teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,945 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.9
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class HMMDecoder:
31
-
32
- def __init__(self,
33
- init_state_prob = None,
34
- state_transition_prob = None,
35
- emission_prob = None,
36
- observation = None,
37
- state_model_key = None,
38
- state_key = None,
39
- state_prob_key = None,
40
- trans_model_key = None,
41
- trans_from_key = None,
42
- trans_to_key = None,
43
- trans_prob_key = None,
44
- emit_model_key = None,
45
- emit_state_key = None,
46
- emit_observed_key = None,
47
- emit_prob_key = None,
48
- model_key = None,
49
- sequence_key = None,
50
- observed_key = None,
51
- sequence_max_size = 2147483647,
52
- skip_key = None,
53
- accumulate = None,
54
- observation_sequence_column = None,
55
- init_state_prob_sequence_column = None,
56
- state_transition_prob_sequence_column = None,
57
- emission_prob_sequence_column = None,
58
- observation_partition_column = None,
59
- init_state_prob_partition_column = None,
60
- state_transition_prob_partition_column = None,
61
- emission_prob_partition_column = None,
62
- observation_order_column = None,
63
- init_state_prob_order_column = None,
64
- state_transition_prob_order_column = None,
65
- emission_prob_order_column = None):
66
- """
67
- DESCRIPTION:
68
- The HMMDecoder function finds the state sequence with the highest
69
- probability, given the learned model and observed sequences.
70
-
71
-
72
- PARAMETERS:
73
- init_state_prob:
74
- Required Argument.
75
- Specifies the teradataml DataFrame representing the initial state table.
76
-
77
- init_state_prob_partition_column:
78
- Required Argument.
79
- Specifies Partition By columns for init_state_prob.
80
- Values to this argument can be provided as list, if multiple columns
81
- are used for partition.
82
- Types: str OR list of Strings (str)
83
-
84
- init_state_prob_order_column:
85
- Optional Argument.
86
- Specifies Order By columns for init_state_prob.
87
- Values to this argument can be provided as a list, if multiple
88
- columns are used for ordering.
89
- Types: str OR list of Strings (str)
90
-
91
- state_transition_prob:
92
- Required Argument.
93
- Specifies the teradataml DataFrame representing the state transition table.
94
-
95
- state_transition_prob_partition_column:
96
- Required Argument.
97
- Specifies Partition By columns for state_transition_prob.
98
- Values to this argument can be provided as list, if multiple columns
99
- are used for partition.
100
- Types: str OR list of Strings (str)
101
-
102
- state_transition_prob_order_column:
103
- Optional Argument.
104
- Specifies Order By columns for state_transition_prob.
105
- Values to this argument can be provided as a list, if multiple
106
- columns are used for ordering.
107
- Types: str OR list of Strings (str)
108
-
109
- emission_prob:
110
- Required Argument.
111
- Specifies the teradataml DataFrame representing the emission probability table.
112
-
113
- emission_prob_partition_column:
114
- Required Argument.
115
- Specifies Partition By columns for emission_prob.
116
- Values to this argument can be provided as list, if multiple columns
117
- are used for partition.
118
- Types: str OR list of Strings (str)
119
-
120
- emission_prob_order_column:
121
- Optional Argument.
122
- Specifies Order By columns for emission_prob.
123
- Values to this argument can be provided as a list, if multiple
124
- columns are used for ordering.
125
- Types: str OR list of Strings (str)
126
-
127
- observation:
128
- Required Argument.
129
- Specifies the teradataml DataFrame representing the observation table for which
130
- the probabilities of sequences are to be found.
131
-
132
- observation_partition_column:
133
- Required Argument.
134
- Specifies Partition By columns for observation.
135
- Values to this argument can be provided as list, if multiple columns
136
- are used for partition.
137
- Types: str OR list of Strings (str)
138
-
139
- observation_order_column:
140
- Required Argument.
141
- Specifies Order By columns for observation.
142
- Values to this argument can be provided as list, if multiple columns
143
- are used for ordering.
144
- Types: str OR list of Strings (str)
145
-
146
- state_model_key:
147
- Required Argument.
148
- Specifies the name of the model attribute column in the init_state_prob table.
149
- Types: str OR list of Strings (str)
150
-
151
- state_key:
152
- Required Argument.
153
- Specifies the name of the state attribute column in the init_state_prob table.
154
- Types: str OR list of Strings (str)
155
-
156
- state_prob_key:
157
- Required Argument.
158
- Specifies the name of the initial probability column in the init_state_prob
159
- table.
160
- Types: str OR list of Strings (str)
161
-
162
- trans_model_key:
163
- Required Argument.
164
- Specifies the name of the model attribute column in the state_transition_prob
165
- table.
166
- Types: str OR list of Strings (str)
167
-
168
- trans_from_key:
169
- Required Argument.
170
- Specifies the name of the source of the state transition column in the
171
- state_transition_prob table.
172
- Types: str OR list of Strings (str)
173
-
174
- trans_to_key:
175
- Required Argument.
176
- Specifies the name of the target of the state transition column in the
177
- state_transition_prob table.
178
- Types: str OR list of Strings (str)
179
-
180
- trans_prob_key:
181
- Required Argument.
182
- Specifies the name of the state transition probability column in the
183
- state_transition_prob table.
