teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,641 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.9
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class Arima:
31
-
32
- def __init__(self,
33
- data = None,
34
- orders_table = None,
35
- timestamp_columns = None,
36
- value_column = None,
37
- order = None,
38
- seasonal = None,
39
- period = None,
40
- include_mean = False,
41
- partition_columns = None,
42
- max_iterations = 10000,
43
- method = "SSE",
44
- include_drift = False,
45
- order_p = None,
46
- order_d = None,
47
- order_q = None,
48
- seasonal_order_p = None,
49
- seasonal_order_d = None,
50
- seasonal_order_q = None,
51
- data_sequence_column = None,
52
- orders_table_sequence_column = None):
53
- """
54
- DESCRIPTION:
55
- The Arima function calculates the coefficients for a sequence of
56
- parameters, producing an ARIMA model that is typically input to the
57
- function ArimaPredict.
58
-
59
-
60
- PARAMETERS:
61
- data:
62
- Required Argument.
63
- Specifies the name of the teradataml DataFrame that contains
64
- the input parameters.
65
-
66
- orders_table:
67
- Optional Argument.
68
- Specifies the name of the orders teradataml DataFrame that is
69
- generated by TimeSeriesOrders function.
70
-
71
- timestamp_columns:
72
- Required Argument.
73
- Specifies the names of the input_table columns that specify the
74
- sequence (time points) of the input parameters. The sequence must
75
- have uniform intervals.
76
- Types: str OR list of Strings (str)
77
-
78
- value_column:
79
- Required Argument.
80
- Specifies the name of the column that contains the time series data
81
- in input_table.
82
- Types: str
83
-
84
- order:
85
- Optional Argument.
86
- Specifies the values of the non-seasonal orders p, d, and q for the
87
- ARIMA model. The p and q must be an integer between 0 and 10,
88
- inclusive. The d must be between 0 and 1, inclusive.
89
- Types: str
90
-
91
- seasonal:
92
- Optional Argument.
93
- Specifies the values of the seasonal orders sp, sd, and sq for the
94
- ARIMA model. The sp and sq must be an integer between 0 and 10,
95
- inclusive. The sd must be between 0 and 3, inclusive
96
- Types: str
97
-
98
- period:
99
- Optional Argument.
100
- Specifies the period of a season (m in the formula). This value must
101
- be a positive integer value. If you specify seasonal, then you must
102
- also specify period.
103
- Types: int
104
-
105
- include_mean:
106
- Optional Argument.
107
- Specifies whether the function adds the mean value (c in the formula)
108
- to the Arima model.
109
- Note: If include_mean is True, then both d
110
- in Orders and sd in seasonal must be 0.
111
- Default Value: False
112
- Types: bool
113
-
114
- partition_columns:
115
- Optional Argument.
116
- Specifies the partition columns that will be passed to the output. If
117
- not specified, the output will not contain partition columns.
118
- Types: str OR list of Strings (str)
119
-
120
- max_iterations:
121
- Optional Argument.
122
- Specifies the maximum iteration number for estimating the parameters.
123
- This value must be a positive integer.
124
- Default Value: 10000
125
- Types: int
126
-
127
- method:
128
- Optional Argument.
129
- Specifies the method for fitting the model parameters: SSE (Default):
130
- Sum of squared error. ML: Maximum likelihood
131
- Default Value: "SSE"
132
- Permitted Values: SSE, ML
133
- Types: str
134
-
135
- include_drift:
136
- Optional Argument.
137
- Specifies whether drift term is included in the ARIMA model.
138
- Note: This argument can only be True when d is non-zero and less than 2.
139
- Default Value: False
140
- Types: bool
141
-
142
- order_p:
143
- Optional Argument.
144
- Specifies the p value of the non-seasonal order parameter. The p value must be
145
- an integer between 0 and 10, inclusive.
146
- Types: int
147
-
148
- order_d:
149
- Optional Argument.
150
- Specifies the d value of the non-seasonal order parameter. The d value must be
151
- an integer between 0 and 1, inclusive.
152
- Types: int
153
-
154
- order_q:
155
- Optional Argument.
156
- Specifies the q value of the non-seasonal order parameter. The q value must be
157
- an integer between 0 and 10, inclusive.
158
- Types: int
159
-
160
- seasonal_order_p:
161
- Optional Argument.
162
- Specifies the sp value of the seasonal order parameter. The sp value must be an
163
- integer between 0 and 10, inclusive.
164
- Types: int
165
-
166
- seasonal_order_d:
167
- Optional Argument.
168
- Specifies the sd value of the seasonal order parameter. The sd value must be an
169
- integer between 0 and 3, inclusive.
