teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,494 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.5
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class TextMorph:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
word_column = None,
|
|
35
|
-
postag_column = None,
|
|
36
|
-
single_output = True,
|
|
37
|
-
pos = None,
|
|
38
|
-
accumulate = None,
|
|
39
|
-
data_sequence_column = None,
|
|
40
|
-
data_order_column = None):
|
|
41
|
-
"""
|
|
42
|
-
DESCRIPTION:
|
|
43
|
-
Lemmatization is a basic text analysis tool that determines the
|
|
44
|
-
lemmas (standard forms) of words, so that all forms of a word can be
|
|
45
|
-
grouped together, improving the accuracy of text analysis.
|
|
46
|
-
|
|
47
|
-
The TextMorph function implements a lemmatization algorithm based
|
|
48
|
-
on the WordNet 3.0 dictionary, which is packaged with the function.
|
|
49
|
-
If an input word is in the dictionary, the function outputs its morphs
|
|
50
|
-
with their parts of speech; otherwise, the function outputs the
|
|
51
|
-
input word itself and sets its part of speech to None.
|
|
52
|
-
|
|
53
|
-
When an input word has multiple morphs, the function outputs them
|
|
54
|
-
by the order of precedence of their parts of speech: noun, verb,
|
|
55
|
-
adj, and adv. That is, if an input word has a noun form, then it is
|
|
56
|
-
listed first. If the same word has a verb form, then it is listed
|
|
57
|
-
next, and so on.
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
PARAMETERS:
|
|
61
|
-
data:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies the input teradataml DataFrame that contains the
|
|
64
|
-
input words/phrases.
|
|
65
|
-
|
|
66
|
-
data_order_column:
|
|
67
|
-
Optional Argument.
|
|
68
|
-
Specifies Order By columns for data.
|
|
69
|
-
Values to this argument can be provided as list, if multiple
|
|
70
|
-
columns are used for ordering.
|
|
71
|
-
Types: str OR list of Strings (str)
|
|
72
|
-
|
|
73
|
-
word_column:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
76
|
-
contains the words.
|
|
77
|
-
Types: str
|
|
78
|
-
|
|
79
|
-
postag_column:
|
|
80
|
-
Optional Argument.
|
|
81
|
-
Specifies the name of the input teradataml DataFrame column that
|
|
82
|
-
contains the part-of-speech (POS) tags of the words, generated by the
|
|
83
|
-
function POSTagger.
|
|
84
|
-
If you specify this argument, the function outputs each morph
|
|
85
|
-
according to its POS tag.
|
|
86
|
-
Types: str
|
|
87
|
-
|
|
88
|
-
single_output:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies whether to output only one morph for each word. If you
|
|
91
|
-
specify False, the function outputs all morphs for each word.
|
|
92
|
-
Default Value: True
|
|
93
|
-
Types: bool
|
|
94
|
-
|
|
95
|
-
pos:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies the parts of speech to output. A pos can be "noun", "verb",
|
|
98
|
-
"adj", or "adv". Specification order is irrelevant; the order of
|
|
99
|
-
precedence is: "noun", "verb", "adj", "adv". By default, the function
|
|
100
|
-
outputs all parts of speech. If you specify this argument and
|
|
101
|
-
single_output is True, then the function outputs only the first pos.
|
|
102
|
-
Note: The function does not determine the part of speech of the word
|
|
103
|
-
from its context, it uses all possible parts of speech for the word
|
|
104
|
-
in the dictionary.
|
|
105
|
-
Permitted Values: noun, verb, adj, adv
|
|
106
|
-
Types: str OR list of strs
|
|
107
|
-
|
|
108
|
-
accumulate:
|
|
109
|
-
Optional Argument.
|
|
110
|
-
Specifies the names of the input columns to copy to the output
|
|
111
|
-
teradataml DataFrame.
|
|
112
|
-
Types: str OR list of Strings (str)
|
|
113
|
-
|
|
114
|
-
data_sequence_column:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies the list of column(s) that uniquely identifies each
|
|
117
|
-
row of the input argument "data". The argument is used to ensure
|
|
118
|
-
deterministic results for functions which produce results that
|
|
119
|
-
vary from run to run.
