teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,425 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.3
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class StringSimilarity:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
comparison_columns = None,
|
|
35
|
-
case_sensitive = None,
|
|
36
|
-
accumulate = None,
|
|
37
|
-
data_sequence_column = None,
|
|
38
|
-
data_order_column = None):
|
|
39
|
-
"""
|
|
40
|
-
DESCRIPTION:
|
|
41
|
-
The StringSimilarity function calculates the similarity between two
|
|
42
|
-
strings, using either the Jaro, Jaro-Winkler, N-Gram, or Levenshtein
|
|
43
|
-
distance. The similarity is a value in the range [0, 1].
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
PARAMETERS:
|
|
47
|
-
data:
|
|
48
|
-
Required Argument.
|
|
49
|
-
The teradataml DataFrame contains the string pairs to be compared.
|
|
50
|
-
|
|
51
|
-
data_order_column:
|
|
52
|
-
Optional Argument.
|
|
53
|
-
Specifies Order By columns for data.
|
|
54
|
-
Values to this argument can be provided as a list, if multiple
|
|
55
|
-
columns are used for ordering.
|
|
56
|
-
Types: str OR list of Strings (str)
|
|
57
|
-
|
|
58
|
-
comparison_columns:
|
|
59
|
-
Required Argument.
|
|
60
|
-
Specifies pairs of input teradataml DataFrame columns that contain
|
|
61
|
-
strings to be compared (column1 and column2), how to compare them
|
|
62
|
-
(comparison_type), and (optionally) a constant and the name of the
|
|
63
|
-
output column for their similarity (output_column). The similarity is
|
|
64
|
-
a value in the range [0, 1].
|
|
65
|
-
For comparison_type, use one of these values:
|
|
66
|
-
• "jaro": Jaro distance
|
|
67
|
-
• "jaro_winkler": Jaro-Winkler distance (1 for an exact match, 0 otherwise).
|
|
68
|
-
Note:
|
|
69
|
-
If you specify this comparison type when teradataml is
|
|
70
|
-
connected to Vantage 1.3, you can specify the value of
|
|
71
|
-
factor p with constant (0 ≤ p ≤ 0.25).
|
|
72
|
-
Default: p = 0.1
|
|
73
|
-
• "n-gram": N-gram similarity, if you specify this comparison type, you can specify the
|
|
74
|
-
value of N with constant.
|
|
75
|
-
• "LD": Levenshtein distance (the number of edits needed to
|
|
76
|
-
transform one string into the other, where edits include
|
|
77
|
-
insertions, deletions, or substitutions of individual
|
|
78
|
-
characters).
|
|
79
|
-
You can specify a different comparison_type for every pair of
|
|
80
|
-
columns. The default output_column is "sim_i", where i is the
|
|
81
|
-
sequence number of the column pair.
|
|
82
|
-
Types: str OR list of Strings (str)
|
|
83
|
-
|
|
84
|
-
case_sensitive:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies whether string comparison is case-sensitive. The default
|
|
87
|
-
value is "false". You can specify either one value for all pairs or
|
|
88
|
-
one value for each pair. If you specify one value for each pair, then
|
|
89
|
-
the ith value applies to the ith pair.
|
|
90
|
-
Types: bool OR list of bools
|
|
91
|
-
|
|
92
|
-
accumulate:
|
|
93
|
-
Optional Argument.
|
|
94
|
-
Specifies the names of input teradataml DataFrame columns to be
|
|
95
|
-
copied to the output table.
|
|
96
|
-
Types: str OR list of Strings (str)
|
|
97
|
-
|
|
98
|
-
data_sequence_column:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
101
|
-
the input argument "data". The argument is used to ensure
|
|
102
|
-
deterministic results for functions which produce results that vary
|
|
103
|
-
from run to run.
|
|
104
|
-
Types: str OR list of Strings (str)
|
|
105
|
-
|
|
106
|
-
RETURNS:
|
|
107
|
-
Instance of StringSimilarity.
|
|
108
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
109
|
-
references, such as StringSimilarityObj.<attribute_name>.
