teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,779 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.9
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class SAX:
31
-
32
- def __init__(self,
33
- data = None,
34
- meanstats_data = None,
35
- stdevstats_data = None,
36
- value_columns = None,
37
- time_column = None,
38
- window_type = "global",
39
- output = "string",
40
- mean = None,
41
- st_dev = None,
42
- window_size = None,
43
- output_frequency = 1,
44
- points_persymbol = 1,
45
- symbols_perwindow = None,
46
- alphabet_size = 4,
47
- bitmap_level = 2,
48
- print_stats = False,
49
- accumulate = None,
50
- data_sequence_column = None,
51
- meanstats_data_sequence_column = None,
52
- stdevstats_data_sequence_column = None,
53
- data_partition_column = None,
54
- meanstats_data_partition_column = None,
55
- stdevstats_data_partition_column = None,
56
- data_order_column = None,
57
- meanstats_data_order_column = None,
58
- stdevstats_data_order_column = None):
59
- """
60
- DESCRIPTION:
61
- The SAX (Symbolic Aggregate approXimation) function transforms a time
62
- series data item into a smaller sequence of symbols, which are more
63
- suitable for additional types of manipulation, because of their smaller
64
- size and the relative ease with which patterns can be identified and
65
- compared. Input and output formats allow it to be analyzed using NPath
66
- or Shapelet Functions, or by other hashing or regular-expression pattern
67
- matching algorithms.
68
-
69
-
70
- PARAMETERS:
71
- data:
72
- Required Argument.
73
- Specifies the teradataml DataFrame containing timeseries data.
74
-
75
- data_partition_column:
76
- Required Argument.
77
- Specifies Partition By columns for data.
78
- Values to this argument can be provided as list, if multiple columns
79
- are used for partition.
80
- Types: str OR list of Strings (str)
81
-
82
- data_order_column:
83
- Required Argument.
84
- Specifies Order By columns for data.
85
- Values to this argument can be provided as list, if multiple columns
86
- are used for ordering.
87
- Types: str OR list of Strings (str)
88
-
89
- meanstats_data:
90
- Optional Argument.
91
- Specifies teradataml DataFrame that contains the global means of each
92
- value_column of the input teradataml DataFrame.
93
-
94
- meanstats_data_partition_column:
95
- Optional Argument. Required if 'meanstats_data' is used.
96
- Specifies Partition By columns for meanstats_data.
97
- Values to this argument can be provided as list, if multiple columns
98
- are used for partition.
99
- Types: str OR list of Strings (str)
100
-
101
- meanstats_data_order_column:
102
- Optional Argument.
103
- Specifies Order By columns for meanstats_data.
104
- Values to this argument can be provided as list, if multiple columns
105
- are used for ordering.
106
- Types: str OR list of Strings (str)
107
-
108
- stdevstats_data:
109
- Optional Argument.
110
- Specifies teradataml DataFrame that contains the global standard deviations
111
- of each value_column of the input teradataml DataFrame.
112
-
113
- stdevstats_data_partition_column:
114
- Optional Argument. Required if 'stdevstats_data' is used.
115
- Specifies Partition By columns for stdevstats_data.
116
- Values to this argument can be provided as list, if multiple columns
117
- are used for partition.
118
- Types: str OR list of Strings (str)
119
-
120
- stdevstats_data_order_column:
121
- Optional Argument.
122
- Specifies Order By columns for stdevstats_data.
123
- Values to this argument can be provided as list, if multiple columns
124
- are used for ordering.
125
- Types: str OR list of Strings (str)
126
-
127
- value_columns:
128
- Required Argument.
129
- Specifies the names of the input teradataml DataFrame columns that
130
- contain the time series data to be transformed.
131
- Types: str OR list of Strings (str)
132
-
133
- time_column:
134
- Optional Argument.
135
- Specifies the name of the input teradataml DataFrame column that
136
- contains the time axis of the data.
137
- Types: str
138
-
139
- window_type:
140
- Optional Argument.