184
- Types: str OR list of Strings (str)
185
-
186
- emit_model_key:
187
- Required Argument.
188
- Specifies the name of the model attribute column in the emission_prob table.
189
- Types: str OR list of Strings (str)
190
-
191
- emit_state_key:
192
- Required Argument.
193
- Specifies the name of the state attribute in the emission_prob table.
194
- Types: str OR list of Strings (str)
195
-
196
- emit_observed_key:
197
- Required Argument.
198
- Specifies the name of the observation attribute column in the emission_prob
199
- table.
200
- Types: str OR list of Strings (str)
201
-
202
- emit_prob_key:
203
- Required Argument.
204
- Specifies the name of the emission probability in the emission_prob table.
205
- Types: str OR list of Strings (str)
206
-
207
- model_key:
208
- Required Argument.
209
- Specifies the name of the column that contains the model attribute. If you
210
- specify this argument, then model_attribute must match a model_key in
211
- the observation_partition_column.
212
- Types: str
213
-
214
- sequence_key:
215
- Required Argument.
216
- Specifies the name of the column that contains the sequence attribute. The
217
- sequence_attribute must be a sequence attribute in the
218
- observation_partition_column.
219
- Types: str
220
-
221
- observed_key:
222
- Required Argument.
223
- Specifies the name of the column that contains the observed symbols.
224
- Note: Observed symbols are case-sensitive.
225
- Types: str
226
-
227
- sequence_max_size:
228
- Optional Argument.
229
- Specifies the maximum length, in rows, of a sequence in the observation table.
230
- Default Value: 2147483647
231
- Types: int
232
-
233
- skip_key:
234
- Optional Argument.
235
- Specifies the name of the column whose values determine whether the function
236
- skips the row. The function skips the row if the value is "true",
237
- "yes", "y", or "1". The function does not skip the row if the value
238
- is "false", "f", "no", "n", "0", or None.
239
- Types: str
240
-
241
- accumulate:
242
- Optional Argument.
243
- Specifies the names of the columns in input_table that the function
244
- copies to the output table.
245
- Types: str OR list of Strings (str)
246
-
247
- observation_sequence_column:
248
- Optional Argument.
249
- Specifies the list of column(s) that uniquely identifies each row of
250
- the input argument "observation". The argument is used to ensure
251
- deterministic results for functions which produce results that vary
252
- from run to run.
253
- Types: str OR list of Strings (str)
254
-
255
- init_state_prob_sequence_column:
256
- Optional Argument.
257
- Specifies the list of column(s) that uniquely identifies each row of
258
- the input argument "init_state_prob". The argument is used to ensure
259
- deterministic results for functions which produce results that vary
260
- from run to run.
261
- Types: str OR list of Strings (str)
262
-
263
- state_transition_prob_sequence_column:
264
- Optional Argument.
265
- Specifies the list of column(s) that uniquely identifies each row of
266
- the input argument "state_transition_prob". The argument is used to
267
- ensure deterministic results for functions which produce results that
268
- vary from run to run.
269
- Types: str OR list of Strings (str)
270
-
271
- emission_prob_sequence_column:
272
- Optional Argument.
273
- Specifies the list of column(s) that uniquely identifies each row of
274
- the input argument "emission_prob". The argument is used to ensure
275
- deterministic results for functions which produce results that vary
276
- from run to run.
277
- Types: str OR list of Strings (str)
278
-
279
- RETURNS:
280
- Instance of HMMDecoder.
281
- Output teradataml DataFrames can be accessed using attribute
282
- references, such as HMMDecoderObj.<attribute_name>.
283
- Output teradataml DataFrame attribute name is:
284
- result
285
-
286
-
287
- RAISES:
288
- TeradataMlException
289
-
290
-
291
- EXAMPLES:
292
- # Load example data.
293
- load_example_data("hmmunsupervised", "loan_prediction")
294
- load_example_data("hmmsupervised", "customer_loyalty")
295
-
296
- # Example 1 - This example uses loan status updates to build a Unupservised HMM
297
- # model and then predict loan defaults.
298
- load_example_data("hmmdecoder", "test_loan_prediction")
299
- loan_prediction = DataFrame.from_table("loan_prediction")
300
- HMMUnsupervised_out = HMMUnsupervised(vertices = loan_prediction,
301
- vertices_partition_column = ["model_id", "seq_id"],
302
- vertices_order_column = ["seq_vertex_id"],
303
- model_key = "model_id",
304
- sequence_key = "seq_id",
305
- observed_key = "observed_id",
306
- hidden_states_num = 3
307
- )
308
-
309
- test_loan_prediction = DataFrame.from_table("test_loan_prediction")
310
- HMMDecoder_out1 = HMMDecoder(init_state_prob = HMMUnsupervised_out.output_initialstate_table,
311
- init_state_prob_partition_column = ["model_id"],
312
- state_transition_prob = HMMUnsupervised_out.output_statetransition_table,
313
- state_transition_prob_partition_column = ["model_id"],
314
- emission_prob = HMMUnsupervised_out.output_emission_table,
315
- emission_prob_partition_column = ["model_id"],
316
- observation = test_loan_prediction,
317
- observation_partition_column = ["model_id"],
318
- observation_order_column = ["model_id", "seq_id", "seq_vertex_id"],
319
- state_model_key = ["model_id"],
320
- state_key = ["state"],
321
- state_prob_key = ["probability"],
322
- trans_model_key = ["model_id"],
323
- trans_from_key = ["from_state"],
324
- trans_to_key = ["to_state"],
325
- trans_prob_key = ["probability"],
326
- emit_model_key = ["model_id"],
327
- emit_state_key = ["state"],
328
- emit_observed_key = ["observed"],
329
- emit_prob_key = ["probability"],
330
- model_key = "model_id",
331
- sequence_key = "seq_id",
332
- observed_key = "observed_id",
333
- accumulate = ["seq_vertex_id"]
334
- )
335
- # Print the results.