|
|
120
|
-
Types: str OR list of Strings (str)
|
|
121
|
-
|
|
122
|
-
RETURNS:
|
|
123
|
-
Instance of TextMorph.
|
|
124
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
125
|
-
references, such as TextMorphObj.<attribute_name>.
|
|
126
|
-
Output teradataml DataFrame attribute name is:
|
|
127
|
-
result
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
RAISES:
|
|
131
|
-
TeradataMlException
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
EXAMPLES:
|
|
135
|
-
# Load example data.
|
|
136
|
-
load_example_data("textmorph", "words_input")
|
|
137
|
-
load_example_data("postagger","paragraphs_input")
|
|
138
|
-
|
|
139
|
-
# Create teradataml DataFrame objects.
|
|
140
|
-
# The input table "words_input" contains different words to be
|
|
141
|
-
# morphed by the function based on the parts-of-speech(pos).
|
|
142
|
-
words_input = DataFrame.from_table("words_input")
|
|
143
|
-
|
|
144
|
-
# Example 1 - This example outputs only one morph for each word as
|
|
145
|
-
# "single_output" is set to True.
|
|
146
|
-
TextMorph_out1 = TextMorph(data = words_input,
|
|
147
|
-
word_column = "word",
|
|
148
|
-
single_output = True,
|
|
149
|
-
accumulate = ["id","word"]
|
|
150
|
-
)
|
|
151
|
-
|
|
152
|
-
# Print the result DataFrame
|
|
153
|
-
print(TextMorph_out1)
|
|
154
|
-
|
|
155
|
-
# Example 2 - This example outputs all morphs for each word as
|
|
156
|
-
# "single_output" is set to False.
|
|
157
|
-
TextMorph_out2 = TextMorph(data = words_input,
|
|
158
|
-
word_column = "word",
|
|
159
|
-
single_output = False,
|
|
160
|
-
accumulate = ["id","word"]
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
# Print the result DataFrame
|
|
164
|
-
print(TextMorph_out2)
|
|
165
|
-
|
|
166
|
-
# Example 3 - With "single_output" set to False and "pos" set to
|
|
167
|
-
# [noun,verb], the words better and father in the "data" appear in
|
|
168
|
-
# the output teradataml DataFrame as both nouns and verbs.
|
|
169
|
-
TextMorph_out3 = TextMorph(data = words_input,
|
|
170
|
-
word_column = "word",
|
|
171
|
-
single_output = False,
|
|
172
|
-
pos = ["noun","verb"],
|
|
173
|
-
accumulate = ["id","word"]
|
|
174
|
-
)
|
|
175
|
-
|
|
176
|
-
# Print the result DataFrame
|
|
177
|
-
print(TextMorph_out3.result)
|
|
178
|
-
|
|
179
|
-
# Example 4 - With "single_output" set to True, the words in "data" better
|
|
180
|
-
# and father appear in the output table only as nouns.
|
|
181
|
-
TextMorph_out4 = TextMorph(data = words_input,
|
|
182
|
-
word_column = "word",
|
|
183
|
-
single_output = True,
|
|
184
|
-
pos = ["noun","verb"],
|
|
185
|
-
accumulate = ["id","word"]
|
|
186
|
-
)
|
|
187
|
-
|
|
188
|
-
# Print the result DataFrame
|
|
189
|
-
print(TextMorph_out4)
|
|
190
|
-
|
|
191
|
-
# Create input teradataml dataframe.
|
|
192
|
-
paragraphs_input = DataFrame.from_table("paragraphs_input")