170
- Types: int
171
-
172
- seasonal_order_q:
173
- Optional Argument.
174
- Specifies the sq value of the seasonal order parameter. The sq value must be an
175
- integer between 0 and 10, inclusive.
176
- Types: int
177
-
178
- data_sequence_column:
179
- Optional Argument.
180
- Specifies the list of column(s) that uniquely identifies each row of
181
- the input argument "data". The argument is used to ensure
182
- deterministic results for functions which produce results that vary
183
- from run to run.
184
- Types: str OR list of Strings (str)
185
-
186
- orders_table_sequence_column:
187
- Optional Argument.
188
- Specifies the list of column(s) that uniquely identifies each row of
189
- the input argument "orders_table". The argument is used to ensure
190
- deterministic results for functions which produce results that vary
191
- from run to run.
192
- Types: str OR list of Strings (str)
193
-
194
- RETURNS:
195
- Instance of Arima.
196
- Output teradataml DataFrames can be accessed using attribute
197
- references, such as ArimaObj.<attribute_name>.
198
- Output teradataml DataFrame attribute names are:
199
- 1. coefficient
200
- 2. residual_table
201
- 3. output
202
-
203
-
204
- RAISES:
205
- TeradataMlException
206
-
207
-
208
- EXAMPLES:
209
- # Load the data to run the example.
210
- load_example_data("arima", "milk_timeseries")
211
-
212
- # Create teradataml DataFrame objects.
213
- milk_timeseries = DataFrame.from_table("milk_timeseries")
214
-
215
- # Example 1 - Generate Arima model using only orders paremeter without partition_columns and seasonal parameters.
216
- arima_out1 = Arima(data = milk_timeseries,
217
- timestamp_columns = ["period"],
218
- value_column = "milkpound",
219
- order = "0,1,2",
220
- include_drift=True)
221
-
222
- # Print the output data
223
- print(arima_out1.coefficient)
224
- print(arima_out1.residual_table)
225
- print(arima_out1.output)
226
-
227
- # Example 2 - Generate Arima model using seasonal orders parameter.
228
- arima_out2 = Arima(data = milk_timeseries,
229
- timestamp_columns = ["period"],
230
- value_column = "milkpound",
231
- order = "0,1,2",
232
- seasonal_order_p = 0,
233
- seasonal_order_d = 1,
234
- seasonal_order_q = 1,
235
- period = 12)
236
-
237
- # Print output DataFrames individually.
238
- print(arima_out2.coefficient)
239
- print(arima_out2.residual_table)
240
- print(arima_out2.output)
241
-
242
- """
243
-
244
- # Start the timer to get the build time
245
- _start_time = time.time()
246
-
247
- self.data = data
248
- self.orders_table = orders_table
249
- self.timestamp_columns = timestamp_columns
250
- self.value_column = value_column
251
- self.order = order
252
- self.seasonal = seasonal
253
- self.period = period
254
- self.include_mean = include_mean
255
- self.partition_columns = partition_columns
256
- self.max_iterations = max_iterations
257
- self.method = method
258
- self.include_drift = include_drift
259
- self.order_p = order_p
260
- self.order_d = order_d
261
- self.order_q = order_q
262
- self.seasonal_order_p = seasonal_order_p
263
- self.seasonal_order_d = seasonal_order_d
264
- self.seasonal_order_q = seasonal_order_q
265
- self.data_sequence_column = data_sequence_column
266
- self.orders_table_sequence_column = orders_table_sequence_column
267
-
268
- # Create TeradataPyWrapperUtils instance which contains validation functions.
