teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,458 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Rohit Agrawal (rohit.agrawal@teradata.com)
|
|
8
|
-
# Secondary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.7
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class NERTrainer:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data=None,
|
|
34
|
-
text_coloumn=None,
|
|
35
|
-
extractor_jar=None,
|
|
36
|
-
feature_template=None,
|
|
37
|
-
model_file=None,
|
|
38
|
-
language="en",
|
|
39
|
-
max_iter_num=1000,
|
|
40
|
-
eta=1.0E-4,
|
|
41
|
-
min_occur_num=0,
|
|
42
|
-
data_sequence_column=None):
|
|
43
|
-
"""
|
|
44
|
-
DESCRIPTION:
|
|
45
|
-
The NERTrainer function takes training data and outputs a CRF model
|
|
46
|
-
(a binary file) that can be specified in the function NERExtractor
|
|
47
|
-
and NEREvaluator.
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
PARAMETERS:
|
|
51
|
-
data:
|
|
52
|
-
Required Argument.
|
|
53
|
-
Specifies an input teradataml DataFrame containing training data.
|
|
54
|
-
|
|
55
|
-
text_coloumn:
|
|
56
|
-
Required Argument.
|
|
57
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
58
|
-
contains the text to analyze.
|
|
59
|
-
Types: str
|
|
60
|
-
|
|
61
|
-
extractor_jar:
|
|
62
|
-
Optional Argument.
|
|
63
|
-
Specifies the name of the JAR file that contains the Java classes
|
|
64
|
-
that extract features. The function includes the predefined extractor
|
|
65
|
-
classes described in the file provided in the argument feature_template.
|
|
66
|
-
Note:
|
|
67
|
-
1. The name of the JAR file is case-sensitive.
|
|
68
|
-
2. The ML Engine does not support the creation of new extractor classes.
|
|
69
|
-
However, it does support existing JAR files—for installation instructions,
|
|
70
|
-
see Teradata Vantage User Guide.
|
|
71
|
-
Types: str
|
|
72
|
-
|
|
73
|
-
feature_template:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the name of the file that specifies how to generate
|
|
76
|
-
features when training the model. This file is pre-installed
|
|
77
|
-
in ML Engine under the name "template_1.txt".
|
|
78
|
-
Types: str
|
|
79
|
-
|
|
80
|
-
model_file:
|
|
81
|
-
Required Argument.
|
|
82
|
-
Specifies the name of the model file that is generated and installed
|
|
83
|
-
in the ML Engine by the function.
|
|
84
|
-
Types: str
|
|
85
|
-
|
|
86
|
-
language:
|
|
87
|
-
Optional Argument.
|
|
88
|
-
Specifies the language of the input text:
|
|
89
|
-
* en - English
|
|
90
|
-
* zh_CN - Simplified Chinese
|
|
91
|
-
* zh_TW - Traditional Chinese
|
|
92
|
-
Default Value: "en"
|
|
93
|
-
Permitted Values: en, zh_CN, zh_TW
|
|
94
|
-
Types: str
|
|
95
|
-
|
|
96
|
-
max_iter_num:
|
|
97
|
-
Optional Argument.
|
|
98
|
-
Specifies the maximum number of iterations.
|
|
99
|
-
Types: int
|
|
100
|
-
|
|
101
|
-
eta:
|
|
102
|
-
Optional Argument.
|
|
103
|
-
Specifies the tolerance of the termination criterion. Defines the
|
|
104
|
-
differences of the values of the loss function between two sequential
|
|
105
|
-
epochs. When training a model, the function performs n-times
|
|
106
|
-
iterations. At the end of each epoch, the function calculates the
|
|
107
|
-
loss or cost function on the training samples. If the loss function
|
|
108
|
-
value change is very small between two sequential epochs, the
|
|
109
|
-
function considers the training process to have converged.
|
|
110
|
-
The function defines eta as:
|
|
111
|
-
Eta=(f(n)-f(n-1))/f(n-1), where f(n) is the loss function value of the nth epoch.
|
|
112
|
-
Default Value: 1.0E-4
|
|
113
|
-
Types: float
|
|
114
|
-
|
|
115
|
-
min_occur_num:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the minimum number of times that a feature must occur in the
|
|
118
|
-
input text before the function uses the feature to construct the
|
|
119
|
-
model.
|
|
120
|
-
Default Value: 0
|
|
121
|
-
Types: int
|
|
122
|
-
|
|
123
|
-
data_sequence_column:
|
|
124
|
-
Optional Argument.
|
|
125
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
126
|
-
the input argument "data". The argument is used to ensure
|
|
127
|
-
deterministic results for functions which produce results that vary
|
|
128
|
-
from run to run.
|
|
129
|
-
Types: str OR list of Strings (str)
|
|
130
|
-
|
|
131
|
-
RETURNS:
|
|
132
|
-
Instance of NERTrainer.