141
- Determines how much data the function processes at one time:
142
- "global": The function computes the SAX code using a single
143
- mean and standard deviation for the entire data set.
144
- "sliding": The function recomputes the mean and standard
145
- deviation for a sliding window of the data set.
146
- Default Value: "global"
147
- Permitted Values: sliding, global
148
- Types: str
149
-
150
- output:
151
- Optional Argument.
152
- Determines how the function outputs the results:
153
- "string": The function outputs a list of SAX codes for each window.
154
- "bytes": The function outputs the list of SAX codes as compact
155
- byte arrays (which are not "human-readable").
156
- "bitmap": The function outputs a JSON representation of a SAX bitmap.
157
- "characters": The function outputs one character for each line.
158
- Default Value: "string"
159
- Permitted Values: STRING, BITMAP, BYTES, CHARACTERS
160
- Types: str
161
-
162
- mean:
163
- Optional Argument.
164
- Specifies the global mean values that the function uses to calculate
165
- the SAX code for every partition. A mean value has the data type
166
- float. If mean specifies only one value and value_columns specifies
167
- multiple columns, then the specified value applies to every
168
- value_column. If mean specifies multiple values, then it must specify
169
- a value for each value_column. The nth mean value corresponds to the
170
- nth value_column.
171
- Tip: To specify a different global mean value for each partition,
172
- use the multiple-input syntax and put the values in the meanstats
173
- teradataml DataFrame.
174
- Types: float OR list of floats
175
-
176
- st_dev:
177
- Optional Argument.
178
- Specifies the global standard deviation values that the function uses
179
- to calculate the SAX code for every partition. A stdev value has the
180
- data type float and its value must be greater than 0. If Stdev
181
- specifies only one value and value_columns specifies multiple
182
- columns, then the specified value applies to every value_column. If
183
- Stdev specifies multiple values, then it must specify a value for
184
- each value_column. The nth stdev value corresponds to the nth
185
- value_column.
186
- Tip: To specify a different global standard deviation value for each
187
- partition, use the multiple-input syntax and put the values in the
188
- stdevstats teradataml DataFrame.
189
- Types: float OR list of floats
190
-
191
- window_size:
192
- Required if window_type is 'sliding', disallowed otherwise.
193
- Specifies the size of the sliding window. The value must be an
194
- integer greater than 0.
195
- Types: int
196
-
197
- output_frequency:
198
- Optional Argument.
199
- Specifies the number of data points that the window slides between
200
- successive outputs. The value must be an integer greater than 0.
201
- Note: window_type value must be "sliding" and Output value cannot be
202
- "characters". If window_type is "sliding" and Output value is
203
- "characters", then output_frequency is automatically set to the value
204
- of window_size, to ensure that a single character is assigned to each
205
- time point. If the number of data points in the time series is not an
206
- integer multiple of the window size, then the function ignores the
207
- leftover parts.
208
- Default Value: 1
209
- Types: int
210
-
211
- points_persymbol:
212
- Optional Argument.
213
- Specifies the number of data points to be converted into one SAX
214
- symbol. Each value must be an integer greater than 0.
215
- Note: window_type value must be "global".
216
- Default Value: 1
217
- Types: int
218
-
219
- symbols_perwindow:
220
- Optional Argument.
221
- Specifies the number of SAX symbols to be generated for each window.
222
- Each value must be an integer greater than 0. The default value is
223
- the value of window_size.
224
- Note: window_type value must be "sliding".
225
- Types: int
226
-
227
- alphabet_size:
228
- Optional Argument.
229
- Specifies the number of symbols in the SAX alphabet. The value must
230
- be an integer in the range [2, 20].
231
- Default Value: 4
232
- Types: int
233
-
234
- bitmap_level:
235
- Optional Argument.
236
- Specifies the number of consecutive symbols to be converted to one
237
- symbol on a bitmap. For bitmap level 1, the bitmap contains the
238
- symbols "a", "b", "c", and so on; for bitmap level 2, the bitmap
239
- contains the symbols "aa", "ab", "ac", and so on. The input value
240
- must be an integer in the range [1, 4].
