Iris-versicolor
65
+ 6.1,2.9,4.7,1.4,Iris-versicolor
66
+ 5.6,2.9,3.6,1.3,Iris-versicolor
67
+ 6.7,3.1,4.4,1.4,Iris-versicolor
68
+ 5.6,3,4.5,1.5,Iris-versicolor
69
+ 5.8,2.7,4.1,1,Iris-versicolor
70
+ 6.2,2.2,4.5,1.5,Iris-versicolor
71
+ 5.6,2.5,3.9,1.1,Iris-versicolor
72
+ 5.9,3.2,4.8,1.8,Iris-versicolor
73
+ 6.1,2.8,4,1.3,Iris-versicolor
74
+ 6.3,2.5,4.9,1.5,Iris-versicolor
75
+ 6.1,2.8,4.7,1.2,Iris-versicolor
76
+ 6.4,2.9,4.3,1.3,Iris-versicolor
77
+ 6.6,3,4.4,1.4,Iris-versicolor
78
+ 6.8,2.8,4.8,1.4,Iris-versicolor
79
+ 6.7,3,5,1.7,Iris-versicolor
80
+ 6,2.9,4.5,1.5,Iris-versicolor
81
+ 5.7,2.6,3.5,1,Iris-versicolor
82
+ 5.5,2.4,3.8,1.1,Iris-versicolor
83
+ 5.5,2.4,3.7,1,Iris-versicolor
84
+ 5.8,2.7,3.9,1.2,Iris-versicolor
85
+ 6,2.7,5.1,1.6,Iris-versicolor
86
+ 5.4,3,4.5,1.5,Iris-versicolor
87
+ 6,3.4,4.5,1.6,Iris-versicolor
88
+ 6.7,3.1,4.7,1.5,Iris-versicolor
89
+ 6.3,2.3,4.4,1.3,Iris-versicolor
90
+ 5.6,3,4.1,1.3,Iris-versicolor
91
+ 5.5,2.5,4,1.3,Iris-versicolor
92
+ 5.5,2.6,4.4,1.2,Iris-versicolor
93
+ 6.1,3,4.6,1.4,Iris-versicolor
94
+ 5.8,2.6,4,1.2,Iris-versicolor
95
+ 5,2.3,3.3,1,Iris-versicolor
96
+ 5.6,2.7,4.2,1.3,Iris-versicolor
97
+ 5.7,3,4.2,1.2,Iris-versicolor
98
+ 5.7,2.9,4.2,1.3,Iris-versicolor
99
+ 6.2,2.9,4.3,1.3,Iris-versicolor
100
+ 5.1,2.5,3,1.1,Iris-versicolor
101
+ 5.7,2.8,4.1,1.3,Iris-versicolor
102
+ 6.3,3.3,6,2.5,Iris-virginica
103
+ 5.8,2.7,5.1,1.9,Iris-virginica
104
+ 7.1,3,5.9,2.1,Iris-virginica
105
+ 6.3,2.9,5.6,1.8,Iris-virginica
106
+ 6.5,3,5.8,2.2,Iris-virginica
107
+ 7.6,3,6.6,2.1,Iris-virginica
108
+ 4.9,2.5,4.5,1.7,Iris-virginica
109
+ 7.3,2.9,6.3,1.8,Iris-virginica
110
+ 6.7,2.5,5.8,1.8,Iris-virginica
111
+ 7.2,3.6,6.1,2.5,Iris-virginica
112
+ 6.5,3.2,5.1,2,Iris-virginica
113
+ 6.4,2.7,5.3,1.9,Iris-virginica
114
+ 6.8,3,5.5,2.1,Iris-virginica
115
+ 5.7,2.5,5,2,Iris-virginica
116
+ 5.8,2.8,5.1,2.4,Iris-virginica
117
+ 6.4,3.2,5.3,2.3,Iris-virginica
118
+ 6.5,3,5.5,1.8,Iris-virginica
119
+ 7.7,3.8,6.7,2.2,Iris-virginica
120
+ 7.7,2.6,6.9,2.3,Iris-virginica
121
+ 6,2.2,5,1.5,Iris-virginica
122
+ 6.9,3.2,5.7,2.3,Iris-virginica
123
+ 5.6,2.8,4.9,2,Iris-virginica
124
+ 7.7,2.8,6.7,2,Iris-virginica
125
+ 6.3,2.7,4.9,1.8,Iris-virginica
126
+ 6.7,3.3,5.7,2.1,Iris-virginica
127
+ 7.2,3.2,6,1.8,Iris-virginica
128
+ 6.2,2.8,4.8,1.8,Iris-virginica
129
+ 6.1,3,4.9,1.8,Iris-virginica
130
+ 6.4,2.8,5.6,2.1,Iris-virginica
131
+ 7.2,3,5.8,1.6,Iris-virginica
132
+ 7.4,2.8,6.1,1.9,Iris-virginica
133
+ 7.9,3.8,6.4,2,Iris-virginica
134
+ 6.4,2.8,5.6,2.2,Iris-virginica
135
+ 6.3,2.8,5.1,1.5,Iris-virginica
136
+ 6.1,2.6,5.6,1.4,Iris-virginica
137
+ 7.7,3,6.1,2.3,Iris-virginica
138
+ 6.3,3.4,5.6,2.4,Iris-virginica
139
+ 6.4,3.1,5.5,1.8,Iris-virginica
140
+ 6,3,4.8,1.8,Iris-virginica
141
+ 6.9,3.1,5.4,2.1,Iris-virginica
142
+ 6.7,3.1,5.6,2.4,Iris-virginica
143
+ 6.9,3.1,5.1,2.3,Iris-virginica
144
+ 5.8,2.7,5.1,1.9,Iris-virginica
145
+ 6.8,3.2,5.9,2.3,Iris-virginica
146
+ 6.7,3.3,5.7,2.5,Iris-virginica
147
+ 6.7,3,5.2,2.3,Iris-virginica
148
+ 6.3,2.5,5,1.9,Iris-virginica
149
+ 6.5,3,5.2,2,Iris-virginica
150
+ 6.2,3.4,5.4,2.3,Iris-virginica
151
+ 5.9,3,5.1,1.8,Iris-virginica
@@ -8,6 +8,7 @@
8
8
  "function_category": "Feature Engineering Transform",
9
9
  "function_alias_name": "TD_FunctionTransform",
10
10
  "function_r_name": "aa.td_functiontransform",
11
+ "ref_function_r_name": "aa.td_functionfit",
11
12
  "short_description": "fastpath function that performs transformations on the InputTable depending on the parameters in the FitTable.",
12
13
  "long_description": "fastpath function that performs transformations on the InputTable depending on the parameters in the FitTable.",
13
14
  "input_tables": [
@@ -9,6 +9,7 @@
9
9
  "supports_view": false,
10
10
  "function_alias_name": "TD_OneHotEncodingTransform",
11
11
  "function_r_name": "aa.td_one.hot.encoding.transform",
12
+ "ref_function_r_name": "aa.td_one.hot.encoding.fit",
12
13