|
|
193
|
-
|
|
194
|
-
# Example 5 - This example uses the output of POSTagger as Input.
|
|
195
|
-
pos_tagger_out = POSTagger(data=paragraphs_input,
|
|
196
|
-
text_column='paratext',
|
|
197
|
-
accumulate='paraid')
|
|
198
|
-
|
|
199
|
-
TextMorph_out5 = TextMorph(data = pos_tagger_out.result,
|
|
200
|
-
word_column = "word",
|
|
201
|
-
postag_column = 'pos_tag',
|
|
202
|
-
accumulate = ['word_sn', 'word', 'pos_tag']
|
|
203
|
-
)
|
|
204
|
-
|
|
205
|
-
# Print the result DataFrame
|
|
206
|
-
print(TextMorph_out5)
|
|
207
|
-
|
|
208
|
-
"""
|
|
209
|
-
|
|
210
|
-
# Start the timer to get the build time
|
|
211
|
-
_start_time = time.time()
|
|
212
|
-
|
|
213
|
-
self.data = data
|
|
214
|
-
self.word_column = word_column
|
|
215
|
-
self.postag_column = postag_column
|
|
216
|
-
self.single_output = single_output
|
|
217
|
-
self.pos = pos
|
|
218
|
-
self.accumulate = accumulate
|
|
219
|
-
self.data_sequence_column = data_sequence_column
|
|
220
|
-
self.data_order_column = data_order_column
|
|
221
|
-
|
|
222
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
223
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
224
|
-
self.__aed_utils = AedUtils()
|
|
225
|
-
|
|
226
|
-
# Create argument information matrix to do parameter checking
|
|
227
|
-
self.__arg_info_matrix = []
|
|
228
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
229
|
-
self.__arg_info_matrix.append(["data_order_column", self.data_order_column, True, (str,list)])
|
|
230
|
-
self.__arg_info_matrix.append(["word_column", self.word_column, False, (str)])
|
|
231
|
-
self.__arg_info_matrix.append(["postag_column", self.postag_column, True, (str)])
|
|
232
|
-
self.__arg_info_matrix.append(["single_output", self.single_output, True, (bool)])
|
|
233
|
-
self.__arg_info_matrix.append(["pos", self.pos, True, (str,list)])
|
|
234
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
235
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
236
|
-
|
|
237
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
238
|
-
# Perform the function validations
|
|
239
|
-
self.__validate()
|
|
240
|
-
# Generate the ML query
|
|
241
|
-
self.__form_tdml_query()
|
|
242
|
-
# Execute ML query
|
|
243
|
-
self.__execute()
|
|
244
|
-
# Get the prediction type
|
|
245
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
246
|
-
|
|
247
|
-
# End the timer to get the build time
|
|
248
|
-
_end_time = time.time()
|
|
249
|
-
|
|
250
|
-
# Calculate the build time
|
|
251
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
252
|
-
|
|
253
|
-
def __validate(self):
|
|
254
|
-
"""
|
|
255
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
256
|
-
arguments, input argument and table types. Also processes the
|
|
257
|
-
argument values.
|
|
258
|
-
"""
|
|
259
|
-
|
|
260
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
261
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
262
|
-
|
|
263
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
264
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
265
|
-
|
|
266
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
267
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
268
|
-
|
|
269
|
-
# Check for permitted values
|
|
270
|
-
pos_permitted_values = ["NOUN", "VERB", "ADJ", "ADV"]
|
|
271
|
-
self.__awu._validate_permitted_values(self.pos, pos_permitted_values, "pos")
|
|
272
|
-
|
|
273
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
274
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
275
|
-
self.__awu._validate_input_columns_not_empty(self.word_column, "word_column")
|
|
276
|
-
self.__awu._validate_dataframe_has_argument_columns(self.word_column, "word_column", self.data, "data", False)
|
|
277
|
-
|
|
278
|
-
self.__awu._validate_input_columns_not_empty(self.postag_column, "postag_column")
|
|
279
|
-
self.__awu._validate_dataframe_has_argument_columns(self.postag_column, "postag_column", self.data, "data", False)
|
|
280
|
-
|
|
281
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
282
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.data, "data", False)
|
|
283
|
-
|
|
284
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
285
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
286
|
-
|
|
287
|
-
self.__awu._validate_input_columns_not_empty(self.data_order_column, "data_order_column")
|
|
288
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_order_column, "data_order_column", self.data, "data", False)
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
def __form_tdml_query(self):
|
|
292
|
-
"""
|
|
293
|
-
Function to generate the analytical function queries. The function defines
|
|
294
|
-
variables and list of arguments required to form the query.