336
- print(HMMDecoder_out1)
337
-
338
- # Example 2 - This example uses the output of a HMM Supervised model with the input
339
- # to determine the loyalty levels of customers from the new sequence of purchases.
340
- load_example_data("hmmdecoder", "customer_loyalty_newseq")
341
- customer_loyalty = DataFrame.from_table("customer_loyalty")
342
-
343
- HMMSupervised_out = HMMSupervised(vertices = customer_loyalty,
344
- vertices_partition_column = ["user_id", "seq_id"],
345
- vertices_order_column = ["user_id", "seq_id", "purchase_date"],
346
- model_key = "user_id",
347
- sequence_key = "seq_id",
348
- observed_key = "observation",
349
- state_key = "loyalty_level"
350
- )
351
-
352
- customer_loyalty_newseq = DataFrame.from_table("customer_loyalty_newseq")
353
-
354
- HMMDecoder_out2 = HMMDecoder(init_state_prob = HMMSupervised_out.output_initialstate_table,
355
- init_state_prob_partition_column = ["user_id"],
356
- state_transition_prob = HMMSupervised_out.output_statetransition_table,
357
- state_transition_prob_partition_column = ["user_id"],
358
- emission_prob = HMMSupervised_out.output_emission_table,
359
- emission_prob_partition_column = ["user_id"],
360
- observation = customer_loyalty_newseq,
361
- observation_partition_column = ["user_id"],
362
- observation_order_column = ["user_id", "seq_id", "purchase_date"],
363
- state_model_key = ["user_id"],
364
- state_key = ["state"],
365
- state_prob_key = ["probability"],
366
- trans_model_key = ["user_id"],
367
- trans_from_key = ["from_state"],
368
- trans_to_key = ["to_state"],
369
- trans_prob_key = ["probability"],
370
- emit_model_key = ["user_id"],
371
- emit_state_key = ["state"],
372
- emit_observed_key = ["observed"],
373
- emit_prob_key = ["probability"],
374
- model_key = "user_id",
375
- sequence_key = "seq_id",
376
- observed_key = "observation",
377
- accumulate = ["purchase_date"]
378
- )
379
- # Print the results.
380
- print(HMMDecoder_out2)
381
-
382
- # Example 3 - Part of Speech Tagging example
383
- load_example_data("hmmdecoder", ["initial", "state_transition", "emission", "phrases"])
384
- initial = DataFrame.from_table("initial")
385
- state_transition = DataFrame.from_table("state_transition")
386
- emission = DataFrame.from_table("emission")
387
- phrases = DataFrame.from_table("phrases")
388
-
389
- HMMDecoder_out3 = HMMDecoder(init_state_prob = initial,
390
- init_state_prob_partition_column = ["model"],
391
- state_transition_prob = state_transition,
392
- state_transition_prob_partition_column = ["model"],
393
- emission_prob = emission,
394
- emission_prob_partition_column = ["model"],
395
- observation = phrases,
396
- observation_partition_column = ["model"],
397
- observation_order_column = ["model", "phrase_id"],
398
- state_model_key = ["model"],
399
- state_key = ["tag"],
400
- state_prob_key = ["probability"],
401
- trans_model_key = ["model"],
402
- trans_from_key = ["from_tag"],
403
- trans_to_key = ["to_tag"],
404
- trans_prob_key = ["probability"],
405
- emit_model_key = ["model"],
406
- emit_state_key = ["tag"],
407
- emit_observed_key = ["word"],
408
- emit_prob_key = ["probability"],
409
- model_key = "model",
410
- sequence_key = "phrase_id",
411
- observed_key = "word"
412
- )
413
-
414
- # Print the results.
415
- print(HMMDecoder_out3)
416
-
417
- # Example 4 - This example uses HMMDecoder to find the propensity of customer churn,
418
- # given the actions or transactions of a bank customer.
419
- load_example_data("hmmdecoder", ["churn_initial", "churn_state_transition", "churn_emission", "churn_data"])
420
- churn_initial = DataFrame.from_table("churn_initial")
421
- churn_state_transition = DataFrame.from_table("churn_state_transition")
422
- churn_emission = DataFrame.from_table("churn_emission")
423
- churn_data = DataFrame.from_table("churn_data")
424
-
425
- HMMDecoder_out4 = HMMDecoder(init_state_prob = churn_initial,
426
- init_state_prob_partition_column = ["model"],
427
- state_transition_prob = churn_state_transition,
428
- state_transition_prob_partition_column = ["model"],
429
- emission_prob = churn_emission,
430
- emission_prob_partition_column = ["model"],
431
- observation = churn_data,
432
- observation_partition_column = ["model"],
433
- observation_order_column = ["model","id", "path_id"],
434
- state_model_key = ["model"],
435
- state_key = ["tag"],
436
- state_prob_key = ["probability"],
437
- trans_model_key = ["model"],
438
- trans_from_key = ["from_tag"],
439
- trans_to_key = ["to_tag"],
440
- trans_prob_key = ["probability"],
441
- emit_model_key = ["model"],
442
- emit_state_key = ["state"],
443
- emit_observed_key = ["observed"],
444
- emit_prob_key = ["probability"],
445
- model_key = "model",
446
- sequence_key = "id",
447
- observed_key = "action",
448
- accumulate = ["path_id"]
449
- )
450
-
451
- # Print the results.
