teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,641 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.9
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class Arima:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
orders_table = None,
|
|
35
|
-
timestamp_columns = None,
|
|
36
|
-
value_column = None,
|
|
37
|
-
order = None,
|
|
38
|
-
seasonal = None,
|
|
39
|
-
period = None,
|
|
40
|
-
include_mean = False,
|
|
41
|
-
partition_columns = None,
|
|
42
|
-
max_iterations = 10000,
|
|
43
|
-
method = "SSE",
|
|
44
|
-
include_drift = False,
|
|
45
|
-
order_p = None,
|
|
46
|
-
order_d = None,
|
|
47
|
-
order_q = None,
|
|
48
|
-
seasonal_order_p = None,
|
|
49
|
-
seasonal_order_d = None,
|
|
50
|
-
seasonal_order_q = None,
|
|
51
|
-
data_sequence_column = None,
|
|
52
|
-
orders_table_sequence_column = None):
|
|
53
|
-
"""
|
|
54
|
-
DESCRIPTION:
|
|
55
|
-
The Arima function calculates the coefficients for a sequence of
|
|
56
|
-
parameters, producing an ARIMA model that is typically input to the
|
|
57
|
-
function ArimaPredict.
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
PARAMETERS:
|
|
61
|
-
data:
|
|
62
|
-
Required Argument.
|
|
63
|
-
Specifies the name of the teradataml DataFrame that contains
|
|
64
|
-
the input parameters.
|
|
65
|
-
|
|
66
|
-
orders_table:
|
|
67
|
-
Optional Argument.
|
|
68
|
-
Specifies the name of the orders teradataml DataFrame that is
|
|
69
|
-
generated by TimeSeriesOrders function.
|
|
70
|
-
|
|
71
|
-
timestamp_columns:
|
|
72
|
-
Required Argument.
|
|
73
|
-
Specifies the names of the input_table columns that specify the
|
|
74
|
-
sequence (time points) of the input parameters. The sequence must
|
|
75
|
-
have uniform intervals.
|
|
76
|
-
Types: str OR list of Strings (str)
|
|
77
|
-
|
|
78
|
-
value_column:
|
|
79
|
-
Required Argument.
|
|
80
|
-
Specifies the name of the column that contains the time series data
|
|
81
|
-
in input_table.
|
|
82
|
-
Types: str
|
|
83
|
-
|
|
84
|
-
order:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies the values of the non-seasonal orders p, d, and q for the
|
|
87
|
-
ARIMA model. The p and q must be an integer between 0 and 10,
|
|
88
|
-
inclusive. The d must be between 0 and 1, inclusive.
|
|
89
|
-
Types: str
|
|
90
|
-
|
|
91
|
-
seasonal:
|
|
92
|
-
Optional Argument.
|
|
93
|
-
Specifies the values of the seasonal orders sp, sd, and sq for the
|
|
94
|
-
ARIMA model. The sp and sq must be an integer between 0 and 10,
|
|
95
|
-
inclusive. The sd must be between 0 and 3, inclusive
|
|
96
|
-
Types: str
|
|
97
|
-
|
|
98
|
-
period:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the period of a season (m in the formula). This value must
|
|
101
|
-
be a positive integer value. If you specify seasonal, then you must
|
|
102
|
-
also specify period.
|
|
103
|
-
Types: int
|
|
104
|
-
|
|
105
|
-
include_mean:
|
|
106
|
-
Optional Argument.
|
|
107
|
-
Specifies whether the function adds the mean value (c in the formula)
|
|
108
|
-
to the Arima model.
|
|
109
|
-
Note: If include_mean is True, then both d
|
|
110
|
-
in Orders and sd in seasonal must be 0.
|
|
111
|
-
Default Value: False
|
|
112
|
-
Types: bool
|
|
113
|
-
|
|
114
|
-
partition_columns:
|
|
115
|
-
Optional Argument.
|
|
116
|
-
Specifies the partition columns that will be passed to the output. If
|
|
117
|
-
not specified, the output will not contain partition columns.
|
|
118
|
-
Types: str OR list of Strings (str)
|
|
119
|
-
|
|
120
|
-
max_iterations:
|
|
121
|
-
Optional Argument.
|
|
122
|
-
Specifies the maximum iteration number for estimating the parameters.