|
|
110
|
-
Output teradataml DataFrame attribute name is:
|
|
111
|
-
result
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
RAISES:
|
|
115
|
-
TeradataMlException
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
EXAMPLES:
|
|
119
|
-
# Load example data.
|
|
120
|
-
load_example_data("stringsimilarity", "strsimilarity_input")
|
|
121
|
-
|
|
122
|
-
# Create teradataml DataFrame objects.
|
|
123
|
-
strsimilarity_input = DataFrame.from_table("strsimilarity_input")
|
|
124
|
-
|
|
125
|
-
# Example 1 - Using "jaro" comparison type with a default output column
|
|
126
|
-
stringsimilarity_out1 = StringSimilarity(data=strsimilarity_input,
|
|
127
|
-
comparison_columns=['jaro (src_text1 , tar_text ) AS jaro1_sim',
|
|
128
|
-
'LD (src_text1 , tar_text, 2) AS ld1_sim',
|
|
129
|
-
'n_gram (src_text1 , tar_text, 2) AS ngram1_sim',
|
|
130
|
-
'jaro_winkler (src_text1 , tar_text, 0.25) AS jw1_sim'],
|
|
131
|
-
case_sensitive=True,
|
|
132
|
-
accumulate = ["id","src_text1","tar_text"],
|
|
133
|
-
data_sequence_column='id')
|
|
134
|
-
# Print result dataframe.
|
|
135
|
-
print(stringsimilarity_out1.result)
|
|
136
|
-
|
|
137
|
-
# Example 2 - Using multiple comparison types and with custom output columns
|
|
138
|
-
stringsimilarity_out2 = StringSimilarity(data=strsimilarity_input,
|
|
139
|
-
comparison_columns=['jaro (src_text2 , tar_text ) AS jaro2_sim',
|
|
140
|
-
'LD (src_text2 , tar_text, 2) AS ld2_sim',
|
|
141
|
-
'n_gram (src_text2 , tar_text, 2) AS ngram2_sim',
|
|
142
|
-
'jaro_winkler (src_text2 , tar_text, 0.25) AS jw2_sim'],
|
|
143
|
-
case_sensitive=True,
|
|
144
|
-
accumulate = ["id","src_text2","tar_text"],
|
|
145
|
-
data_sequence_column='id')
|
|
146
|
-
|
|
147
|
-
# Print result dataframe.
|
|
148
|
-
print(stringsimilarity_out2.result)
|
|
149
|
-
|
|
150
|
-
# Example 3- Using a vector for case_sensitive comparisons.
|
|
151
|
-
# Note: The length of the case_sensitive vector must match the
|
|
152
|
-
# comparison_columns vector argument.
|
|
153
|
-
stringsimilarity_out3 = StringSimilarity(data=strsimilarity_input,
|
|
154
|
-
comparison_columns=["jaro (src_text2, tar_text) AS jaro2_case_sim",
|
|
155
|
-
"jaro (src_text2, tar_text) AS jaro2_nocase_sim"],
|
|
156
|
-
case_sensitive=[True,False],
|
|
157
|
-
accumulate = ["id","src_text2","tar_text"],
|
|
158
|
-
)
|
|
159
|
-
|
|
160
|
-
# Print result dataframe.
|
|
161
|
-
print(stringsimilarity_out3)
|
|
162
|
-
|
|
163
|
-
"""
|
|
164
|
-
|
|
165
|
-
# Start the timer to get the build time
|
|
166
|
-
_start_time = time.time()
|
|
167
|
-
|
|
168
|
-
self.data = data
|
|
169
|
-
self.comparison_columns = comparison_columns
|
|
170
|
-
self.case_sensitive = case_sensitive
|
|
171
|
-
self.accumulate = accumulate
|
|
172
|
-
self.data_sequence_column = data_sequence_column
|
|
173
|
-
self.data_order_column = data_order_column
|
|
174
|
-
|
|
175
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
176
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
177
|
-
self.__aed_utils = AedUtils()
|
|
178
|
-
|
|
179
|
-
# Create argument information matrix to do parameter checking
|
|
180
|
-
self.__arg_info_matrix = []
|
|
181
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
182
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
183
|
-
self.__arg_info_matrix.append(["comparison_columns", self.comparison_columns, False, (str,list)])
|
|
184
|
-
self.__arg_info_matrix.append(["case_sensitive", self.case_sensitive, True, (bool,list)])
|
|
185
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
186
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
187
|
-
|
|
188
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
189
|
-
# Perform the function validations
|
|
190
|
-
self.__validate()
|
|
191
|
-
# Generate the ML query
|
|
192
|
-
self.__form_tdml_query()
|
|
193
|
-
# Execute ML query
|
|
194
|
-
self.__execute()
|
|
195
|
-
# Get the prediction type
|
|
196
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
197
|
-
|
|
198
|
-
# End the timer to get the build time
|
|
199
|
-
_end_time = time.time()
|
|
200
|
-
|
|
201
|
-
# Calculate the build time
|
|
202
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
203
|
-
|
|
204
|
-
def __validate(self):
|
|
205
|
-
"""
|
|
206
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
207
|
-
arguments, input argument and table types. Also processes the
|
|
208
|
-
argument values.