452
- print(HMMDecoder_out4)
453
-
454
- """
455
-
456
- # Start the timer to get the build time
457
- _start_time = time.time()
458
-
459
- self.init_state_prob = init_state_prob
460
- self.state_transition_prob = state_transition_prob
461
- self.emission_prob = emission_prob
462
- self.observation = observation
463
- self.state_model_key = state_model_key
464
- self.state_key = state_key
465
- self.state_prob_key = state_prob_key
466
- self.trans_model_key = trans_model_key
467
- self.trans_from_key = trans_from_key
468
- self.trans_to_key = trans_to_key
469
- self.trans_prob_key = trans_prob_key
470
- self.emit_model_key = emit_model_key
471
- self.emit_state_key = emit_state_key
472
- self.emit_observed_key = emit_observed_key
473
- self.emit_prob_key = emit_prob_key
474
- self.model_key = model_key
475
- self.sequence_key = sequence_key
476
- self.observed_key = observed_key
477
- self.sequence_max_size = sequence_max_size
478
- self.skip_key = skip_key
479
- self.accumulate = accumulate
480
- self.observation_sequence_column = observation_sequence_column
481
- self.init_state_prob_sequence_column = init_state_prob_sequence_column
482
- self.state_transition_prob_sequence_column = state_transition_prob_sequence_column
483
- self.emission_prob_sequence_column = emission_prob_sequence_column
484
- self.observation_partition_column = observation_partition_column
485
- self.init_state_prob_partition_column = init_state_prob_partition_column
486
- self.state_transition_prob_partition_column = state_transition_prob_partition_column
487
- self.emission_prob_partition_column = emission_prob_partition_column
488
- self.observation_order_column = observation_order_column
489
- self.init_state_prob_order_column = init_state_prob_order_column
490
- self.state_transition_prob_order_column = state_transition_prob_order_column
491
- self.emission_prob_order_column = emission_prob_order_column
492
-
493
- # Create TeradataPyWrapperUtils instance which contains validation functions.
494
- self.__awu = AnalyticsWrapperUtils()
495
- self.__aed_utils = AedUtils()
496
-
497
- # Create argument information matrix to do parameter checking
498
- self.__arg_info_matrix = []
499
- self.__arg_info_matrix.append(["init_state_prob", self.init_state_prob, False, (DataFrame)])
500
- self.__arg_info_matrix.append(["init_state_prob_partition_column", self.init_state_prob_partition_column, False, (str,list)])
501
- self.__arg_info_matrix.append(["init_state_prob_order_column", self.init_state_prob_order_column, True, (str,list)])
502
- self.__arg_info_matrix.append(["state_transition_prob", self.state_transition_prob, False, (DataFrame)])
503
- self.__arg_info_matrix.append(["state_transition_prob_partition_column", self.state_transition_prob_partition_column, False, (str,list)])
504
- self.__arg_info_matrix.append(["state_transition_prob_order_column", self.state_transition_prob_order_column, True, (str,list)])
505
- self.__arg_info_matrix.append(["emission_prob", self.emission_prob, False, (DataFrame)])
506
- self.__arg_info_matrix.append(["emission_prob_partition_column", self.emission_prob_partition_column, False, (str,list)])
507
- self.__arg_info_matrix.append(["emission_prob_order_column", self.emission_prob_order_column, True, (str,list)])
508
- self.__arg_info_matrix.append(["observation", self.observation, False, (DataFrame)])
509
- self.__arg_info_matrix.append(["observation_partition_column", self.observation_partition_column, False, (str,list)])
510
- self.__arg_info_matrix.append(["observation_order_column", self.observation_order_column, False, (str,list)])
511
- self.__arg_info_matrix.append(["state_model_key", self.state_model_key, False, (str,list)])
512
- self.__arg_info_matrix.append(["state_key", self.state_key, False, (str,list)])
513
- self.__arg_info_matrix.append(["state_prob_key", self.state_prob_key, False, (str,list)])
514
- self.__arg_info_matrix.append(["trans_model_key", self.trans_model_key, False, (str,list)])
515
- self.__arg_info_matrix.append(["trans_from_key", self.trans_from_key, False, (str,list)])
516
- self.__arg_info_matrix.append(["trans_to_key", self.trans_to_key, False, (str,list)])
517
- self.__arg_info_matrix.append(["trans_prob_key", self.trans_prob_key, False, (str,list)])
518
- self.__arg_info_matrix.append(["emit_model_key", self.emit_model_key, False, (str,list)])
519
- self.__arg_info_matrix.append(["emit_state_key", self.emit_state_key, False, (str,list)])
520
- self.__arg_info_matrix.append(["emit_observed_key", self.emit_observed_key, False, (str,list)])
521
- self.__arg_info_matrix.append(["emit_prob_key", self.emit_prob_key, False, (str,list)])
522
- self.__arg_info_matrix.append(["model_key", self.model_key, False, (str)])
523
- self.__arg_info_matrix.append(["sequence_key", self.sequence_key, False, (str)])
524
- self.__arg_info_matrix.append(["observed_key", self.observed_key, False, (str)])
525
- self.__arg_info_matrix.append(["sequence_max_size", self.sequence_max_size, True, (int)])