|
|
123
|
-
This value must be a positive integer.
|
|
124
|
-
Default Value: 10000
|
|
125
|
-
Types: int
|
|
126
|
-
|
|
127
|
-
method:
|
|
128
|
-
Optional Argument.
|
|
129
|
-
Specifies the method for fitting the model parameters: SSE (Default):
|
|
130
|
-
Sum of squared error. ML: Maximum likelihood
|
|
131
|
-
Default Value: "SSE"
|
|
132
|
-
Permitted Values: SSE, ML
|
|
133
|
-
Types: str
|
|
134
|
-
|
|
135
|
-
include_drift:
|
|
136
|
-
Optional Argument.
|
|
137
|
-
Specifies whether drift term is included in the ARIMA model.
|
|
138
|
-
Note: This argument can only be True when d is non-zero and less than 2.
|
|
139
|
-
Default Value: False
|
|
140
|
-
Types: bool
|
|
141
|
-
|
|
142
|
-
order_p:
|
|
143
|
-
Optional Argument.
|
|
144
|
-
Specifies the p value of the non-seasonal order parameter. The p value must be
|
|
145
|
-
an integer between 0 and 10, inclusive.
|
|
146
|
-
Types: int
|
|
147
|
-
|
|
148
|
-
order_d:
|
|
149
|
-
Optional Argument.
|
|
150
|
-
Specifies the d value of the non-seasonal order parameter. The d value must be
|
|
151
|
-
an integer between 0 and 1, inclusive.
|
|
152
|
-
Types: int
|
|
153
|
-
|
|
154
|
-
order_q:
|
|
155
|
-
Optional Argument.
|
|
156
|
-
Specifies the q value of the non-seasonal order parameter. The q value must be
|
|
157
|
-
an integer between 0 and 10, inclusive.
|
|
158
|
-
Types: int
|
|
159
|
-
|
|
160
|
-
seasonal_order_p:
|
|
161
|
-
Optional Argument.
|
|
162
|
-
Specifies the sp value of the seasonal order parameter. The sp value must be an
|
|
163
|
-
integer between 0 and 10, inclusive.
|
|
164
|
-
Types: int
|
|
165
|
-
|
|
166
|
-
seasonal_order_d:
|
|
167
|
-
Optional Argument.
|
|
168
|
-
Specifies the sd value of the seasonal order parameter. The sd value must be an
|
|
169
|
-
integer between 0 and 3, inclusive.
|
|
170
|
-
Types: int
|
|
171
|
-
|
|
172
|
-
seasonal_order_q:
|
|
173
|
-
Optional Argument.
|
|
174
|
-
Specifies the sq value of the seasonal order parameter. The sq value must be an
|
|
175
|
-
integer between 0 and 10, inclusive.
|
|
176
|
-
Types: int
|
|
177
|
-
|
|
178
|
-
data_sequence_column:
|
|
179
|
-
Optional Argument.
|
|
180
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
181
|
-
the input argument "data". The argument is used to ensure
|
|
182
|
-
deterministic results for functions which produce results that vary
|
|
183
|
-
from run to run.
|
|
184
|
-
Types: str OR list of Strings (str)
|
|
185
|
-
|
|
186
|
-
orders_table_sequence_column:
|
|
187
|
-
Optional Argument.
|
|
188
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
189
|
-
the input argument "orders_table". The argument is used to ensure
|
|
190
|
-
deterministic results for functions which produce results that vary
|
|
191
|
-
from run to run.
|
|
192
|
-
Types: str OR list of Strings (str)
|
|
193
|
-
|
|
194
|
-
RETURNS:
|
|
195
|
-
Instance of Arima.
|
|
196
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
197
|
-
references, such as ArimaObj.<attribute_name>.
