teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,945 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.9
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class HMMDecoder:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
init_state_prob = None,
|
|
34
|
-
state_transition_prob = None,
|
|
35
|
-
emission_prob = None,
|
|
36
|
-
observation = None,
|
|
37
|
-
state_model_key = None,
|
|
38
|
-
state_key = None,
|
|
39
|
-
state_prob_key = None,
|
|
40
|
-
trans_model_key = None,
|
|
41
|
-
trans_from_key = None,
|
|
42
|
-
trans_to_key = None,
|
|
43
|
-
trans_prob_key = None,
|
|
44
|
-
emit_model_key = None,
|
|
45
|
-
emit_state_key = None,
|
|
46
|
-
emit_observed_key = None,
|
|
47
|
-
emit_prob_key = None,
|
|
48
|
-
model_key = None,
|
|
49
|
-
sequence_key = None,
|
|
50
|
-
observed_key = None,
|
|
51
|
-
sequence_max_size = 2147483647,
|
|
52
|
-
skip_key = None,
|
|
53
|
-
accumulate = None,
|
|
54
|
-
observation_sequence_column = None,
|
|
55
|
-
init_state_prob_sequence_column = None,
|
|
56
|
-
state_transition_prob_sequence_column = None,
|
|
57
|
-
emission_prob_sequence_column = None,
|
|
58
|
-
observation_partition_column = None,
|
|
59
|
-
init_state_prob_partition_column = None,
|
|
60
|
-
state_transition_prob_partition_column = None,
|
|
61
|
-
emission_prob_partition_column = None,
|
|
62
|
-
observation_order_column = None,
|
|
63
|
-
init_state_prob_order_column = None,
|
|
64
|
-
state_transition_prob_order_column = None,
|
|
65
|
-
emission_prob_order_column = None):
|
|
66
|
-
"""
|
|
67
|
-
DESCRIPTION:
|
|
68
|
-
The HMMDecoder function finds the state sequence with the highest
|
|
69
|
-
probability, given the learned model and observed sequences.
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
PARAMETERS:
|
|
73
|
-
init_state_prob:
|
|
74
|
-
Required Argument.
|
|
75
|
-
Specifies the teradataml DataFrame representing the initial state table.
|
|
76
|
-
|
|
77
|
-
init_state_prob_partition_column:
|
|
78
|
-
Required Argument.
|
|
79
|
-
Specifies Partition By columns for init_state_prob.
|
|
80
|
-
Values to this argument can be provided as list, if multiple columns
|
|
81
|
-
are used for partition.
|
|
82
|
-
Types: str OR list of Strings (str)
|
|
83
|
-
|
|
84
|
-
init_state_prob_order_column:
|
|
85
|
-
Optional Argument.
|
|
86
|
-
Specifies Order By columns for init_state_prob.
|
|
87
|
-
Values to this argument can be provided as a list, if multiple
|
|
88
|
-
columns are used for ordering.
|
|
89
|
-
Types: str OR list of Strings (str)
|
|
90
|
-
|
|
91
|
-
state_transition_prob:
|
|
92
|
-
Required Argument.
|
|
93
|
-
Specifies the teradataml DataFrame representing the state transition table.
|
|
94
|
-
|
|
95
|
-
state_transition_prob_partition_column:
|
|
96
|
-
Required Argument.
|
|
97
|
-
Specifies Partition By columns for state_transition_prob.
|
|
98
|
-
Values to this argument can be provided as list, if multiple columns
|
|
99
|
-
are used for partition.
|
|
100
|
-
Types: str OR list of Strings (str)
|
|
101
|
-
|
|
102
|
-
state_transition_prob_order_column:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies Order By columns for state_transition_prob.
|
|
105
|
-
Values to this argument can be provided as a list, if multiple
|
|
106
|
-
columns are used for ordering.
|
|
107
|
-
Types: str OR list of Strings (str)
|
|
108
|
-
|
|
109
|
-
emission_prob:
|
|
110
|
-
Required Argument.
|
|
111
|
-
Specifies the teradataml DataFrame representing the emission probability table.
|
|
112
|
-
|
|
113
|
-
emission_prob_partition_column:
|
|
114
|
-
Required Argument.
|
|
115
|
-
Specifies Partition By columns for emission_prob.
|
|
116
|
-
Values to this argument can be provided as list, if multiple columns
|
|
117
|
-
are used for partition.
|
|
118
|
-
Types: str OR list of Strings (str)
|
|
119
|
-
|
|
120
|
-
emission_prob_order_column:
|
|
121
|
-
Optional Argument.
|
|
122
|
-
Specifies Order By columns for emission_prob.