526
- self.__arg_info_matrix.append(["skip_key", self.skip_key, True, (str)])
527
- self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
528
- self.__arg_info_matrix.append(["observation_sequence_column", self.observation_sequence_column, True, (str,list)])
529
- self.__arg_info_matrix.append(["init_state_prob_sequence_column", self.init_state_prob_sequence_column, True, (str,list)])
530
- self.__arg_info_matrix.append(["state_transition_prob_sequence_column", self.state_transition_prob_sequence_column, True, (str,list)])
531
- self.__arg_info_matrix.append(["emission_prob_sequence_column", self.emission_prob_sequence_column, True, (str,list)])
532
-
533
- if inspect.stack()[1][3] != '_from_model_catalog':
534
- # Perform the function validations
535
- self.__validate()
536
- # Generate the ML query
537
- self.__form_tdml_query()
538
- # Execute ML query
539
- self.__execute()
540
- # Get the prediction type
541
- self._prediction_type = self.__awu._get_function_prediction_type(self)
542
-
543
- # End the timer to get the build time
544
- _end_time = time.time()
545
-
546
- # Calculate the build time
547
- self._build_time = (int)(_end_time - _start_time)
548
-
549
- def __validate(self):
550
- """
551
- Function to validate sqlmr function arguments, which verifies missing
552
- arguments, input argument and table types. Also processes the
553
- argument values.
554
- """
555
-
556
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
557
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
558
-
559
- # Make sure that a non-NULL value has been supplied correct type of argument
560
- self.__awu._validate_argument_types(self.__arg_info_matrix)
561
-
562
- # Check to make sure input table types are strings or data frame objects or of valid type.
563
- self.__awu._validate_input_table_datatype(self.observation, "observation", None)
564
- self.__awu._validate_input_table_datatype(self.init_state_prob, "init_state_prob", None)
565
- self.__awu._validate_input_table_datatype(self.state_transition_prob, "state_transition_prob", None)
566
- self.__awu._validate_input_table_datatype(self.emission_prob, "emission_prob", None)
567
-
568
- # Check whether the input columns passed to the argument are not empty.
569
- # Also check whether the input columns passed to the argument valid or not.
570
- self.__awu._validate_input_columns_not_empty(self.state_model_key, "state_model_key")
571
- self.__awu._validate_dataframe_has_argument_columns(self.state_model_key, "state_model_key", self.init_state_prob, "init_state_prob", False)
572
-
573
- self.__awu._validate_input_columns_not_empty(self.state_key, "state_key")
574
- self.__awu._validate_dataframe_has_argument_columns(self.state_key, "state_key", self.init_state_prob, "init_state_prob", False)
575
-
576
- self.__awu._validate_input_columns_not_empty(self.state_prob_key, "state_prob_key")
577
- self.__awu._validate_dataframe_has_argument_columns(self.state_prob_key, "state_prob_key", self.init_state_prob, "init_state_prob", False)
578
-
579
- self.__awu._validate_input_columns_not_empty(self.trans_model_key, "trans_model_key")
580
- self.__awu._validate_dataframe_has_argument_columns(self.trans_model_key, "trans_model_key", self.state_transition_prob, "state_transition_prob", False)
581
-
582
- self.__awu._validate_input_columns_not_empty(self.trans_from_key, "trans_from_key")
583
- self.__awu._validate_dataframe_has_argument_columns(self.trans_from_key, "trans_from_key", self.state_transition_prob, "state_transition_prob", False)
584
-
585
- self.__awu._validate_input_columns_not_empty(self.trans_to_key, "trans_to_key")
586
- self.__awu._validate_dataframe_has_argument_columns(self.trans_to_key, "trans_to_key", self.state_transition_prob, "state_transition_prob", False)
587
-
588
- self.__awu._validate_input_columns_not_empty(self.trans_prob_key, "trans_prob_key")
589
- self.__awu._validate_dataframe_has_argument_columns(self.trans_prob_key, "trans_prob_key", self.state_transition_prob, "state_transition_prob", False)
590
-
591
- self.__awu._validate_input_columns_not_empty(self.emit_model_key, "emit_model_key")
592
- self.__awu._validate_dataframe_has_argument_columns(self.emit_model_key, "emit_model_key", self.emission_prob, "emission_prob", False)
593
-
594
- self.__awu._validate_input_columns_not_empty(self.emit_state_key, "emit_state_key")
595
- self.__awu._validate_dataframe_has_argument_columns(self.emit_state_key, "emit_state_key", self.emission_prob, "emission_prob", False)
596
-
597
- self.__awu._validate_input_columns_not_empty(self.emit_observed_key, "emit_observed_key")
598
- self.__awu._validate_dataframe_has_argument_columns(self.emit_observed_key, "emit_observed_key", self.emission_prob, "emission_prob", False)
599
-
600
- self.__awu._validate_input_columns_not_empty(self.emit_prob_key, "emit_prob_key")
601
- self.__awu._validate_dataframe_has_argument_columns(self.emit_prob_key, "emit_prob_key", self.emission_prob, "emission_prob", False)