241
- Note: Output value must be "bitmap".
242
- Default Value: 2
243
- Types: int
244
-
245
- print_stats:
246
- Optional Argument.
247
- Specifies whether the function prints the mean and standard
248
- deviation.
249
- Note: Output value must be "string".
250
- Default Value: False
251
- Types: bool
252
-
253
- accumulate:
254
- Optional Argument.
255
- The names of the input teradataml DataFrame columns that are to
256
- appear in the output teradataml DataFrame. For each sequence in the
257
- input teradataml DataFrame, SAX choose the value corresponding to
258
- the first time point in the sequence to output as the accumulate value.
259
- Types: str OR list of Strings (str)
260
-
261
- data_sequence_column:
262
- Optional Argument.
263
- Specifies the list of column(s) that uniquely identifies each row of
264
- the input argument "data". The argument is used to ensure
265
- deterministic results for functions which produce results that vary
266
- from run to run.
267
- Types: str OR list of Strings (str)
268
-
269
- meanstats_data_sequence_column:
270
- Optional Argument.
271
- Specifies the list of column(s) that uniquely identifies each row of
272
- the input argument "meanstats_data". The argument is used to ensure
273
- deterministic results for functions which produce results that vary
274
- from run to run.
275
- Types: str OR list of Strings (str)
276
-
277
- stdevstats_data_sequence_column:
278
- Optional Argument.
279
- Specifies the list of column(s) that uniquely identifies each row of
280
- the input argument "stdevstats_data". The argument is used to ensure
281
- deterministic results for functions which produce results that vary
282
- from run to run.
283
- Types: str OR list of Strings (str)
284
-
285
- RETURNS:
286
- Instance of SAX.
287
- Output teradataml DataFrames can be accessed using attribute
288
- references, such as SAXObj.<attribute_name>.
289
- Output teradataml DataFrame attribute name is:
290
- result
291
-
292
-
293
- RAISES:
294
- TeradataMlException
295
-
296
-
297
- EXAMPLES:
298
- # Load example data.
299
- load_example_data("sax", "finance_data3")
300
-
301
- # Create teradataml DataFrame objects
302
- finance_data3 = DataFrame.from_table("finance_data3")
303
-
304
- # Example 1 - This example uses window_type as global and default output value.
305
- SAX_Out = SAX(data = finance_data3,
306
- data_partition_column = ["id"],
307
- data_order_column = ["period"],
308
- value_columns = ["expenditure","income","investment"],
309
- time_column = "period",
310
- window_type = "global",
311
- print_stats = True,
312
- accumulate = ["id"]
313
- )
314
- # Print the results
315
- print(SAX_Out)
316
-
317
- # Example 2 - This example uses window_type as sliding and default output value.
318
- # window_size should also be specified when window_type is set as sliding.
319
- SAX_Out2 = SAX(data = finance_data3,
320
- data_partition_column = ["id"],
321
- data_order_column = ["period"],
322
- value_columns = ["expenditure"],
323
- time_column = "period",
324
- window_type = "sliding",
325
- window_size = 20,
326
- print_stats = True,
327
- accumulate = ["id"]
328
- )
329
- # Print the results
330
- print(SAX_Out2)
331
-
332
- # Example 3 - This example uses the multiple-input version, where the
333
- # mean and standard deviation statistics are applied globally with
334
- # meanstats and the stdevstats tables.