|
|
295
|
-
"""
|
|
296
|
-
|
|
297
|
-
# Output table arguments list
|
|
298
|
-
self.__func_output_args_sql_names = []
|
|
299
|
-
self.__func_output_args = []
|
|
300
|
-
|
|
301
|
-
# Model Cataloging related attributes.
|
|
302
|
-
self._sql_specific_attributes = {}
|
|
303
|
-
self._sql_formula_attribute_mapper = {}
|
|
304
|
-
self._target_column = None
|
|
305
|
-
self._algorithm_name = None
|
|
306
|
-
|
|
307
|
-
# Generate lists for rest of the function arguments
|
|
308
|
-
self.__func_other_arg_sql_names = []
|
|
309
|
-
self.__func_other_args = []
|
|
310
|
-
self.__func_other_arg_json_datatypes = []
|
|
311
|
-
|
|
312
|
-
self.__func_other_arg_sql_names.append("WordColumn")
|
|
313
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.word_column, "\""), "'"))
|
|
314
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
315
|
-
|
|
316
|
-
if self.postag_column is not None:
|
|
317
|
-
self.__func_other_arg_sql_names.append("POSTagColumn")
|
|
318
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.postag_column, "\""), "'"))
|
|
319
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
320
|
-
|
|
321
|
-
if self.accumulate is not None:
|
|
322
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
323
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
324
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
325
|
-
|
|
326
|
-
if self.single_output is not None and self.single_output != True:
|
|
327
|
-
self.__func_other_arg_sql_names.append("SingleOutput")
|
|
328
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.single_output, "'"))
|
|
329
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
330
|
-
|
|
331
|
-
if self.pos is not None:
|
|
332
|
-
self.__func_other_arg_sql_names.append("POS")
|
|
333
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.pos, "'"))
|
|
334
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
335
|
-
|
|
336
|
-
# Generate lists for rest of the function arguments
|
|
337
|
-
sequence_input_by_list = []
|
|
338
|
-
if self.data_sequence_column is not None:
|
|
339
|
-
sequence_input_by_list.append("input:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
340
|
-
|
|
341
|
-
if len(sequence_input_by_list) > 0:
|
|
342
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
343
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
344
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
345
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
346
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
# Declare empty lists to hold input table information.
|
|
350
|
-
self.__func_input_arg_sql_names = []
|
|
351
|
-
self.__func_input_table_view_query = []
|
|
352
|
-
self.__func_input_dataframe_type = []
|
|
353
|
-
self.__func_input_distribution = []
|
|
354
|
-
self.__func_input_partition_by_cols = []
|
|
355
|
-
self.__func_input_order_by_cols = []
|
|
356
|
-
|
|
357
|
-
# Process data
|
|
358
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
359
|
-
self.__func_input_distribution.append("FACT")
|
|
360
|
-
self.__func_input_arg_sql_names.append("input")
|
|
361
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
362
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
363
|
-
self.__func_input_partition_by_cols.append("ANY")
|
|
364
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.data_order_column, "\""))
|
|
365
|
-
|
|
366
|
-
function_name = "TextMorph"
|
|
367
|
-
# Create instance to generate SQLMR.
|
|
368
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
369
|
-
self.__func_input_arg_sql_names,
|
|
370
|
-
self.__func_input_table_view_query,
|
|
371
|
-
self.__func_input_dataframe_type,
|
|
372
|
-
self.__func_input_distribution,
|
|
373
|
-
self.__func_input_partition_by_cols,
|
|
374
|
-
self.__func_input_order_by_cols,
|
|
375
|
-
self.__func_other_arg_sql_names,
|
|
376
|
-
self.__func_other_args,
|
|
377
|
-
self.__func_other_arg_json_datatypes,
|
|
378
|
-
self.__func_output_args_sql_names,
|
|
379
|
-
self.__func_output_args,
|
|
380
|
-
engine="ENGINE_ML")
|
|
381
|
-
# Invoke call to SQL-MR generation.
|
|
382
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
383
|
-
|
|
384
|
-
# Print SQL-MR query if requested to do so.
|
|
385
|
-
if display.print_sqlmr_query:
|
|
386
|
-
print(self.sqlmr_query)
|
|
387
|
-
|
|
388
|
-
# Set the algorithm name for Model Cataloging.
|
|
389
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
390
|
-
|
|
391
|
-
def __execute(self):
|
|
392
|
-
"""
|
|
393
|
-
Function to execute SQL-MR queries.