|
|
133
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
134
|
-
references, such as NERTrainerObj.<attribute_name>.
|
|
135
|
-
Output teradataml DataFrame attribute names are:
|
|
136
|
-
result
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
RAISES:
|
|
140
|
-
TeradataMlException
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
EXAMPLES:
|
|
144
|
-
# Load the data to run the example
|
|
145
|
-
load_example_data("nertrainer","ner_sports_train")
|
|
146
|
-
|
|
147
|
-
# Create teradataml DataFrame object.
|
|
148
|
-
ner_sports_train = DataFrame.from_table("ner_sports_train")
|
|
149
|
-
|
|
150
|
-
# Run the NERTrain function to generated a trained model file which is used in NERExtractor or NEREvaluator
|
|
151
|
-
nertrainer_train = NERTrainer(data=ner_sports_train,
|
|
152
|
-
text_coloumn='content',
|
|
153
|
-
model_file='ner_model.bin',
|
|
154
|
-
feature_template='template_1.txt',
|
|
155
|
-
language='en',
|
|
156
|
-
eta=0.0001,
|
|
157
|
-
max_iter_num=1000,
|
|
158
|
-
min_occur_num=0,
|
|
159
|
-
extractor_jar=' ')
|
|
160
|
-
|
|
161
|
-
# Print the result DataFrame
|
|
162
|
-
print(nertrainer_train.result)
|
|
163
|
-
|
|
164
|
-
"""
|
|
165
|
-
|
|
166
|
-
# Start the timer to get the build time
|
|
167
|
-
_start_time = time.time()
|
|
168
|
-
|
|
169
|
-
self.data = data
|
|
170
|
-
self.text_coloumn = text_coloumn
|
|
171
|
-
self.extractor_jar = extractor_jar
|
|
172
|
-
self.feature_template = feature_template
|
|
173
|
-
self.model_file = model_file
|
|
174
|
-
self.language = language
|
|
175
|
-
self.max_iter_num = max_iter_num
|
|
176
|
-
self.eta = eta
|
|
177
|
-
self.min_occur_num = min_occur_num
|
|
178
|
-
self.data_sequence_column = data_sequence_column
|
|
179
|
-
|
|
180
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
181
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
182
|
-
self.__aed_utils = AedUtils()
|
|
183
|
-
|
|
184
|
-
# Create argument information matrix to do parameter checking
|
|
185
|
-
self.__arg_info_matrix = []
|
|
186
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
187
|
-
self.__arg_info_matrix.append(["text_coloumn", self.text_coloumn, False, (str)])
|
|
188
|
-
self.__arg_info_matrix.append(["extractor_jar", self.extractor_jar, True, (str)])
|
|
189
|
-
self.__arg_info_matrix.append(["feature_template", self.feature_template, False, (str)])
|
|
190
|
-
self.__arg_info_matrix.append(["model_file", self.model_file, False, (str)])
|
|
191
|
-
self.__arg_info_matrix.append(["language", self.language, True, (str)])
|
|
192
|
-
self.__arg_info_matrix.append(["max_iter_num", self.max_iter_num, True, (int)])
|
|
193
|
-
self.__arg_info_matrix.append(["eta", self.eta, True, (float)])
|
|
194
|
-
self.__arg_info_matrix.append(["min_occur_num", self.min_occur_num, True, (int)])
|
|
195
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
196
|
-
|
|
197
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
198
|
-
# Perform the function validations
|
|
199
|
-
self.__validate()
|
|
200
|
-
# Generate the ML query
|
|
201
|
-
self.__form_tdml_query()
|
|
202
|
-
# Execute ML query
|
|
203
|
-
self.__execute()
|
|
204
|
-
# Get the prediction type
|
|
205
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
206
|
-
|
|
207
|
-
# End the timer to get the build time
|
|
208
|
-
_end_time = time.time()
|
|
209
|
-
|
|
210
|
-
# Calculate the build time
|
|
211
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
212
|
-
|
|
213
|
-
def __validate(self):
|
|
214
|
-
"""
|
|
215
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
216
|
-
arguments, input argument and table types. Also processes the
|
|
217
|
-
argument values.
|
|
218
|
-
"""
|
|
219
|
-
|
|
220
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
221
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
222
|
-
|
|
223
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
224
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
225
|
-
|
|
226
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
227
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
228
|
-
|
|
229
|
-
# Check for permitted values
|
|
230
|
-
language_permitted_values = ["EN", "ZH_CN", "ZH_TW"]
|
|
231
|
-
self.__awu._validate_permitted_values(self.language, language_permitted_values, "language")
|
|
232
|
-
|
|
233
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
234
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
235
|
-
self.__awu._validate_input_columns_not_empty(self.text_coloumn, "text_coloumn")
|
|
236
|
-
self.__awu._validate_dataframe_has_argument_columns(self.text_coloumn, "text_coloumn", self.data, "data", False)
|
|
237
|
-
|
|
238
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
239
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
def __form_tdml_query(self):
|
|
243
|
-
"""
|
|
244
|
-
Function to generate the analytical function queries. The function defines
|
|
245
|
-
variables and list of arguments required to form the query.