  "short_description": "fastpath function used to encode categorical features as a one-hot numeric vectors using the information from the TD_OneHotEncodingFit function",
13
14
  "long_description": "fastpath function used to encode categorical features as a one-hot numeric vectors using the information from the TD_OneHotEncodingFit function",
14
15
  "input_tables": [
@@ -8,6 +8,7 @@
8
8
  "function_category" : "Data Cleaning",
9
9
  "function_alias_name": "TD_OutlierFilterTransform",
10
10
  "function_r_name": "aa.td_OutlierFilterTransform",
11
+ "ref_function_r_name": "aa.td_outlierfilterfit",
11
12
  "short_description": "OutlierFilterTransform Analytical function filters the outliers from the input table. It uses the FitTable from the OutlierFilterFit function to get statistics like median, count of rows, lower_percentile & upper_percentile for every column specified in TargetColumns argument and filters the outliers in the input table.",
12
13
  "long_description": "OutlierFilterTransform Analytical function filters the outliers from the input table. It uses the FitTable from the OutlierFilterFit function to get statistics like median, count of rows, lower_percentile & upper_percentile for every column specified in TargetColumns argument and filters the outliers in the input table.",
13
14
  "input_tables": [
@@ -8,6 +8,7 @@
8
8
  "function_category": "Feature Engineering Transform",
9
9
  "function_alias_name": "TD_PolynomialFeaturesTransform",
10
10
  "function_r_name": "aa.td_polynomialfeaturestransform",
11
+ "ref_function_r_name": "aa.td_polynomialfeaturesfit",
11
12
  "short_description": "All polynomial combinations of the features with degree less than or equal to the specified degree are generated.",
12
13
  "long_description": "All polynomial combinations of the features with degree less than or equal to the specified degree are generated.",
13
14
  "input_tables": [
@@ -8,6 +8,7 @@
8
8
  "function_category": "Feature Engineering Transform",
9
9
  "function_alias_name": "TD_RowNormalizeTransform",
10
10
  "function_r_name": "aa.td_rownormalize.transform",
11
+ "ref_function_r_name": "aa.td_rownormalize.fit",
11
12
  "short_description": "fastpath function to return row-wise scaled (normalized) data.",
12
13
  "long_description": "fastpath function to return row-wise scaled (normalized) data.",
13
14
  "input_tables": [
@@ -8,6 +8,7 @@
8
8
  "function_category": "Feature Engineering Transform",
9
9
  "function_alias_name": "TD_ScaleTransform",
10
10
  "function_r_name": "aa.td_scale.transform",
11
+ "ref_function_r_name": "aa.td_scale.fit",
11
12
  "short_description": "fastpath function to scale/standardize numeric columns.",
12
13
  "long_description": "fastpath function to scale/standardize numeric columns.",
13
14
  "input_tables": [
@@ -8,6 +8,7 @@
8
8
  "function_category" : "Data Cleaning",
9
9
  "function_alias_name": "TD_SimpleImputeTransform",
10
10
  "function_r_name": "aa.TD_SimpleImputeTransform",
11
+ "ref_function_r_name": "aa.TD_SimpleImputeFit",
11
12
  "short_description": "TD_SimpleImputeTransform function is used to fill null values in target columns with corresponding values from FitTable (generated by TD_SimpleImputeFit function)",
12
13
  "long_description": "TD_SimpleImputeTransform function is used to fill null values in target columns with corresponding values from FitTable (generated by TD_SimpleImputeFit function)",
13
14
  "input_tables": [
@@ -27,11 +27,14 @@ from teradataml.common.sqlbundle import SQLBundle
27
27
  import teradataml.context.context as tdmlctx
28
28
  from teradataml.context.context import _get_context_temp_databasename
29
29
  from collections import OrderedDict, defaultdict
30
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
30
31
 
31
32
  json_data = {}
32
33
  col_types_dict = {}
33
34
  curr_dir = os.path.dirname(os.path.abspath(__file__))
34
35
 
36
+
37
+ @collect_queryband(queryband='LoadData')
35
38
  def load_example_data(function_name, table_name):
36
39
  """
37
40
  This function loads the data to the specified table. This is only used for