|
|
198
|
-
Output teradataml DataFrame attribute names are:
|
|
199
|
-
1. coefficient
|
|
200
|
-
2. residual_table
|
|
201
|
-
3. output
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
RAISES:
|
|
205
|
-
TeradataMlException
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
EXAMPLES:
|
|
209
|
-
# Load the data to run the example.
|
|
210
|
-
load_example_data("arima", "milk_timeseries")
|
|
211
|
-
|
|
212
|
-
# Create teradataml DataFrame objects.
|
|
213
|
-
milk_timeseries = DataFrame.from_table("milk_timeseries")
|
|
214
|
-
|
|
215
|
-
# Example 1 - Generate Arima model using only orders paremeter without partition_columns and seasonal parameters.
|
|
216
|
-
arima_out1 = Arima(data = milk_timeseries,
|
|
217
|
-
timestamp_columns = ["period"],
|
|
218
|
-
value_column = "milkpound",
|
|
219
|
-
order = "0,1,2",
|
|
220
|
-
include_drift=True)
|
|
221
|
-
|
|
222
|
-
# Print the output data
|
|
223
|
-
print(arima_out1.coefficient)
|
|
224
|
-
print(arima_out1.residual_table)
|
|
225
|
-
print(arima_out1.output)
|
|
226
|
-
|
|
227
|
-
# Example 2 - Generate Arima model using seasonal orders parameter.
|
|
228
|
-
arima_out2 = Arima(data = milk_timeseries,
|
|
229
|
-
timestamp_columns = ["period"],
|
|
230
|
-
value_column = "milkpound",
|
|
231
|
-
order = "0,1,2",
|
|
232
|
-
seasonal_order_p = 0,
|
|
233
|
-
seasonal_order_d = 1,
|
|
234
|
-
seasonal_order_q = 1,
|
|
235
|
-
period = 12)
|
|
236
|
-
|
|
237
|
-
# Print output DataFrames individually.
|
|
238
|
-
print(arima_out2.coefficient)
|
|
239
|
-
print(arima_out2.residual_table)
|
|
240
|
-
print(arima_out2.output)
|
|
241
|
-
|
|
242
|
-
"""
|
|
243
|
-
|
|
244
|
-
# Start the timer to get the build time
|
|
245
|
-
_start_time = time.time()
|
|
246
|
-
|
|
247
|
-
self.data = data
|
|
248
|
-
self.orders_table = orders_table
|
|
249
|
-
self.timestamp_columns = timestamp_columns
|
|
250
|
-
self.value_column = value_column
|
|
251
|
-
self.order = order
|
|
252
|
-
self.seasonal = seasonal
|
|
253
|
-
self.period = period
|
|
254
|
-
self.include_mean = include_mean
|
|
255
|
-
self.partition_columns = partition_columns
|
|
256
|
-
self.max_iterations = max_iterations
|
|
257
|
-
self.method = method
|
|
258
|
-
self.include_drift = include_drift
|
|
259
|
-
self.order_p = order_p
|
|
260
|
-
self.order_d = order_d
|
|
261
|
-
self.order_q = order_q
|
|
262
|
-
self.seasonal_order_p = seasonal_order_p
|
|
263
|
-
self.seasonal_order_d = seasonal_order_d
|
|
264
|
-
self.seasonal_order_q = seasonal_order_q
|
|
265
|
-
self.data_sequence_column = data_sequence_column
|
|
266
|
-
self.orders_table_sequence_column = orders_table_sequence_column
|
|
267
|
-
|
|
268
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
269
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
270
|
-
self.__aed_utils = AedUtils()
|
|
271
|
-
|
|
272
|
-
# Create argument information matrix to do parameter checking
|
|
273
|
-
self.__arg_info_matrix = []
|
|
274
|
-
self.__arg_info_matrix.append(["data", self.data, False, (DataFrame)])
|
|
275
|
-
self.__arg_info_matrix.append(["orders_table", self.orders_table, True, (DataFrame)])
|
|
276
|
-
self.__arg_info_matrix.append(["timestamp_columns", self.timestamp_columns, False, (str,list)])
|
|
277
|
-
self.__arg_info_matrix.append(["value_column", self.value_column, False, (str)])
|
|
278
|
-
self.__arg_info_matrix.append(["order", self.order, True, (str)])
|
|
279
|
-
self.__arg_info_matrix.append(["seasonal", self.seasonal, True, (str)])
|
|
280
|
-
self.__arg_info_matrix.append(["period", self.period, True, (int)])
|
|
281
|
-
self.__arg_info_matrix.append(["include_mean", self.include_mean, True, (bool)])
|
|
282
|
-
self.__arg_info_matrix.append(["partition_columns", self.partition_columns, True, (str,list)])
|
|
283
|
-
self.__arg_info_matrix.append(["max_iterations", self.max_iterations, True, (int)])
|
|
284
|
-