|
|
123
|
-
Values to this argument can be provided as a list, if multiple
|
|
124
|
-
columns are used for ordering.
|
|
125
|
-
Types: str OR list of Strings (str)
|
|
126
|
-
|
|
127
|
-
observation:
|
|
128
|
-
Required Argument.
|
|
129
|
-
Specifies the teradataml DataFrame representing the observation table for which
|
|
130
|
-
the probabilities of sequences are to be found.
|
|
131
|
-
|
|
132
|
-
observation_partition_column:
|
|
133
|
-
Required Argument.
|
|
134
|
-
Specifies Partition By columns for observation.
|
|
135
|
-
Values to this argument can be provided as list, if multiple columns
|
|
136
|
-
are used for partition.
|
|
137
|
-
Types: str OR list of Strings (str)
|
|
138
|
-
|
|
139
|
-
observation_order_column:
|
|
140
|
-
Required Argument.
|
|
141
|
-
Specifies Order By columns for observation.
|
|
142
|
-
Values to this argument can be provided as list, if multiple columns
|
|
143
|
-
are used for ordering.
|
|
144
|
-
Types: str OR list of Strings (str)
|
|
145
|
-
|
|
146
|
-
state_model_key:
|
|
147
|
-
Required Argument.
|
|
148
|
-
Specifies the name of the model attribute column in the init_state_prob table.
|
|
149
|
-
Types: str OR list of Strings (str)
|
|
150
|
-
|
|
151
|
-
state_key:
|
|
152
|
-
Required Argument.
|
|
153
|
-
Specifies the name of the state attribute column in the init_state_prob table.
|
|
154
|
-
Types: str OR list of Strings (str)
|
|
155
|
-
|
|
156
|
-
state_prob_key:
|
|
157
|
-
Required Argument.
|
|
158
|
-
Specifies the name of the initial probability column in the init_state_prob
|
|
159
|
-
table.
|
|
160
|
-
Types: str OR list of Strings (str)
|
|
161
|
-
|
|
162
|
-
trans_model_key:
|
|
163
|
-
Required Argument.
|
|
164
|
-
Specifies the name of the model attribute column in the state_transition_prob
|
|
165
|
-
table.
|
|
166
|
-
Types: str OR list of Strings (str)
|
|
167
|
-
|
|
168
|
-
trans_from_key:
|
|
169
|
-
Required Argument.
|
|
170
|
-
Specifies the name of the source of the state transition column in the
|
|
171
|
-
state_transition_prob table.
|
|
172
|
-
Types: str OR list of Strings (str)
|
|
173
|
-
|
|
174
|
-
trans_to_key:
|
|
175
|
-
Required Argument.
|
|
176
|
-
Specifies the name of the target of the state transition column in the
|
|
177
|
-
state_transition_prob table.
|
|
178
|
-
Types: str OR list of Strings (str)
|
|
179
|
-
|
|
180
|
-
trans_prob_key:
|
|
181
|
-
Required Argument.
|
|
182
|
-
Specifies the name of the state transition probability column in the
|
|
183
|
-
state_transition_prob table.
|
|
184
|
-
Types: str OR list of Strings (str)
|
|
185
|
-
|
|
186
|
-
emit_model_key:
|
|
187
|
-
Required Argument.
|
|
188
|
-
Specifies the name of the model attribute column in the emission_prob table.
|
|
189
|
-
Types: str OR list of Strings (str)
|
|
190
|
-
|
|
191
|
-
emit_state_key:
|
|
192
|
-
Required Argument.
|
|
193
|
-
Specifies the name of the state attribute in the emission_prob table.
|
|
194
|
-
Types: str OR list of Strings (str)
|
|
195
|
-
|
|
196
|
-
emit_observed_key:
|
|
197
|
-
Required Argument.
|
|
198
|
-
Specifies the name of the observation attribute column in the emission_prob
|
|
199
|
-
table.
|
|
200
|
-
Types: str OR list of Strings (str)
|
|
201
|
-
|
|
202
|
-
emit_prob_key:
|
|
203
|
-
Required Argument.
|
|
204
|
-
Specifies the name of the emission probability in the emission_prob table.
|
|
205
|
-
Types: str OR list of Strings (str)
|
|
206
|
-
|
|
207
|
-
model_key:
|
|
208
|
-
Required Argument.
|
|
209
|
-
Specifies the name of the column that contains the model attribute. If you
|
|
210
|
-
specify this argument, then model_attribute must match a model_key in
|
|
211
|
-
the observation_partition_column.
|
|
212
|
-
Types: str
|
|
213
|
-
|
|
214
|
-
sequence_key:
|
|
215
|
-
Required Argument.