|
|
209
|
-
"""
|
|
210
|
-
|
|
211
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
212
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
213
|
-
|
|
214
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
215
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
216
|
-
|
|
217
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
218
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
219
|
-
|
|
220
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
221
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
222
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
223
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
224
|
-
|
|
225
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
226
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
227
|
-
|
|
228
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
229
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
def __form_tdml_query(self):
|
|
233
|
-
"""
|
|
234
|
-
Function to generate the analytical function queries. The function defines
|
|
235
|
-
variables and list of arguments required to form the query.
|
|
236
|
-
"""
|
|
237
|
-
|
|
238
|
-
# Output table arguments list
|
|
239
|
-
self.__func_output_args_sql_names = []
|
|
240
|
-
self.__func_output_args = []
|
|
241
|
-
|
|
242
|
-
# Model Cataloging related attributes.
|
|
243
|
-
self._sql_specific_attributes = {}
|
|
244
|
-
self._sql_formula_attribute_mapper = {}
|
|
245
|
-
self._target_column = None
|
|
246
|
-
self._algorithm_name = None
|
|
247
|
-
|
|
248
|
-
# Generate lists for rest of the function arguments
|
|
249
|
-
self.__func_other_arg_sql_names = []
|
|
250
|
-
self.__func_other_args = []
|
|
251
|
-
self.__func_other_arg_json_datatypes = []
|
|
252
|
-
|
|
253
|
-
if self.accumulate is not None:
|
|
254
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
255
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
256
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
257
|
-
|
|
258
|
-
self.__func_other_arg_sql_names.append("ComparisonColumnPairs")
|
|
259
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.comparison_columns, "'"))
|
|
260
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
261
|
-
|
|
262
|
-
if self.case_sensitive is not None:
|
|
263
|
-
self.__func_other_arg_sql_names.append("Casesensitive")
|
|
264
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.case_sensitive, "'"))
|
|
265
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
266
|
-
|
|
267
|
-
# Generate lists for rest of the function arguments
|
|
268
|
-
sequence_input_by_list = []
|
|
269
|
-
if self.data_sequence_column is not None:
|
|
270
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
271
|
-
|
|
272
|
-
if len(sequence_input_by_list) > 0:
|
|
273
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
274
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
275
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
276
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
277
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
# Declare empty lists to hold input table information.
|
|
281
|
-
self.__func_input_arg_sql_names = []
|
|
282
|
-
self.__func_input_table_view_query = []
|
|
283
|
-
self.__func_input_dataframe_type = []
|
|
284
|
-
self.__func_input_distribution = []
|
|
285
|
-
self.__func_input_partition_by_cols = []
|
|
286
|
-
self.__func_input_order_by_cols = []
|
|
287
|
-
|
|
288
|
-
# Process data
|
|
289
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
290
|
-
self.__func_input_distribution.append("FACT")
|
|
291
|
-
self.__func_input_arg_sql_names.append("input")
|
|
292
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
293
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
294
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
295
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
296
|
-
|
|
297
|
-
function_name = "StringSimilarity"
|
|
298
|
-
# Create instance to generate SQLMR.
|
|
299
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
300
|
-
self.__func_input_arg_sql_names,
|
|
301
|
-
self.__func_input_table_view_query,
|
|
302
|
-
self.__func_input_dataframe_type,
|
|
303
|
-
self.__func_input_distribution,
|
|
304
|
-
self.__func_input_partition_by_cols,
|
|
305
|
-
self.__func_input_order_by_cols,
|
|
306
|
-
self.__func_other_arg_sql_names,
|
|
307
|
-
self.__func_other_args,
|
|
308
|
-
self.__func_other_arg_json_datatypes,
|
|
309
|
-
self.__func_output_args_sql_names,
|
|
310
|
-
self.__func_output_args,
|
|
311
|
-
engine="ENGINE_ML")
|
|
312
|
-
# Invoke call to SQL-MR generation.
|
|
313
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
314
|
-
|
|
315
|
-
# Print SQL-MR query if requested to do so.
|
|
316
|
-
if display.print_sqlmr_query:
|
|
317
|
-
print(self.sqlmr_query)
|
|
318
|
-
|
|
319
|
-
# Set the algorithm name for Model Cataloging.
|
|
320
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
321
|
-
|
|
322
|
-
def __execute(self):
|
|
323
|
-
"""
|
|
324
|
-
Function to execute SQL-MR queries.