269
- self.__awu = AnalyticsWrapperUtils()
270
- self.__aed_utils = AedUtils()
271
-
272
- # Create argument information matrix to do parameter checking
273
- self.__arg_info_matrix = []
274
- self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
275
- self.__arg_info_matrix.append(["orders_table", self.orders_table, True, (DataFrame)])
276
- self.__arg_info_matrix.append(["timestamp_columns", self.timestamp_columns, False, (str,list)])
277
- self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
278
- self.__arg_info_matrix.append(["order", self.order, True, (str)])
279
- self.__arg_info_matrix.append(["seasonal", self.seasonal, True, (str)])
280
- self.__arg_info_matrix.append(["period", self.period, True, (int)])
281
- self.__arg_info_matrix.append(["include_mean", self.include_mean, True, (bool)])
282
- self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
283
- self.__arg_info_matrix.append(["max_iterations", self.max_iterations, True, (int)])
284
- self.__arg_info_matrix.append(["method", self.method, True, (str)])
285
- self.__arg_info_matrix.append(["include_drift", self.include_drift, True, (bool)])
286
- self.__arg_info_matrix.append(["order_p", self.order_p, True, (int)])
287
- self.__arg_info_matrix.append(["order_d", self.order_d, True, (int)])
288
- self.__arg_info_matrix.append(["order_q", self.order_q, True, (int)])
289
- self.__arg_info_matrix.append(["seasonal_order_p", self.seasonal_order_p, True, (int)])
290
- self.__arg_info_matrix.append(["seasonal_order_d", self.seasonal_order_d, True, (int)])
291
- self.__arg_info_matrix.append(["seasonal_order_q", self.seasonal_order_q, True, (int)])
292
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
293
- self.__arg_info_matrix.append(["orders_table_sequence_column", self.orders_table_sequence_column, True, (str,list)])
294
-
295
- if inspect.stack()[1][3] != '_from_model_catalog':
296
- # Perform the function validations
297
- self.__validate()
298
- # Generate the ML query
299
- self.__form_tdml_query()
300
- # Execute ML query
301
- self.__execute()
302
- # Get the prediction type
303
- self._prediction_type = self.__awu._get_function_prediction_type(self)
304
-
305
- # End the timer to get the build time
306
- _end_time = time.time()
307
-
308
- # Calculate the build time
309
- self._build_time = (int)(_end_time - _start_time)
310
-
311
- def __validate(self):
312
- """
313
- Function to validate sqlmr function arguments, which verifies missing
314
- arguments, input argument and table types. Also processes the
315
- argument values.
316
- """
317
-
318
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
319
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
320
-
321
- # Make sure that a non-NULL value has been supplied correct type of argument
322
- self.__awu._validate_argument_types(self.__arg_info_matrix)
323
-
324
- # Check to make sure input table types are strings or data frame objects or of valid type.
325
- self.__awu._validate_input_table_datatype(self.data, "data", None)
326
- self.__awu._validate_input_table_datatype(self.orders_table, "orders_table", None)
327
-
328
- # Check for permitted values
329
- method_permitted_values = ["SSE", "ML"]
330
- self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
331
-
332
- # Check whether the input columns passed to the argument are not empty.
333
- # Also check whether the input columns passed to the argument valid or not.
334
- self.__awu._validate_input_columns_not_empty(self.timestamp_columns, "timestamp_columns")
335
- self.__awu._validate_dataframe_has_argument_columns(self.timestamp_columns, "timestamp_columns", self.data, "data", False)
336
-
337
- self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
338
- self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
339
-
340
- self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
341
- self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
342
-
343
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
344
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
345
-
346
- self.__awu._validate_input_columns_not_empty(self.orders_table_sequence_column, "orders_table_sequence_column")
347
- self.__awu._validate_dataframe_has_argument_columns(self.orders_table_sequence_column, "orders_table_sequence_column", self.orders_table, "orders_table", False)
348
-
349
-
350
- def __form_tdml_query(self):
351
- """
352
- Function to generate the analytical function queries. The function defines
353
- variables and list of arguments required to form the query.
354
- """
355
- # Generate temp table names for output table parameters if any.
356
- self.__coefficient_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_arima0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
357
- self.__residual_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_arima1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
358
-
359
- # Output table arguments list
360
- self.__func_output_args_sql_names = ["ModelTable", "ResidualTable"]
361
- self.__func_output_args = [self.__coefficient_temp_tablename, self.__residual_table_temp_tablename]
362
-
363
- # Model Cataloging related attributes.