602
-
603
- self.__awu._validate_input_columns_not_empty(self.model_key, "model_key")
604
- self.__awu._validate_dataframe_has_argument_columns(self.model_key, "model_key", self.observation, "observation", False)
605
-
606
- self.__awu._validate_input_columns_not_empty(self.sequence_key, "sequence_key")
607
- self.__awu._validate_dataframe_has_argument_columns(self.sequence_key, "sequence_key", self.observation, "observation", False)
608
-
609
- self.__awu._validate_input_columns_not_empty(self.observed_key, "observed_key")
610
- self.__awu._validate_dataframe_has_argument_columns(self.observed_key, "observed_key", self.observation, "observation", False)
611
-
612
- self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
613
- self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.observation, "observation", False)
614
-
615
- self.__awu._validate_input_columns_not_empty(self.skip_key, "skip_key")
616
- self.__awu._validate_dataframe_has_argument_columns(self.skip_key, "skip_key", self.observation, "observation", False)
617
-
618
- self.__awu._validate_input_columns_not_empty(self.observation_sequence_column, "observation_sequence_column")
619
- self.__awu._validate_dataframe_has_argument_columns(self.observation_sequence_column, "observation_sequence_column", self.observation, "observation", False)
620
-
621
- self.__awu._validate_input_columns_not_empty(self.init_state_prob_sequence_column, "init_state_prob_sequence_column")
622
- self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_sequence_column, "init_state_prob_sequence_column", self.init_state_prob, "init_state_prob", False)
623
-
624
- self.__awu._validate_input_columns_not_empty(self.state_transition_prob_sequence_column, "state_transition_prob_sequence_column")
625
- self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_sequence_column, "state_transition_prob_sequence_column", self.state_transition_prob, "state_transition_prob", False)
626
-
627
- self.__awu._validate_input_columns_not_empty(self.emission_prob_sequence_column, "emission_prob_sequence_column")
628
- self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_sequence_column, "emission_prob_sequence_column", self.emission_prob, "emission_prob", False)
629
-
630
- self.__awu._validate_input_columns_not_empty(self.observation_partition_column, "observation_partition_column")
631
- self.__awu._validate_dataframe_has_argument_columns(self.observation_partition_column, "observation_partition_column", self.observation, "observation", True)
632
-
633
- self.__awu._validate_input_columns_not_empty(self.init_state_prob_partition_column, "init_state_prob_partition_column")
634
- self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_partition_column, "init_state_prob_partition_column", self.init_state_prob, "init_state_prob", True)
635
-
636
- self.__awu._validate_input_columns_not_empty(self.state_transition_prob_partition_column, "state_transition_prob_partition_column")
637
- self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_partition_column, "state_transition_prob_partition_column", self.state_transition_prob, "state_transition_prob", True)
638
-
639
- self.__awu._validate_input_columns_not_empty(self.emission_prob_partition_column, "emission_prob_partition_column")
640
- self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_partition_column, "emission_prob_partition_column", self.emission_prob, "emission_prob", True)
641
-
642
- self.__awu._validate_input_columns_not_empty(self.observation_order_column, "observation_order_column")
643
- self.__awu._validate_dataframe_has_argument_columns(self.observation_order_column, "observation_order_column", self.observation, "observation", False)
644
-
645
- self.__awu._validate_input_columns_not_empty(self.init_state_prob_order_column, "init_state_prob_order_column")
646
- self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_order_column, "init_state_prob_order_column", self.init_state_prob, "init_state_prob", False)
647
-
648
- self.__awu._validate_input_columns_not_empty(self.state_transition_prob_order_column, "state_transition_prob_order_column")
649
- self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_order_column, "state_transition_prob_order_column", self.state_transition_prob, "state_transition_prob", False)
650
-
651
- self.__awu._validate_input_columns_not_empty(self.emission_prob_order_column, "emission_prob_order_column")
652
- self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_order_column, "emission_prob_order_column", self.emission_prob, "emission_prob", False)
653
-
654
-
655
- def __form_tdml_query(self):
656
- """
657
- Function to generate the analytical function queries. The function defines
658
- variables and list of arguments required to form the query.
659
- """
660
-
661
- # Output table arguments list
662
- self.__func_output_args_sql_names = []
663
- self.__func_output_args = []
664
-
665
- # Model Cataloging related attributes.