335
- meanstats = DataFrame.from_table("finance_data3").groupby("id").mean()
336
- meanstats = meanstats.assign(drop_columns=True, id=meanstats.id, expenditure=meanstats.mean_expenditure,
337
- income=meanstats.mean_income, investment=meanstats.mean_investment)
338
- stdevstats = DataFrame.from_table("finance_data3").groupby("id").std()
339
- stdevstats = stdevstats.assign(drop_columns=True, id=stdevstats.id, expenditure=stdevstats.std_expenditure,
340
- income=stdevstats.std_income, investment=stdevstats.std_investment)
341
-
342
- SAX_Out3 = SAX(data = finance_data3,
343
- data_partition_column = ["id"],
344
- data_order_column = ["id"],
345
- meanstats_data = meanstats,
346
- meanstats_data_partition_column = ["id"],
347
- stdevstats_data = stdevstats,
348
- stdevstats_data_partition_column = ["id"],
349
- value_columns = ["expenditure","income","investment"],
350
- time_column = "period",
351
- window_type = "global",
352
- accumulate = ["id"]
353
- )
354
- # Print the results
355
- print(SAX_Out3)
356
-
357
- """
358
-
359
- # Start the timer to get the build time
360
- _start_time = time.time()
361
-
362
- self.data = data
363
- self.meanstats_data = meanstats_data
364
- self.stdevstats_data = stdevstats_data
365
- self.value_columns = value_columns
366
- self.time_column = time_column
367
- self.window_type = window_type
368
- self.output = output
369
- self.mean = mean
370
- self.st_dev = st_dev
371
- self.window_size = window_size
372
- self.output_frequency = output_frequency
373
- self.points_persymbol = points_persymbol
374
- self.symbols_perwindow = symbols_perwindow
375
- self.alphabet_size = alphabet_size
376
- self.bitmap_level = bitmap_level
377
- self.print_stats = print_stats
378
- self.accumulate = accumulate
379
- self.data_sequence_column = data_sequence_column
380
- self.meanstats_data_sequence_column = meanstats_data_sequence_column
381
- self.stdevstats_data_sequence_column = stdevstats_data_sequence_column
382
- self.data_partition_column = data_partition_column
383
- self.meanstats_data_partition_column = meanstats_data_partition_column
384
- self.stdevstats_data_partition_column = stdevstats_data_partition_column
385
- self.data_order_column = data_order_column
386
- self.meanstats_data_order_column = meanstats_data_order_column
387
- self.stdevstats_data_order_column = stdevstats_data_order_column
388
-
389
- # Create TeradataPyWrapperUtils instance which contains validation functions.
390
- self.__awu = AnalyticsWrapperUtils()
391
- self.__aed_utils = AedUtils()
392
-
393
- # Create argument information matrix to do parameter checking
394
- self.__arg_info_matrix = []
395
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
396
- self.__arg_info_matrix.append(["data_partition_column", self.data_partition_column, False, (str,list)])
397
- self.__arg_info_matrix.append(["data_order_column", self.data_order_column, False, (str,list)])
398
- self.__arg_info_matrix.append(["meanstats_data", self.meanstats_data, True, (DataFrame)])
399
- self.__arg_info_matrix.append(["meanstats_data_partition_column", self.meanstats_data_partition_column, self.meanstats_data is None, (str,list)])
400
- self.__arg_info_matrix.append(["meanstats_data_order_column", self.meanstats_data_order_column, True, (str,list)])
401
- self.__arg_info_matrix.append(["stdevstats_data", self.stdevstats_data, True, (DataFrame)])
402
- self.__arg_info_matrix.append(["stdevstats_data_partition_column", self.stdevstats_data_partition_column, self.stdevstats_data is None, (str,list)])
403
- self.__arg_info_matrix.append(["stdevstats_data_order_column", self.stdevstats_data_order_column, True, (str,list)])
404
- self.__arg_info_matrix.append(["value_columns", self.value_columns, False, (str,list)])
405
- self.__arg_info_matrix.append(["time_column", self.time_column, True, (str)])
406
- self.__arg_info_matrix.append(["window_type", self.window_type, True, (str)])
407
- self.__arg_info_matrix.append(["output", self.output, True, (str)])
408
- self.__arg_info_matrix.append(["mean", self.mean, True, (float,list)])
409
- self.__arg_info_matrix.append(["st_dev", self.st_dev, True, (float,list)])
410
- self.__arg_info_matrix.append(["window_size", self.window_size, True, (int)])
411
- self.__arg_info_matrix.append(["output_frequency", self.output_frequency, True, (int)])
412