self.__arg_info_matrix.append(["method", self.method, True, (str)])
|
|
285
|
-
self.__arg_info_matrix.append(["include_drift", self.include_drift, True, (bool)])
|
|
286
|
-
self.__arg_info_matrix.append(["order_p", self.order_p, True, (int)])
|
|
287
|
-
self.__arg_info_matrix.append(["order_d", self.order_d, True, (int)])
|
|
288
|
-
self.__arg_info_matrix.append(["order_q", self.order_q, True, (int)])
|
|
289
|
-
self.__arg_info_matrix.append(["seasonal_order_p", self.seasonal_order_p, True, (int)])
|
|
290
|
-
self.__arg_info_matrix.append(["seasonal_order_d", self.seasonal_order_d, True, (int)])
|
|
291
|
-
self.__arg_info_matrix.append(["seasonal_order_q", self.seasonal_order_q, True, (int)])
|
|
292
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
293
|
-
self.__arg_info_matrix.append(["orders_table_sequence_column", self.orders_table_sequence_column, True, (str,list)])
|
|
294
|
-
|
|
295
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
296
|
-
# Perform the function validations
|
|
297
|
-
self.__validate()
|
|
298
|
-
# Generate the ML query
|
|
299
|
-
self.__form_tdml_query()
|
|
300
|
-
# Execute ML query
|
|
301
|
-
self.__execute()
|
|
302
|
-
# Get the prediction type
|
|
303
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
304
|
-
|
|
305
|
-
# End the timer to get the build time
|
|
306
|
-
_end_time = time.time()
|
|
307
|
-
|
|
308
|
-
# Calculate the build time
|
|
309
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
310
|
-
|
|
311
|
-
def __validate(self):
|
|
312
|
-
"""
|
|
313
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
314
|
-
arguments, input argument and table types. Also processes the
|
|
315
|
-
argument values.
|
|
316
|
-
"""
|
|
317
|
-
|
|
318
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
319
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
320
|
-
|
|
321
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
322
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
323
|
-
|
|
324
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
325
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
326
|
-
self.__awu._validate_input_table_datatype(self.orders_table, "orders_table", None)
|
|
327
|
-
|
|
328
|
-
# Check for permitted values
|
|
329
|
-
method_permitted_values = ["SSE", "ML"]
|
|
330
|
-
self.__awu._validate_permitted_values(self.method, method_permitted_values, "method")
|
|
331
|
-
|
|
332
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
333
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
334
|
-
self.__awu._validate_input_columns_not_empty(self.timestamp_columns, "timestamp_columns")
|
|
335
|
-
self.__awu._validate_dataframe_has_argument_columns(self.timestamp_columns, "timestamp_columns", self.data, "data", False)
|
|
336
|
-
|
|
337
|
-
self.__awu._validate_input_columns_not_empty(self.value_column, "value_column")
|
|
338
|
-
self.__awu._validate_dataframe_has_argument_columns(self.value_column, "value_column", self.data, "data", False)
|
|
339
|
-
|
|
340
|
-
self.__awu._validate_input_columns_not_empty(self.partition_columns, "partition_columns")
|
|
341
|
-
self.__awu._validate_dataframe_has_argument_columns(self.partition_columns, "partition_columns", self.data, "data", False)
|
|
342
|
-
|
|
343
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
344
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
345
|
-
|
|
346
|
-
self.__awu._validate_input_columns_not_empty(self.orders_table_sequence_column, "orders_table_sequence_column")
|
|
347
|
-
self.__awu._validate_dataframe_has_argument_columns(self.orders_table_sequence_column, "orders_table_sequence_column", self.orders_table, "orders_table", False)
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
def __form_tdml_query(self):
|
|
351
|
-
"""
|
|
352
|
-
Function to generate the analytical function queries. The function defines
|
|
353
|
-
variables and list of arguments required to form the query.