666
- self._sql_specific_attributes = {}
667
- self._sql_formula_attribute_mapper = {}
668
- self._target_column = None
669
- self._algorithm_name = None
670
-
671
- # Generate lists for rest of the function arguments
672
- self.__func_other_arg_sql_names = []
673
- self.__func_other_args = []
674
- self.__func_other_arg_json_datatypes = []
675
-
676
- self.__func_other_arg_sql_names.append("InitStateModelColumn")
677
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_model_key, "\""), "'"))
678
- self.__func_other_arg_json_datatypes.append("COLUMNS")
679
-
680
- self.__func_other_arg_sql_names.append("InitStateColumn")
681
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_key, "\""), "'"))
682
- self.__func_other_arg_json_datatypes.append("COLUMNS")
683
-
684
- self.__func_other_arg_sql_names.append("InitStateProbColumn")
685
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_prob_key, "\""), "'"))
686
- self.__func_other_arg_json_datatypes.append("COLUMNS")
687
-
688
- self.__func_other_arg_sql_names.append("TransAttributeColumn")
689
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_model_key, "\""), "'"))
690
- self.__func_other_arg_json_datatypes.append("COLUMNS")
691
-
692
- self.__func_other_arg_sql_names.append("TransFromStateColumn")
693
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_from_key, "\""), "'"))
694
- self.__func_other_arg_json_datatypes.append("COLUMNS")
695
-
696
- self.__func_other_arg_sql_names.append("TransToStateColumn")
697
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_to_key, "\""), "'"))
698
- self.__func_other_arg_json_datatypes.append("COLUMNS")
699
-
700
- self.__func_other_arg_sql_names.append("TransProbColumn")
701
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_prob_key, "\""), "'"))
702
- self.__func_other_arg_json_datatypes.append("COLUMNS")
703
-
704
- self.__func_other_arg_sql_names.append("EmitModelColumn")
705
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_model_key, "\""), "'"))
706
- self.__func_other_arg_json_datatypes.append("COLUMNS")
707
-
708
- self.__func_other_arg_sql_names.append("EmitStateColumn")
709
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_state_key, "\""), "'"))
710
- self.__func_other_arg_json_datatypes.append("COLUMNS")
711
-
712
- self.__func_other_arg_sql_names.append("EmitObsColumn")
713
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_observed_key, "\""), "'"))
714
- self.__func_other_arg_json_datatypes.append("COLUMNS")
715
-
716
- self.__func_other_arg_sql_names.append("EmitProbColumn")
717
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_prob_key, "\""), "'"))
718
- self.__func_other_arg_json_datatypes.append("COLUMNS")
719
-
720
- self.__func_other_arg_sql_names.append("ModelColumn")
721
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_key, "\""), "'"))
722
- self.__func_other_arg_json_datatypes.append("COLUMNS")
723
-
724
- self.__func_other_arg_sql_names.append("SeqColumn")
725
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_key, "\""), "'"))
726
- self.__func_other_arg_json_datatypes.append("COLUMNS")
727
-
728
- self.__func_other_arg_sql_names.append("ObsColumn")
729
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.observed_key, "\""), "'"))
730
- self.__func_other_arg_json_datatypes.append("COLUMNS")
731
-
732
- if self.accumulate is not None:
733
- self.__func_other_arg_sql_names.append("Accumulate")
734
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
735
- self.__func_other_arg_json_datatypes.append("COLUMNS")
736
-
737
- if self.skip_key is not None:
738
- self.__func_other_arg_sql_names.append("SkipColumn")
739
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.skip_key, "\""), "'"))
740
- self.__func_other_arg_json_datatypes.append("COLUMNS")
741
-
742
- if self.sequence_max_size is not None and self.sequence_max_size != 2147483647:
743
- self.__func_other_arg_sql_names.append("SequenceMaxSize")
744
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sequence_max_size, "'"))
745
- self.__func_other_arg_json_datatypes.append("INTEGER")
746
-
747
- # Generate lists for rest of the function arguments
748
- sequence_input_by_list = []
749
- if self.observation_sequence_column is not None:
750
- sequence_input_by_list.append("observation:" + UtilFuncs._teradata_collapse_arglist(self.observation_sequence_column, ""))
751
-
752
- if self.init_state_prob_sequence_column is not None:
753
- sequence_input_by_list.append("InitStateProb:" + UtilFuncs._teradata_collapse_arglist(self.init_state_prob_sequence_column, ""))
754
-
755
- if self.state_transition_prob_sequence_column is not None:
756
- sequence_input_by_list.append("TransProb:" + UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_sequence_column, ""))
757
-
758
- if self.emission_prob_sequence_column is not None:
759
- sequence_input_by_list.append("EmissionProb:" + UtilFuncs._teradata_collapse_arglist(self.emission_prob_sequence_column, ""))
760
-
761
- if len(sequence_input_by_list) > 0:
762
- self.__func_other_arg_sql_names.append("SequenceInputBy")
763
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
764
- self.__func_other_args.append(sequence_input_by_arg_value)
765
- self.__func_other_arg_json_datatypes.append("STRING")
766
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
767
-
768
-
769
- # Declare empty lists to hold input table information.