- self.__arg_info_matrix.append(["points_persymbol", self.points_persymbol, True, (int)])
413
- self.__arg_info_matrix.append(["symbols_perwindow", self.symbols_perwindow, True, (int)])
414
- self.__arg_info_matrix.append(["alphabet_size", self.alphabet_size, True, (int)])
415
- self.__arg_info_matrix.append(["bitmap_level", self.bitmap_level, True, (int)])
416
- self.__arg_info_matrix.append(["print_stats", self.print_stats, True, (bool)])
417
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
418
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
419
- self.__arg_info_matrix.append(["meanstats_data_sequence_column", self.meanstats_data_sequence_column, True, (str,list)])
420
- self.__arg_info_matrix.append(["stdevstats_data_sequence_column", self.stdevstats_data_sequence_column, True, (str,list)])
421
-
422
- if inspect.stack()[1][3] != '_from_model_catalog':
423
- # Perform the function validations
424
- self.__validate()
425
- # Generate the ML query
426
- self.__form_tdml_query()
427
- # Execute ML query
428
- self.__execute()
429
- # Get the prediction type
430
- self._prediction_type = self.__awu._get_function_prediction_type(self)
431
-
432
- # End the timer to get the build time
433
- _end_time = time.time()
434
-
435
- # Calculate the build time
436
- self._build_time = (int)(_end_time - _start_time)
437
-
438
- def __validate(self):
439
- """
440
- Function to validate sqlmr function arguments, which verifies missing
441
- arguments, input argument and table types. Also processes the
442
- argument values.
443
- """
444
-
445
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
446
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
447
-
448
- # Make sure that a non-NULL value has been supplied correct type of argument
449
- self.__awu._validate_argument_types(self.__arg_info_matrix)
450
-
451
- # Check to make sure input table types are strings or data frame objects or of valid type.
452
- self.__awu._validate_input_table_datatype(self.data, "data", None)
453
- self.__awu._validate_input_table_datatype(self.meanstats_data, "meanstats_data", None)
454
- self.__awu._validate_input_table_datatype(self.stdevstats_data, "stdevstats_data", None)
455
-
456
- # Check for permitted values
457
- window_type_permitted_values = ["SLIDING", "GLOBAL"]
458
- self.__awu._validate_permitted_values(self.window_type, window_type_permitted_values, "window_type")
459
-
460
- output_permitted_values = ["STRING", "BITMAP", "BYTES", "CHARACTERS"]
461
- self.__awu._validate_permitted_values(self.output, output_permitted_values, "output")
462
-
463
- # Check whether the input columns passed to the argument are not empty.
464
- # Also check whether the input columns passed to the argument valid or not.
465
- self.__awu._validate_input_columns_not_empty(self.value_columns, "value_columns")
466
- self.__awu._validate_dataframe_has_argument_columns(self.value_columns, "value_columns", self.data, "data", False)
467
-
468
- self.__awu._validate_input_columns_not_empty(self.time_column, "time_column")
469
- self.__awu._validate_dataframe_has_argument_columns(self.time_column, "time_column", self.data, "data", False)
470
-
471
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
472
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
473
-
474
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
475
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
476
-
477
- self.__awu._validate_input_columns_not_empty(self.meanstats_data_sequence_column, "meanstats_data_sequence_column")
478
- self.__awu._validate_dataframe_has_argument_columns(self.meanstats_data_sequence_column, "meanstats_data_sequence_column", self.meanstats_data, "meanstats_data", False)
479
-
480
- self.__awu._validate_input_columns_not_empty(self.stdevstats_data_sequence_column, "stdevstats_data_sequence_column")
481
- self.__awu._validate_dataframe_has_argument_columns(self.stdevstats_data_sequence_column, "stdevstats_data_sequence_column", self.stdevstats_data, "stdevstats_data", False)
482
-
483
- self.__awu._validate_input_columns_not_empty(self.data_partition_column, "data_partition_column")
484
- self.__awu._validate_dataframe_has_argument_columns(self.data_partition_column, "data_partition_column", self.data, "data", True)
485
-
486
- self.__awu._validate_input_columns_not_empty(self.meanstats_data_partition_column, "meanstats_data_partition_column")
487