364
- self._sql_specific_attributes = {}
365
- self._sql_formula_attribute_mapper = {}
366
- self._target_column = None
367
- self._algorithm_name = None
368
-
369
- # Generate lists for rest of the function arguments
370
- self.__func_other_arg_sql_names = []
371
- self.__func_other_args = []
372
- self.__func_other_arg_json_datatypes = []
373
-
374
- self.__func_other_arg_sql_names.append("TimeColumns")
375
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.timestamp_columns, "\""), "'"))
376
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
377
-
378
- self.__func_other_arg_sql_names.append("TargetColumn")
379
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
380
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
381
-
382
- if self.partition_columns is not None:
383
- self.__func_other_arg_sql_names.append("PartitionColumns")
384
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
385
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
386
-
387
- if self.order is not None:
388
- self.__func_other_arg_sql_names.append("Orders")
389
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order, "'"))
390
- self.__func_other_arg_json_datatypes.append("STRING")
391
-
392
- if self.seasonal is not None:
393
- self.__func_other_arg_sql_names.append("SeasonalOrders")
394
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal, "'"))
395
- self.__func_other_arg_json_datatypes.append("STRING")
396
-
397
- if self.period is not None:
398
- self.__func_other_arg_sql_names.append("Period")
399
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.period, "'"))
400
- self.__func_other_arg_json_datatypes.append("INTEGER")
401
-
402
- if self.include_mean is not None and self.include_mean != False:
403
- self.__func_other_arg_sql_names.append("IncludeMean")
404
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_mean, "'"))
405
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
406
-
407
- if self.max_iterations is not None and self.max_iterations != 10000:
408
- self.__func_other_arg_sql_names.append("MaxIterNum")
409
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iterations, "'"))
410
- self.__func_other_arg_json_datatypes.append("INTEGER")
411
-
412
- if self.method is not None and self.method != "SSE":
413
- self.__func_other_arg_sql_names.append("FitMethod")
414
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
415
- self.__func_other_arg_json_datatypes.append("STRING")
416
-
417
- if self.include_drift is not None and self.include_drift != False:
418
- self.__func_other_arg_sql_names.append("IncludeDrift")
419
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_drift, "'"))
420
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
421
-
422
- if self.order_p is not None:
423
- self.__func_other_arg_sql_names.append("OrderP")
424
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_p, "'"))
425
- self.__func_other_arg_json_datatypes.append("INTEGER")
426
-
427
- if self.order_d is not None:
428
- self.__func_other_arg_sql_names.append("OrderD")
429
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_d, "'"))
430
- self.__func_other_arg_json_datatypes.append("INTEGER")
431
-
432
- if self.order_q is not None:
433
- self.__func_other_arg_sql_names.append("OrderQ")
434
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_q, "'"))
435
- self.__func_other_arg_json_datatypes.append("INTEGER")
436
-
437
- if self.seasonal_order_p is not None:
438
- self.__func_other_arg_sql_names.append("SeasonalOrderP")
439
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_p, "'"))
440
- self.__func_other_arg_json_datatypes.append("INTEGER")
441
-
442
- if self.seasonal_order_d is not None:
443
- self.__func_other_arg_sql_names.append("SeasonalOrderD")
444
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_d, "'"))
445
- self.__func_other_arg_json_datatypes.append("INTEGER")
446
-
447
- if self.seasonal_order_q is not None:
448
- self.__func_other_arg_sql_names.append("SeasonalOrderQ")
449
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_q, "'"))
450
- self.__func_other_arg_json_datatypes.append("INTEGER")
451
-
452
- # Generate lists for rest of the function arguments
453
- sequence_input_by_list = []
454
- if self.data_sequence_column is not None:
455
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
456
-
457
- if self.orders_table_sequence_column is not None:
458
- sequence_input_by_list.append("OrdersTable:" + UtilFuncs._teradata_collapse_arglist(self.orders_table_sequence_column, ""))
459
-
460
- if len(sequence_input_by_list) > 0:
461
- self.__func_other_arg_sql_names.append("SequenceInputBy")
462
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
463
- self.__func_other_args.append(sequence_input_by_arg_value)
464
- self.__func_other_arg_json_datatypes.append("STRING")
465
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
466
-
467
-
468
- # Declare empty lists to hold input table information.
469
- self.__func_input_arg_sql_names = []
470
- self.__func_input_table_view_query = []
471
- self.__func_input_dataframe_type = []
472
- self.__func_input_distribution = []
473
- self.__func_input_partition_by_cols = []
474
- self.__func_input_order_by_cols = []
475
-
476
- # Process data
477
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
478
- self.__func_input_distribution.append("NONE")
479
- self.__func_input_arg_sql_names.append("InputTable")
480
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
481
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
482
- self.__func_input_partition_by_cols.append("NA_character_")
483
- self.__func_input_order_by_cols.append("NA_character_")
484
-
485
- # Process orders_table
486
- if self.orders_table is not None:
487
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.orders_table, False)
488
- self.__func_input_distribution.append("NONE")
489
- self.__func_input_arg_sql_names.append("OrdersTable")
490
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
491
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
492
- self.__func_input_partition_by_cols.append("NA_character_")
493
- self.__func_input_order_by_cols.append("NA_character_")
494
-
495
- function_name = "ARIMA"
496
- # Create instance to generate SQLMR.
497
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
498
- self.__func_input_arg_sql_names,
499
- self.__func_input_table_view_query,
500
- self.__func_input_dataframe_type,
501
- self.__func_input_distribution,
502
- self.__func_input_partition_by_cols,
503
- self.__func_input_order_by_cols,
504
- self.__func_other_arg_sql_names,
505
- self.__func_other_args,
506
- self.__func_other_arg_json_datatypes,
507
- self.__func_output_args_sql_names,
508
- self.__func_output_args,
509
- engine="ENGINE_ML")
510
- # Invoke call to SQL-MR generation.