|
|
354
|
-
"""
|
|
355
|
-
# Generate temp table names for output table parameters if any.
|
|
356
|
-
self.__coefficient_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_arima0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
357
|
-
self.__residual_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_arima1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
358
|
-
|
|
359
|
-
# Output table arguments list
|
|
360
|
-
self.__func_output_args_sql_names = ["ModelTable", "ResidualTable"]
|
|
361
|
-
self.__func_output_args = [self.__coefficient_temp_tablename, self.__residual_table_temp_tablename]
|
|
362
|
-
|
|
363
|
-
# Model Cataloging related attributes.
|
|
364
|
-
self._sql_specific_attributes = {}
|
|
365
|
-
self._sql_formula_attribute_mapper = {}
|
|
366
|
-
self._target_column = None
|
|
367
|
-
self._algorithm_name = None
|
|
368
|
-
|
|
369
|
-
# Generate lists for rest of the function arguments
|
|
370
|
-
self.__func_other_arg_sql_names = []
|
|
371
|
-
self.__func_other_args = []
|
|
372
|
-
self.__func_other_arg_json_datatypes = []
|
|
373
|
-
|
|
374
|
-
self.__func_other_arg_sql_names.append("TimeColumns")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.timestamp_columns, "\""), "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
377
|
-
|
|
378
|
-
self.__func_other_arg_sql_names.append("TargetColumn")
|
|
379
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.value_column, "\""), "'"))
|
|
380
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
381
|
-
|
|
382
|
-
if self.partition_columns is not None:
|
|
383
|
-
self.__func_other_arg_sql_names.append("PartitionColumns")
|
|
384
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.partition_columns, "\""), "'"))
|
|
385
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
386
|
-
|
|
387
|
-
if self.order is not None:
|
|
388
|
-
self.__func_other_arg_sql_names.append("Orders")
|
|
389
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order, "'"))
|
|
390
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
391
|
-
|
|
392
|
-
if self.seasonal is not None:
|
|
393
|
-
self.__func_other_arg_sql_names.append("SeasonalOrders")
|
|
394
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal, "'"))
|
|
395
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
396
|
-
|
|
397
|
-
if self.period is not None:
|
|
398
|
-
self.__func_other_arg_sql_names.append("Period")
|
|
399
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.period, "'"))
|
|
400
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
401
|
-
|
|
402
|
-
if self.include_mean is not None and self.include_mean != False:
|
|
403
|
-
self.__func_other_arg_sql_names.append("IncludeMean")
|
|
404
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_mean, "'"))
|
|
405
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
406
|
-
|
|
407
|
-
if self.max_iterations is not None and self.max_iterations != 10000:
|
|
408
|
-
self.__func_other_arg_sql_names.append("MaxIterNum")
|
|
409
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_iterations, "'"))
|
|
410
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
411
|
-
|
|
412
|
-
if self.method is not None and self.method != "SSE":
|
|
413
|
-
self.__func_other_arg_sql_names.append("FitMethod")
|
|
414
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.method, "'"))
|
|
415
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
416
|
-
|
|
417
|
-
if self.include_drift is not None and self.include_drift != False:
|
|
418
|
-
self.__func_other_arg_sql_names.append("IncludeDrift")
|
|
419
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.include_drift, "'"))
|
|
420
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
421
|
-
|
|
422
|
-
if self.order_p is not None:
|
|
423
|
-
self.__func_other_arg_sql_names.append("OrderP")
|
|
424
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_p, "'"))
|
|
425
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
426
|
-
|
|
427
|
-
if self.order_d is not None:
|
|
428
|
-
self.__func_other_arg_sql_names.append("OrderD")
|
|
429
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_d, "'"))
|
|
430
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
431
|
-
|
|
432
|
-
if self.order_q is not None:
|
|
433
|
-
self.__func_other_arg_sql_names.append("OrderQ")
|
|
434
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.order_q, "'"))
|
|
435
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
436
|
-
|
|
437
|
-
if self.seasonal_order_p is not None:
|
|
438
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderP")
|
|
439
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_p, "'"))
|
|
440
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
441
|
-
|
|
442
|
-
if self.seasonal_order_d is not None:
|
|
443
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderD")
|
|
444
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_d, "'"))
|
|
445
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
446
|
-
|
|
447
|
-
if self.seasonal_order_q is not None:
|
|
448
|
-
self.__func_other_arg_sql_names.append("SeasonalOrderQ")
|
|
449
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.seasonal_order_q, "'"))
|
|
450
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
451
|
-
|
|
452
|
-
# Generate lists for rest of the function arguments
|
|
453
|
-
sequence_input_by_list = []
|
|
454
|
-
if self.data_sequence_column is not None:
|
|
455
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
456
|
-
|
|
457
|
-
if self.orders_table_sequence_column is not None:
|
|
458
|
-
sequence_input_by_list.append("OrdersTable:" + UtilFuncs._teradata_collapse_arglist(self.orders_table_sequence_column, ""))
|
|
459
|
-
|
|
460
|
-
if len(sequence_input_by_list) > 0:
|
|
461
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
462
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
463
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
464
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
465
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
# Declare empty lists to hold input table information.
|
|
469
|
-
self.__func_input_arg_sql_names = []
|
|
470
|
-
self.__func_input_table_view_query = []
|
|
471
|
-
self.__func_input_dataframe_type = []
|
|
472
|
-
self.__func_input_distribution = []
|
|
473
|
-
self.__func_input_partition_by_cols = []
|
|
474
|
-
self.__func_input_order_by_cols = []
|
|
475
|
-
|
|
476
|
-
# Process data
|
|
477
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
478
|
-
self.__func_input_distribution.append("NONE")
|
|
479
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
480
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
481
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
482
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
483
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
484
|
-
|
|
485
|
-
# Process orders_table
|
|
486
|
-
if self.orders_table is not None:
|
|
487
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.orders_table, False)
|
|
488
|
-
self.__func_input_distribution.append("NONE")
|
|
489
|
-
self.__func_input_arg_sql_names.append("OrdersTable")
|
|
490
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
491
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
492
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
493
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
494
|
-
|
|
495
|
-
function_name = "ARIMA"
|
|
496
|
-
# Create instance to generate SQLMR.
|
|
497
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
498
|
-
self.__func_input_arg_sql_names,
|
|
499
|
-
self.__func_input_table_view_query,
|
|
500
|
-
self.__func_input_dataframe_type,
|
|
501
|
-
self.__func_input_distribution,
|
|
502
|
-
self.__func_input_partition_by_cols,
|
|
503
|
-
self.__func_input_order_by_cols,
|
|
504
|
-
self.__func_other_arg_sql_names,
|
|
505
|
-
self.__func_other_args,
|
|
506
|
-
self.__func_other_arg_json_datatypes,
|
|
507
|
-
self.__func_output_args_sql_names,
|
|
508
|
-
self.__func_output_args,
|
|
509
|
-
engine="ENGINE_ML")
|
|
510
|
-
# Invoke call to SQL-MR generation.
|
|
511
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
512
|
-
|
|
513
|
-
# Print SQL-MR query if requested to do so.
|
|
514
|
-
if display.print_sqlmr_query:
|
|
515
|
-
print(self.sqlmr_query)
|
|
516
|
-
|
|
517
|
-
# Set the algorithm name for Model Cataloging.
|
|
518
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
519
|
-
|
|
520
|
-
def __execute(self):
|
|
521
|
-
"""
|
|
522
|
-
Function to execute SQL-MR queries.
|
|
523
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
524
|
-
"""
|
|
525
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
526
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
527
|
-
try:
|
|
528
|
-
# Generate the output.
|
|
529
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
530
|
-
except Exception as emsg:
|
|
531
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
532
|
-
|
|
533
|
-
# Update output table data frames.
|
|
534
|
-
self._mlresults = []
|
|
535
|
-
self.coefficient = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__coefficient_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__coefficient_temp_tablename))
|
|
536
|
-
self.residual_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__residual_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__residual_table_temp_tablename))
|
|
537
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
538
|
-
self._mlresults.append(self.coefficient)
|
|
539
|
-
self._mlresults.append(self.residual_table)
|
|
540
|
-
self._mlresults.append(self.output)
|
|
541
|
-
|
|
542
|
-
def show_query(self):
|
|
543
|
-
"""
|
|
544
|
-
Function to return the underlying SQL query.
|
|
545
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
546
|
-
"""
|
|
547
|
-
return self.sqlmr_query
|
|
548
|
-
|
|
549
|
-
def get_prediction_type(self):
|
|
550
|
-
"""
|
|
551
|
-
Function to return the Prediction type of the algorithm.