- self.__awu._validate_dataframe_has_argument_columns(self.meanstats_data_partition_column, "meanstats_data_partition_column", self.meanstats_data, "meanstats_data", True)
488
-
489
- self.__awu._validate_input_columns_not_empty(self.stdevstats_data_partition_column, "stdevstats_data_partition_column")
490
- self.__awu._validate_dataframe_has_argument_columns(self.stdevstats_data_partition_column, "stdevstats_data_partition_column", self.stdevstats_data, "stdevstats_data", True)
491
-
492
- self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
493
- self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
494
-
495
- self.__awu._validate_input_columns_not_empty(self.meanstats_data_order_column, "meanstats_data_order_column")
496
- self.__awu._validate_dataframe_has_argument_columns(self.meanstats_data_order_column, "meanstats_data_order_column", self.meanstats_data, "meanstats_data", False)
497
-
498
- self.__awu._validate_input_columns_not_empty(self.stdevstats_data_order_column, "stdevstats_data_order_column")
499
- self.__awu._validate_dataframe_has_argument_columns(self.stdevstats_data_order_column, "stdevstats_data_order_column", self.stdevstats_data, "stdevstats_data", False)
500
-
501
-
502
- def __form_tdml_query(self):
503
- """
504
- Function to generate the analytical function queries. The function defines
505
- variables and list of arguments required to form the query.
506
- """
507
-
508
- # Output table arguments list
509
- self.__func_output_args_sql_names = []
510
- self.__func_output_args = []
511
-
512
- # Model Cataloging related attributes.
513
- self._sql_specific_attributes = {}
514
- self._sql_formula_attribute_mapper = {}
515
- self._target_column = None
516
- self._algorithm_name = None
517
-
518
- # Generate lists for rest of the function arguments
519
- self.__func_other_arg_sql_names = []
520
- self.__func_other_args = []
521
- self.__func_other_arg_json_datatypes = []
522
-
523
- self.__func_other_arg_sql_names.append("TargetColumns")
524
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_columns, "\""), "'"))
525
- self.__func_other_arg_json_datatypes.append("COLUMNS")
526
-
527
- if self.time_column is not None:
528
- self.__func_other_arg_sql_names.append("TimeColumn")
529
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.time_column, "\""), "'"))
530
- self.__func_other_arg_json_datatypes.append("COLUMNS")
531
-
532
- if self.accumulate is not None:
533
- self.__func_other_arg_sql_names.append("Accumulate")
534
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
535
- self.__func_other_arg_json_datatypes.append("COLUMNS")
536
-
537
- if self.window_type is not None and self.window_type != "global":
538
- self.__func_other_arg_sql_names.append("WindowType")
539
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_type, "'"))
540
- self.__func_other_arg_json_datatypes.append("STRING")
541
-
542
- if self.output is not None and self.output != "string":
543
- self.__func_other_arg_sql_names.append("OutputType")
544
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output, "'"))
545
- self.__func_other_arg_json_datatypes.append("STRING")
546
-
547
- if self.mean is not None:
548
- self.__func_other_arg_sql_names.append("Mean")
549
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.mean, "'"))
550
- self.__func_other_arg_json_datatypes.append("DOUBLE")
551
-
552
- if self.st_dev is not None:
553
- self.__func_other_arg_sql_names.append("StDev")
554
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.st_dev, "'"))
555
- self.__func_other_arg_json_datatypes.append("DOUBLE")
556
-
557
- if self.window_size is not None:
558
- self.__func_other_arg_sql_names.append("WindowSize")
559
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.window_size, "'"))
560
- self.__func_other_arg_json_datatypes.append("INTEGER")
561
-
562
- if self.output_frequency is not None and self.output_frequency != 1:
563
- self.__func_other_arg_sql_names.append("OutputFrequency")
564
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_frequency, "'"))
565
- self.__func_other_arg_json_datatypes.append("INTEGER")
566
-
567
- if self.points_persymbol is not None and self.points_persymbol != 1:
568
- self.__func_other_arg_sql_names.append("PointsPerSymbol")
569
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.points_persymbol, "'"))
570
- self.__func_other_arg_json_datatypes.append("INTEGER")