511
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
512
-
513
- # Print SQL-MR query if requested to do so.
514
- if display.print_sqlmr_query:
515
- print(self.sqlmr_query)
516
-
517
- # Set the algorithm name for Model Cataloging.
518
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
519
-
520
- def __execute(self):
521
- """
522
- Function to execute SQL-MR queries.
523
- Create DataFrames for the required SQL-MR outputs.
524
- """
525
- # Generate STDOUT table name and add it to the output table list.
526
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
527
- try:
528
- # Generate the output.
529
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
530
- except Exception as emsg:
531
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
532
-
533
- # Update output table data frames.
534
- self._mlresults = []
535
- self.coefficient = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficient_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficient_temp_tablename))
536
- self.residual_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__residual_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__residual_table_temp_tablename))
537
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
538
- self._mlresults.append(self.coefficient)
539
- self._mlresults.append(self.residual_table)
540
- self._mlresults.append(self.output)
541
-
542
- def show_query(self):
543
- """
544
- Function to return the underlying SQL query.
545
- When model object is created using retrieve_model(), then None is returned.
546
- """
547
- return self.sqlmr_query
548
-
549
- def get_prediction_type(self):
550
- """
551
- Function to return the Prediction type of the algorithm.
552
- When model object is created using retrieve_model(), then the value returned is
553
- as saved in the Model Catalog.
554
- """
555
- return self._prediction_type
556
-
557
- def get_target_column(self):
558
- """
559
- Function to return the Target Column of the algorithm.
560
- When model object is created using retrieve_model(), then the value returned is
561
- as saved in the Model Catalog.
562
- """
563
- return self._target_column
564
-
565
- def get_build_time(self):
566
- """
567
- Function to return the build time of the algorithm in seconds.
568
- When model object is created using retrieve_model(), then the value returned is
569
- as saved in the Model Catalog.
570
- """
571
- return self._build_time
572
-
573
- def _get_algorithm_name(self):
574
- """
575
- Function to return the name of the algorithm.
576
- """
577
- return self._algorithm_name
578
-
579
- def _get_sql_specific_attributes(self):
580
- """
581
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
582
- """
583
- return self._sql_specific_attributes
584
-
585
- @classmethod
586
- def _from_model_catalog(cls,
587
- coefficient = None,
588
- residual_table = None,
589
- output = None,
590
- **kwargs):
591
- """
592
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
593
- """
594
- kwargs.pop("coefficient", None)
595
- kwargs.pop("residual_table", None)
596
- kwargs.pop("output", None)
597
-
598
- # Model Cataloging related attributes.
599
- target_column = kwargs.pop("__target_column", None)
600
- prediction_type = kwargs.pop("__prediction_type", None)
601
- algorithm_name = kwargs.pop("__algorithm_name", None)
602
- build_time = kwargs.pop("__build_time", None)
603
-
604
- # Let's create an object of this class.
605
- obj = cls(**kwargs)
606
- obj.coefficient = coefficient
607
- obj.residual_table = residual_table
608
- obj.output = output
609
-
610
- # Initialize the sqlmr_query class attribute.
611
- obj.sqlmr_query = None
612
-
613
- # Initialize the SQL specific Model Cataloging attributes.
614
- obj._sql_specific_attributes = None
615
- obj._target_column = target_column
616
- obj._prediction_type = prediction_type
617
- obj._algorithm_name = algorithm_name
618
- obj._build_time = build_time
619
-
620
- # Update output table data frames.
621
- obj._mlresults = []
622
- obj.coefficient = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficient), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficient))
623
- obj.residual_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.residual_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.residual_table))
624
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
625
- obj._mlresults.append(obj.coefficient)
626
- obj._mlresults.append(obj.residual_table)
627
- obj._mlresults.append(obj.output)
628
- return obj
629
-
630
- def __repr__(self):
631
- """
632
- Returns the string representation for a Arima class instance.
633
- """
634
- repr_string="############ STDOUT Output ############"
635
- repr_string = "{}\n\n{}".format(repr_string,self.output)
636
- repr_string="{}\n\n\n############ coefficient Output ############".format(repr_string)
637
- repr_string = "{}\n\n{}".format(repr_string,self.coefficient)
638
- repr_string="{}\n\n\n############ residual_table Output ############".format(repr_string)
639
- repr_string = "{}\n\n{}".format(repr_string,self.residual_table)
640
- return repr_string
641
-