|
|
246
|
-
"""
|
|
247
|
-
|
|
248
|
-
# Output table arguments list
|
|
249
|
-
self.__func_output_args_sql_names = []
|
|
250
|
-
self.__func_output_args = []
|
|
251
|
-
|
|
252
|
-
# Model Cataloging related attributes.
|
|
253
|
-
self._sql_specific_attributes = {}
|
|
254
|
-
self._sql_formula_attribute_mapper = {}
|
|
255
|
-
self._target_column = None
|
|
256
|
-
self._algorithm_name = None
|
|
257
|
-
|
|
258
|
-
# Generate lists for rest of the function arguments
|
|
259
|
-
self.__func_other_arg_sql_names = []
|
|
260
|
-
self.__func_other_args = []
|
|
261
|
-
self.__func_other_arg_json_datatypes = []
|
|
262
|
-
|
|
263
|
-
self.__func_other_arg_sql_names.append("TextColumn")
|
|
264
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.text_coloumn, "\""), "'"))
|
|
265
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
266
|
-
|
|
267
|
-
self.__func_other_arg_sql_names.append("ModelFileName")
|
|
268
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.model_file, "'"))
|
|
269
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
270
|
-
|
|
271
|
-
self.__func_other_arg_sql_names.append("FeatureTemplate")
|
|
272
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.feature_template, "'"))
|
|
273
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
274
|
-
|
|
275
|
-
if self.language is not None and self.language != "en":
|
|
276
|
-
self.__func_other_arg_sql_names.append("InputLanguage")
|
|
277
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.language, "'"))
|
|
278
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
279
|
-
|
|
280
|
-
if self.eta is not None and self.eta != 1.0E-4:
|
|
281
|
-
self.__func_other_arg_sql_names.append("Eta")
|
|
282
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.eta, "'"))
|
|
283
|
-
self.__func_other_arg_json_datatypes.append("DOUBLE")
|
|
284
|
-
|
|
285
|
-
if self.max_iter_num is not None and self.max_iter_num != 1000:
|
|
286
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
287
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iter_num, "'"))
|
|
288
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
289
|
-
|
|
290
|
-
if self.min_occur_num is not None and self.min_occur_num != 0:
|
|
291
|
-
self.__func_other_arg_sql_names.append("MinOccurNum")
|
|
292
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.min_occur_num, "'"))
|
|
293
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
294
|
-
|
|
295
|
-
if self.extractor_jar is not None:
|
|
296
|
-
self.__func_other_arg_sql_names.append("ExtractorJar")
|
|
297
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.extractor_jar, "'"))
|
|
298
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
299
|
-
|
|
300
|
-
# Generate lists for rest of the function arguments
|
|
301
|
-
sequence_input_by_list = []
|
|
302
|
-
if self.data_sequence_column is not None:
|
|
303
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
304
|
-
|
|
305
|
-
if len(sequence_input_by_list) > 0:
|
|
306
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
307
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
308
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
309
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
310
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
# Declare empty lists to hold input table information.
|
|
314
|
-
self.__func_input_arg_sql_names = []
|
|
315
|
-
self.__func_input_table_view_query = []
|
|
316
|
-
self.__func_input_dataframe_type = []
|
|
317
|
-
self.__func_input_distribution = []
|
|
318
|
-
self.__func_input_partition_by_cols = []
|
|
319
|
-
self.__func_input_order_by_cols = []
|
|
320
|
-
|
|
321
|
-
# Process data
|
|
322
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
323
|
-
self.__func_input_distribution.append("FACT")
|
|
324
|
-
self.__func_input_arg_sql_names.append("input")
|
|
325
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
326
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
327
|
-
self.__func_input_partition_by_cols.append("1")
|
|
328
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
329
|
-
|
|
330
|
-
function_name = "NERTrainer"
|
|
331
|
-
# Create instance to generate SQLMR.
|
|
332
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
333
|
-
self.__func_input_arg_sql_names,
|
|
334
|
-
self.__func_input_table_view_query,
|
|
335
|
-
self.__func_input_dataframe_type,
|
|
336
|
-
self.__func_input_distribution,
|
|
337
|
-
self.__func_input_partition_by_cols,
|
|
338
|
-
self.__func_input_order_by_cols,
|
|
339
|
-
self.__func_other_arg_sql_names,
|
|
340
|
-
self.__func_other_args,
|
|
341
|
-
self.__func_other_arg_json_datatypes,
|
|
342
|
-
self.__func_output_args_sql_names,
|
|
343
|
-
self.__func_output_args,
|
|
344
|
-
engine="ENGINE_ML")