571
-
572
- if self.symbols_perwindow is not None:
573
- self.__func_other_arg_sql_names.append("SymbolsPerWindow")
574
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.symbols_perwindow, "'"))
575
- self.__func_other_arg_json_datatypes.append("INTEGER")
576
-
577
- if self.alphabet_size is not None and self.alphabet_size != 4:
578
- self.__func_other_arg_sql_names.append("AlphabetSize")
579
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.alphabet_size, "'"))
580
- self.__func_other_arg_json_datatypes.append("INTEGER")
581
-
582
- if self.bitmap_level is not None and self.bitmap_level != 2:
583
- self.__func_other_arg_sql_names.append("BitmapLevel")
584
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.bitmap_level, "'"))
585
- self.__func_other_arg_json_datatypes.append("INTEGER")
586
-
587
- if self.print_stats is not None and self.print_stats != False:
588
- self.__func_other_arg_sql_names.append("OutputStats")
589
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.print_stats, "'"))
590
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
591
-
592
- # Generate lists for rest of the function arguments
593
- sequence_input_by_list = []
594
- if self.data_sequence_column is not None:
595
- sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
596
-
597
- if self.meanstats_data_sequence_column is not None:
598
- sequence_input_by_list.append("meanstats:" + UtilFuncs._teradata_collapse_arglist(self.meanstats_data_sequence_column, ""))
599
-
600
- if self.stdevstats_data_sequence_column is not None:
601
- sequence_input_by_list.append("stdevstats:" + UtilFuncs._teradata_collapse_arglist(self.stdevstats_data_sequence_column, ""))
602
-
603
- if len(sequence_input_by_list) > 0:
604
- self.__func_other_arg_sql_names.append("SequenceInputBy")
605
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
606
- self.__func_other_args.append(sequence_input_by_arg_value)
607
- self.__func_other_arg_json_datatypes.append("STRING")
608
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
609
-
610
-
611
- # Declare empty lists to hold input table information.
612
- self.__func_input_arg_sql_names = []
613
- self.__func_input_table_view_query = []
614
- self.__func_input_dataframe_type = []
615
- self.__func_input_distribution = []
616
- self.__func_input_partition_by_cols = []
617
- self.__func_input_order_by_cols = []
618
-
619
- # Process data
620
- self.data_partition_column = UtilFuncs._teradata_collapse_arglist(self.data_partition_column, "\"")
621
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
622
- self.__func_input_distribution.append("FACT")
623
- self.__func_input_arg_sql_names.append("input")
624
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
625
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
626
- self.__func_input_partition_by_cols.append(self.data_partition_column)
627
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
628
-
629
- # Process meanstats_data
630
- if self.meanstats_data is not None:
631
- self.meanstats_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.meanstats_data_partition_column, "\"")
632
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.meanstats_data, False)
633
- self.__func_input_distribution.append("FACT")
634
- self.__func_input_arg_sql_names.append("meanstats")
635
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
636
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
637
- self.__func_input_partition_by_cols.append(self.meanstats_data_partition_column)
638
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.meanstats_data_order_column, "\""))
639
-
640
- # Process stdevstats_data
641
- if self.stdevstats_data is not None:
642
- self.stdevstats_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.stdevstats_data_partition_column, "\"")
643
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.stdevstats_data, False)
644
- self.__func_input_distribution.append("FACT")
645
- self.__func_input_arg_sql_names.append("stdevstats")
646
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
647
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
648
- self.__func_input_partition_by_cols.append(self.stdevstats_data_partition_column)
649
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.stdevstats_data_order_column, "\""))
650
-
651
- function_name = "SAX"
652
- # Create instance to generate SQLMR.