770
- self.__func_input_arg_sql_names = []
771
- self.__func_input_table_view_query = []
772
- self.__func_input_dataframe_type = []
773
- self.__func_input_distribution = []
774
- self.__func_input_partition_by_cols = []
775
- self.__func_input_order_by_cols = []
776
-
777
- # Process observation
778
- self.observation_partition_column = UtilFuncs._teradata_collapse_arglist(self.observation_partition_column, "\"")
779
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.observation, False)
780
- self.__func_input_distribution.append("FACT")
781
- self.__func_input_arg_sql_names.append("observation")
782
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
783
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
784
- self.__func_input_partition_by_cols.append(self.observation_partition_column)
785
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.observation_order_column, "\""))
786
-
787
- # Process init_state_prob
788
- self.init_state_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.init_state_prob_partition_column, "\"")
789
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.init_state_prob, False)
790
- self.__func_input_distribution.append("FACT")
791
- self.__func_input_arg_sql_names.append("InitStateProb")
792
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
793
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
794
- self.__func_input_partition_by_cols.append(self.init_state_prob_partition_column)
795
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.init_state_prob_order_column, "\""))
796
-
797
- # Process state_transition_prob
798
- self.state_transition_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_partition_column, "\"")
799
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.state_transition_prob, False)
800
- self.__func_input_distribution.append("FACT")
801
- self.__func_input_arg_sql_names.append("TransProb")
802
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
803
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
804
- self.__func_input_partition_by_cols.append(self.state_transition_prob_partition_column)
805
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_order_column, "\""))
806
-
807
- # Process emission_prob
808
- self.emission_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.emission_prob_partition_column, "\"")
809
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.emission_prob, False)
810
- self.__func_input_distribution.append("FACT")
811
- self.__func_input_arg_sql_names.append("EmissionProb")
812
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
813
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
814
- self.__func_input_partition_by_cols.append(self.emission_prob_partition_column)
815
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.emission_prob_order_column, "\""))
816
-
817
- function_name = "HMMDecoder"
818
- # Create instance to generate SQLMR.
819
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
820
- self.__func_input_arg_sql_names,
821
- self.__func_input_table_view_query,
822
- self.__func_input_dataframe_type,
823
- self.__func_input_distribution,
824
- self.__func_input_partition_by_cols,
825
- self.__func_input_order_by_cols,
826
- self.__func_other_arg_sql_names,
827
- self.__func_other_args,
828
- self.__func_other_arg_json_datatypes,
829
- self.__func_output_args_sql_names,
830
- self.__func_output_args,
831
- engine="ENGINE_ML")
832
- # Invoke call to SQL-MR generation.
833
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
834
-
835
- # Print SQL-MR query if requested to do so.
836
- if display.print_sqlmr_query:
837
- print(self.sqlmr_query)
838
-
839
- # Set the algorithm name for Model Cataloging.
840
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
841
-
842
- def __execute(self):
843
- """
844
- Function to execute SQL-MR queries.
845
- Create DataFrames for the required SQL-MR outputs.
846
- """
847
- # Generate STDOUT table name and add it to the output table list.
848
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
849
- try:
850
- # Generate the output.
851
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
852
- except Exception as emsg:
853
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
854
-
855
- # Update output table data frames.
856
- self._mlresults = []
857
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
858
- self._mlresults.append(self.result)
859
-
860
- def show_query(self):
861
- """
862
- Function to return the underlying SQL query.
863
- When model object is created using retrieve_model(), then None is returned.
864
- """
865
- return self.sqlmr_query
866
-
867
- def get_prediction_type(self):
868
- """
869
- Function to return the Prediction type of the algorithm.
870
- When model object is created using retrieve_model(), then the value returned is
871
- as saved in the Model Catalog.
872
- """
873
- return self._prediction_type
874
-
875
- def get_target_column(self):
876
- """
877
- Function to return the Target Column of the algorithm.
878
- When model object is created using retrieve_model(), then the value returned is
879
- as saved in the Model Catalog.
880
- """
881
- return self._target_column
882
-
883
- def get_build_time(self):
884
- """
885
- Function to return the build time of the algorithm in seconds.
886
- When model object is created using retrieve_model(), then the value returned is
887
- as saved in the Model Catalog.
888
- """
889
- return self._build_time
890
-
891
- def _get_algorithm_name(self):
892
- """
893
- Function to return the name of the algorithm.
894
- """
895
- return self._algorithm_name
896
-
897
- def _get_sql_specific_attributes(self):
898
- """
899
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
900
- """
901
- return self._sql_specific_attributes
902
-
903
- @classmethod
904
- def _from_model_catalog(cls,
905
- result = None,
906
- **kwargs):
907
- """
908
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
909
- """
910
- kwargs.pop("result", None)
911
-
912
- # Model Cataloging related attributes.
913
- target_column = kwargs.pop("__target_column", None)
914
- prediction_type = kwargs.pop("__prediction_type", None)
915
- algorithm_name = kwargs.pop("__algorithm_name", None)
916
- build_time = kwargs.pop("__build_time", None)
917
-
918
- # Let's create an object of this class.
919
- obj = cls(**kwargs)
920
- obj.result = result
921
-
922
- # Initialize the sqlmr_query class attribute.
923
- obj.sqlmr_query = None
924
-
925
- # Initialize the SQL specific Model Cataloging attributes.
926
- obj._sql_specific_attributes = None
927
- obj._target_column = target_column
928
- obj._prediction_type = prediction_type
929
- obj._algorithm_name = algorithm_name
930
- obj._build_time = build_time
931
-
932
- # Update output table data frames.
933
- obj._mlresults = []
934
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
935
- obj._mlresults.append(obj.result)
936
- return obj
937
-
938
- def __repr__(self):
939
- """
940
- Returns the string representation for a HMMDecoder class instance.
941
- """
942
- repr_string="############ STDOUT Output ############"
943
- repr_string = "{}\n\n{}".format(repr_string,self.result)
944
- return repr_string
945
-