|
|
345
|
-
# Invoke call to SQL-MR generation.
|
|
346
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
347
|
-
|
|
348
|
-
# Print SQL-MR query if requested to do so.
|
|
349
|
-
if display.print_sqlmr_query:
|
|
350
|
-
print(self.sqlmr_query)
|
|
351
|
-
|
|
352
|
-
# Set the algorithm name for Model Cataloging.
|
|
353
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
354
|
-
|
|
355
|
-
def __execute(self):
|
|
356
|
-
"""
|
|
357
|
-
Function to execute SQL-MR queries.
|
|
358
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
359
|
-
"""
|
|
360
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
361
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
362
|
-
try:
|
|
363
|
-
# Generate the output.
|
|
364
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
365
|
-
except Exception as emsg:
|
|
366
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
367
|
-
|
|
368
|
-
# Update output table data frames.
|
|
369
|
-
self._mlresults = []
|
|
370
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
371
|
-
self._mlresults.append(self.result)
|
|
372
|
-
|
|
373
|
-
def show_query(self):
|
|
374
|
-
"""
|
|
375
|
-
Function to return the underlying SQL query.
|
|
376
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
377
|
-
"""
|
|
378
|
-
return self.sqlmr_query
|
|
379
|
-
|
|
380
|
-
def get_prediction_type(self):
|
|
381
|
-
"""
|
|
382
|
-
Function to return the Prediction type of the algorithm.
|
|
383
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
384
|
-
as saved in the Model Catalog.
|
|
385
|
-
"""
|
|
386
|
-
return self._prediction_type
|
|
387
|
-
|
|
388
|
-
def get_target_column(self):
|
|
389
|
-
"""
|
|
390
|
-
Function to return the Target Column of the algorithm.
|
|
391
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
392
|
-
as saved in the Model Catalog.
|
|
393
|
-
"""
|
|
394
|
-
return self._target_column
|
|
395
|
-
|
|
396
|
-
def get_build_time(self):
|
|
397
|
-
"""
|
|
398
|
-
Function to return the build time of the algorithm in seconds.
|
|
399
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
400
|
-
as saved in the Model Catalog.
|
|
401
|
-
"""
|
|
402
|
-
return self._build_time
|
|
403
|
-
|
|
404
|
-
def _get_algorithm_name(self):
|
|
405
|
-
"""
|
|
406
|
-
Function to return the name of the algorithm.
|
|
407
|
-
"""
|
|
408
|
-
return self._algorithm_name
|
|
409
|
-
|
|
410
|
-
def _get_sql_specific_attributes(self):
|
|
411
|
-
"""
|
|
412
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
413
|
-
"""
|
|
414
|
-
return self._sql_specific_attributes
|
|
415
|
-
|
|
416
|
-
@classmethod
|
|
417
|
-
def _from_model_catalog(cls,
|
|
418
|
-
result = None,
|
|
419
|
-
**kwargs):
|
|
420
|
-
"""
|
|
421
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
422
|
-
"""
|
|
423
|
-
kwargs.pop("result", None)
|
|
424
|
-
|
|
425
|
-
# Model Cataloging related attributes.
|
|
426
|
-
target_column = kwargs.pop("__target_column", None)
|
|
427
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
428
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
429
|
-
build_time = kwargs.pop("__build_time", None)
|
|
430
|
-
|
|
431
|
-
# Let's create an object of this class.
|
|
432
|
-
obj = cls(**kwargs)
|
|
433
|
-
obj.result = result
|
|
434
|
-
|
|
435
|
-
# Initialize the sqlmr_query class attribute.
|
|
436
|
-
obj.sqlmr_query = None
|
|
437
|
-
|
|
438
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
439
|
-
obj._sql_specific_attributes = None
|
|
440
|
-
obj._target_column = target_column
|
|
441
|
-
obj._prediction_type = prediction_type
|
|
442
|
-
obj._algorithm_name = algorithm_name
|
|
443
|
-
obj._build_time = build_time
|
|
444
|
-
|
|
445
|
-
# Update output table data frames.
|
|
446
|
-
obj._mlresults = []
|
|
447
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
448
|
-
obj._mlresults.append(obj.result)
|
|
449
|
-
return obj
|
|
450
|
-
|
|
451
|
-
def __repr__(self):
|
|
452
|
-
"""
|
|
453
|
-
Returns the string representation for a NERTrainer class instance.
|
|
454
|
-
"""
|
|
455
|
-
repr_string = "############ STDOUT Output ############"
|
|
456
|
-
repr_string = "{}\n\n{}".format(repr_string, self.result)
|
|
457
|
-
return repr_string
|
|
458
|
-
|