653
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
654
- self.__func_input_arg_sql_names,
655
- self.__func_input_table_view_query,
656
- self.__func_input_dataframe_type,
657
- self.__func_input_distribution,
658
- self.__func_input_partition_by_cols,
659
- self.__func_input_order_by_cols,
660
- self.__func_other_arg_sql_names,
661
- self.__func_other_args,
662
- self.__func_other_arg_json_datatypes,
663
- self.__func_output_args_sql_names,
664
- self.__func_output_args,
665
- engine="ENGINE_ML")
666
- # Invoke call to SQL-MR generation.
667
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
668
-
669
- # Print SQL-MR query if requested to do so.
670
- if display.print_sqlmr_query:
671
- print(self.sqlmr_query)
672
-
673
- # Set the algorithm name for Model Cataloging.
674
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
675
-
676
- def __execute(self):
677
- """
678
- Function to execute SQL-MR queries.
679
- Create DataFrames for the required SQL-MR outputs.
680
- """
681
- # Generate STDOUT table name and add it to the output table list.
682
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
683
- try:
684
- # Generate the output.
685
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
686
- except Exception as emsg:
687
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
688
-
689
- # Update output table data frames.
690
- self._mlresults = []
691
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
692
- self._mlresults.append(self.result)
693
-
694
- def show_query(self):
695
- """
696
- Function to return the underlying SQL query.
697
- When model object is created using retrieve_model(), then None is returned.
698
- """
699
- return self.sqlmr_query
700
-
701
- def get_prediction_type(self):
702
- """
703
- Function to return the Prediction type of the algorithm.
704
- When model object is created using retrieve_model(), then the value returned is
705
- as saved in the Model Catalog.
706
- """
707
- return self._prediction_type
708
-
709
- def get_target_column(self):
710
- """
711
- Function to return the Target Column of the algorithm.
712
- When model object is created using retrieve_model(), then the value returned is
713
- as saved in the Model Catalog.
714
- """
715
- return self._target_column
716
-
717
- def get_build_time(self):
718
- """
719
- Function to return the build time of the algorithm in seconds.
720
- When model object is created using retrieve_model(), then the value returned is
721
- as saved in the Model Catalog.
722
- """
723
- return self._build_time
724
-
725
- def _get_algorithm_name(self):
726
- """
727
- Function to return the name of the algorithm.
728
- """
729
- return self._algorithm_name
730
-
731
- def _get_sql_specific_attributes(self):
732
- """
733
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
734
- """
735
- return self._sql_specific_attributes
736
-
737
- @classmethod
738
- def _from_model_catalog(cls,
739
- result = None,
740
- **kwargs):
741
- """
742
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
743
- """
744
- kwargs.pop("result", None)
745
-
746
- # Model Cataloging related attributes.
747
- target_column = kwargs.pop("__target_column", None)
748
- prediction_type = kwargs.pop("__prediction_type", None)
749
- algorithm_name = kwargs.pop("__algorithm_name", None)
750
- build_time = kwargs.pop("__build_time", None)
751
-
752
- # Let's create an object of this class.
753
- obj = cls(**kwargs)
754
- obj.result = result
755
-
756
- # Initialize the sqlmr_query class attribute.
757
- obj.sqlmr_query = None
758
-
759
- # Initialize the SQL specific Model Cataloging attributes.
760
- obj._sql_specific_attributes = None
761
- obj._target_column = target_column
762
- obj._prediction_type = prediction_type
763
- obj._algorithm_name = algorithm_name
764
- obj._build_time = build_time
765
-
766
- # Update output table data frames.
767
- obj._mlresults = []
768
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
769
- obj._mlresults.append(obj.result)
770
- return obj
771
-
772
- def __repr__(self):
773
- """
774
- Returns the string representation for a SAX class instance.
775
- """
776
- repr_string="############ STDOUT Output ############"
777
- repr_string = "{}\n\n{}".format(repr_string,self.result)
778
- return repr_string
779
-