|
|
325
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
326
|
-
"""
|
|
327
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
328
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
329
|
-
try:
|
|
330
|
-
# Generate the output.
|
|
331
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
332
|
-
except Exception as emsg:
|
|
333
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
334
|
-
|
|
335
|
-
# Update output table data frames.
|
|
336
|
-
self._mlresults = []
|
|
337
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
338
|
-
self._mlresults.append(self.result)
|
|
339
|
-
|
|
340
|
-
def show_query(self):
|
|
341
|
-
"""
|
|
342
|
-
Function to return the underlying SQL query.
|
|
343
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
344
|
-
"""
|
|
345
|
-
return self.sqlmr_query
|
|
346
|
-
|
|
347
|
-
def get_prediction_type(self):
|
|
348
|
-
"""
|
|
349
|
-
Function to return the Prediction type of the algorithm.
|
|
350
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
351
|
-
as saved in the Model Catalog.
|
|
352
|
-
"""
|
|
353
|
-
return self._prediction_type
|
|
354
|
-
|
|
355
|
-
def get_target_column(self):
|
|
356
|
-
"""
|
|
357
|
-
Function to return the Target Column of the algorithm.
|
|
358
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
359
|
-
as saved in the Model Catalog.
|
|
360
|
-
"""
|
|
361
|
-
return self._target_column
|
|
362
|
-
|
|
363
|
-
def get_build_time(self):
|
|
364
|
-
"""
|
|
365
|
-
Function to return the build time of the algorithm in seconds.
|
|
366
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
367
|
-
as saved in the Model Catalog.
|
|
368
|
-
"""
|
|
369
|
-
return self._build_time
|
|
370
|
-
|
|
371
|
-
def _get_algorithm_name(self):
|
|
372
|
-
"""
|
|
373
|
-
Function to return the name of the algorithm.
|
|
374
|
-
"""
|
|
375
|
-
return self._algorithm_name
|
|
376
|
-
|
|
377
|
-
def _get_sql_specific_attributes(self):
|
|
378
|
-
"""
|
|
379
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
380
|
-
"""
|
|
381
|
-
return self._sql_specific_attributes
|
|
382
|
-
|
|
383
|
-
@classmethod
|
|
384
|
-
def _from_model_catalog(cls,
|
|
385
|
-
result = None,
|
|
386
|
-
**kwargs):
|
|
387
|
-
"""
|
|
388
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
389
|
-
"""
|
|
390
|
-
kwargs.pop("result", None)
|
|
391
|
-
|
|
392
|
-
# Model Cataloging related attributes.
|
|
393
|
-
target_column = kwargs.pop("__target_column", None)
|
|
394
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
395
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
396
|
-
build_time = kwargs.pop("__build_time", None)
|
|
397
|
-
|
|
398
|
-
# Let's create an object of this class.
|
|
399
|
-
obj = cls(**kwargs)
|
|
400
|
-
obj.result = result
|
|
401
|
-
|
|
402
|
-
# Initialize the sqlmr_query class attribute.
|
|
403
|
-
obj.sqlmr_query = None
|
|
404
|
-
|
|
405
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
406
|
-
obj._sql_specific_attributes = None
|
|
407
|
-
obj._target_column = target_column
|
|
408
|
-
obj._prediction_type = prediction_type
|
|
409
|
-
obj._algorithm_name = algorithm_name
|
|
410
|
-
obj._build_time = build_time
|
|
411
|
-
|
|
412
|
-
# Update output table data frames.
|
|
413
|
-
obj._mlresults = []
|
|
414
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
415
|
-
obj._mlresults.append(obj.result)
|
|
416
|
-
return obj
|
|
417
|
-
|
|
418
|
-
def __repr__(self):
|
|
419
|
-
"""
|
|
420
|
-
Returns the string representation for a StringSimilarity class instance.
|
|
421
|
-
"""
|
|
422
|
-
repr_string="############ STDOUT Output ############"
|
|
423
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
424
|
-
return repr_string
|
|
425
|
-
|