|
|
552
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
553
|
-
as saved in the Model Catalog.
|
|
554
|
-
"""
|
|
555
|
-
return self._prediction_type
|
|
556
|
-
|
|
557
|
-
def get_target_column(self):
|
|
558
|
-
"""
|
|
559
|
-
Function to return the Target Column of the algorithm.
|
|
560
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
561
|
-
as saved in the Model Catalog.
|
|
562
|
-
"""
|
|
563
|
-
return self._target_column
|
|
564
|
-
|
|
565
|
-
def get_build_time(self):
|
|
566
|
-
"""
|
|
567
|
-
Function to return the build time of the algorithm in seconds.
|
|
568
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
569
|
-
as saved in the Model Catalog.
|
|
570
|
-
"""
|
|
571
|
-
return self._build_time
|
|
572
|
-
|
|
573
|
-
def _get_algorithm_name(self):
|
|
574
|
-
"""
|
|
575
|
-
Function to return the name of the algorithm.
|
|
576
|
-
"""
|
|
577
|
-
return self._algorithm_name
|
|
578
|
-
|
|
579
|
-
def _get_sql_specific_attributes(self):
|
|
580
|
-
"""
|
|
581
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
582
|
-
"""
|
|
583
|
-
return self._sql_specific_attributes
|
|
584
|
-
|
|
585
|
-
@classmethod
|
|
586
|
-
def _from_model_catalog(cls,
|
|
587
|
-
coefficient = None,
|
|
588
|
-
residual_table = None,
|
|
589
|
-
output = None,
|
|
590
|
-
**kwargs):
|
|
591
|
-
"""
|
|
592
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
593
|
-
"""
|
|
594
|
-
kwargs.pop("coefficient", None)
|
|
595
|
-
kwargs.pop("residual_table", None)
|
|
596
|
-
kwargs.pop("output", None)
|
|
597
|
-
|
|
598
|
-
# Model Cataloging related attributes.
|
|
599
|
-
target_column = kwargs.pop("__target_column", None)
|
|
600
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
601
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
602
|
-
build_time = kwargs.pop("__build_time", None)
|
|
603
|
-
|
|
604
|
-
# Let's create an object of this class.
|
|
605
|
-
obj = cls(**kwargs)
|
|
606
|
-
obj.coefficient = coefficient
|
|
607
|
-
obj.residual_table = residual_table
|
|
608
|
-
obj.output = output
|
|
609
|
-
|
|
610
|
-
# Initialize the sqlmr_query class attribute.
|
|
611
|
-
obj.sqlmr_query = None
|
|
612
|
-
|
|
613
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
614
|
-
obj._sql_specific_attributes = None
|
|
615
|
-
obj._target_column = target_column
|
|
616
|
-
obj._prediction_type = prediction_type
|
|
617
|
-
obj._algorithm_name = algorithm_name
|
|
618
|
-
obj._build_time = build_time
|
|
619
|
-
|
|
620
|
-
# Update output table data frames.
|
|
621
|
-
obj._mlresults = []
|
|
622
|
-
obj.coefficient = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.coefficient), source_type="table", database_name=UtilFuncs._extract_db_name(obj.coefficient))
|
|
623
|
-
obj.residual_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.residual_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.residual_table))
|
|
624
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
625
|
-
obj._mlresults.append(obj.coefficient)
|
|
626
|
-
obj._mlresults.append(obj.residual_table)
|
|
627
|
-
obj._mlresults.append(obj.output)
|
|
628
|
-
return obj
|
|
629
|
-
|
|
630
|
-
def __repr__(self):
|
|
631
|
-
"""
|
|
632
|
-
Returns the string representation for a Arima class instance.
|
|
633
|
-
"""
|
|
634
|
-
repr_string="############ STDOUT Output ############"
|
|
635
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
636
|
-
repr_string="{}\n\n\n############ coefficient Output ############".format(repr_string)
|
|
637
|
-
repr_string = "{}\n\n{}".format(repr_string,self.coefficient)
|
|
638
|
-
repr_string="{}\n\n\n############ residual_table Output ############".format(repr_string)
|
|
639
|
-
repr_string = "{}\n\n{}".format(repr_string,self.residual_table)
|
|
640
|
-
return repr_string
|
|
641
|
-
|