|
|
394
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
395
|
-
"""
|
|
396
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
397
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
398
|
-
try:
|
|
399
|
-
# Generate the output.
|
|
400
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
401
|
-
except Exception as emsg:
|
|
402
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
403
|
-
|
|
404
|
-
# Update output table data frames.
|
|
405
|
-
self._mlresults = []
|
|
406
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
407
|
-
self._mlresults.append(self.result)
|
|
408
|
-
|
|
409
|
-
def show_query(self):
|
|
410
|
-
"""
|
|
411
|
-
Function to return the underlying SQL query.
|
|
412
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
413
|
-
"""
|
|
414
|
-
return self.sqlmr_query
|
|
415
|
-
|
|
416
|
-
def get_prediction_type(self):
|
|
417
|
-
"""
|
|
418
|
-
Function to return the Prediction type of the algorithm.
|
|
419
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
420
|
-
as saved in the Model Catalog.
|
|
421
|
-
"""
|
|
422
|
-
return self._prediction_type
|
|
423
|
-
|
|
424
|
-
def get_target_column(self):
|
|
425
|
-
"""
|
|
426
|
-
Function to return the Target Column of the algorithm.
|
|
427
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
428
|
-
as saved in the Model Catalog.
|
|
429
|
-
"""
|
|
430
|
-
return self._target_column
|
|
431
|
-
|
|
432
|
-
def get_build_time(self):
|
|
433
|
-
"""
|
|
434
|
-
Function to return the build time of the algorithm in seconds.
|
|
435
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
436
|
-
as saved in the Model Catalog.
|
|
437
|
-
"""
|
|
438
|
-
return self._build_time
|
|
439
|
-
|
|
440
|
-
def _get_algorithm_name(self):
|
|
441
|
-
"""
|
|
442
|
-
Function to return the name of the algorithm.
|
|
443
|
-
"""
|
|
444
|
-
return self._algorithm_name
|
|
445
|
-
|
|
446
|
-
def _get_sql_specific_attributes(self):
|
|
447
|
-
"""
|
|
448
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
449
|
-
"""
|
|
450
|
-
return self._sql_specific_attributes
|
|
451
|
-
|
|
452
|
-
@classmethod
|
|
453
|
-
def _from_model_catalog(cls,
|
|
454
|
-
result = None,
|
|
455
|
-
**kwargs):
|
|
456
|
-
"""
|
|
457
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
458
|
-
"""
|
|
459
|
-
kwargs.pop("result", None)
|
|
460
|
-
|
|
461
|
-
# Model Cataloging related attributes.
|
|
462
|
-
target_column = kwargs.pop("__target_column", None)
|
|
463
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
464
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
465
|
-
build_time = kwargs.pop("__build_time", None)
|
|
466
|
-
|
|
467
|
-
# Let's create an object of this class.
|
|
468
|
-
obj = cls(**kwargs)
|
|
469
|
-
obj.result = result
|
|
470
|
-
|
|
471
|
-
# Initialize the sqlmr_query class attribute.
|
|
472
|
-
obj.sqlmr_query = None
|
|
473
|
-
|
|
474
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
475
|
-
obj._sql_specific_attributes = None
|
|
476
|
-
obj._target_column = target_column
|
|
477
|
-
obj._prediction_type = prediction_type
|
|
478
|
-
obj._algorithm_name = algorithm_name
|
|
479
|
-
obj._build_time = build_time
|
|
480
|
-
|
|
481
|
-
# Update output table data frames.
|
|
482
|
-
obj._mlresults = []
|
|
483
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
484
|
-
obj._mlresults.append(obj.result)
|
|
485
|
-
return obj
|
|
486
|
-
|
|
487
|
-
def __repr__(self):
|
|
488
|
-
"""
|
|
489
|
-
Returns the string representation for a TextMorph class instance.
|
|
490
|
-
"""
|
|
491
|
-
repr_string="############ STDOUT Output ############"
|
|
492
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
493
|
-
return repr_string
|
|
494
|
-
|