|
|
216
|
-
Specifies the name of the column that contains the sequence attribute. The
|
|
217
|
-
sequence_attribute must be a sequence attribute in the
|
|
218
|
-
observation_partition_column.
|
|
219
|
-
Types: str
|
|
220
|
-
|
|
221
|
-
observed_key:
|
|
222
|
-
Required Argument.
|
|
223
|
-
Specifies the name of the column that contains the observed symbols.
|
|
224
|
-
Note: Observed symbols are case-sensitive.
|
|
225
|
-
Types: str
|
|
226
|
-
|
|
227
|
-
sequence_max_size:
|
|
228
|
-
Optional Argument.
|
|
229
|
-
Specifies the maximum length, in rows, of a sequence in the observation table.
|
|
230
|
-
Default Value: 2147483647
|
|
231
|
-
Types: int
|
|
232
|
-
|
|
233
|
-
skip_key:
|
|
234
|
-
Optional Argument.
|
|
235
|
-
Specifies the name of the column whose values determine whether the function
|
|
236
|
-
skips the row. The function skips the row if the value is "true",
|
|
237
|
-
"yes", "y", or "1". The function does not skip the row if the value
|
|
238
|
-
is "false", "f", "no", "n", "0", or None.
|
|
239
|
-
Types: str
|
|
240
|
-
|
|
241
|
-
accumulate:
|
|
242
|
-
Optional Argument.
|
|
243
|
-
Specifies the names of the columns in input_table that the function
|
|
244
|
-
copies to the output table.
|
|
245
|
-
Types: str OR list of Strings (str)
|
|
246
|
-
|
|
247
|
-
observation_sequence_column:
|
|
248
|
-
Optional Argument.
|
|
249
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
250
|
-
the input argument "observation". The argument is used to ensure
|
|
251
|
-
deterministic results for functions which produce results that vary
|
|
252
|
-
from run to run.
|
|
253
|
-
Types: str OR list of Strings (str)
|
|
254
|
-
|
|
255
|
-
init_state_prob_sequence_column:
|
|
256
|
-
Optional Argument.
|
|
257
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
258
|
-
the input argument "init_state_prob". The argument is used to ensure
|
|
259
|
-
deterministic results for functions which produce results that vary
|
|
260
|
-
from run to run.
|
|
261
|
-
Types: str OR list of Strings (str)
|
|
262
|
-
|
|
263
|
-
state_transition_prob_sequence_column:
|
|
264
|
-
Optional Argument.
|
|
265
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
266
|
-
the input argument "state_transition_prob". The argument is used to
|
|
267
|
-
ensure deterministic results for functions which produce results that
|
|
268
|
-
vary from run to run.
|
|
269
|
-
Types: str OR list of Strings (str)
|
|
270
|
-
|
|
271
|
-
emission_prob_sequence_column:
|
|
272
|
-
Optional Argument.
|
|
273
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
274
|
-
the input argument "emission_prob". The argument is used to ensure
|
|
275
|
-
deterministic results for functions which produce results that vary
|
|
276
|
-
from run to run.
|
|
277
|
-
Types: str OR list of Strings (str)
|
|
278
|
-
|
|
279
|
-
RETURNS:
|
|
280
|
-
Instance of HMMDecoder.
|
|
281
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
282
|
-
references, such as HMMDecoderObj.<attribute_name>.
|
|
283
|
-
Output teradataml DataFrame attribute name is:
|
|
284
|
-
result
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
RAISES:
|
|
288
|
-
TeradataMlException
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
EXAMPLES:
|
|
292
|
-
# Load example data.
|
|
293
|
-
load_example_data("hmmunsupervised", "loan_prediction")
|
|
294
|
-
load_example_data("hmmsupervised", "customer_loyalty")
|
|
295
|
-
|
|
296
|
-
# Example 1 - This example uses loan status updates to build a Unupservised HMM
|
|
297
|
-
# model and then predict loan defaults.
|
|
298
|
-
load_example_data("hmmdecoder", "test_loan_prediction")
|
|
299
|
-
loan_prediction = DataFrame.from_table("loan_prediction")
|
|
300
|
-
HMMUnsupervised_out = HMMUnsupervised(vertices = loan_prediction,
|
|
301
|
-
vertices_partition_column = ["model_id", "seq_id"],
|
|
302
|
-
vertices_order_column = ["seq_vertex_id"],
|
|
303
|
-
model_key = "model_id",
|
|
304
|
-
sequence_key = "seq_id",
|
|
305
|
-
observed_key = "observed_id",
|
|
306
|
-
hidden_states_num = 3
|
|
307
|
-
)
|
|
308
|
-
|
|
309
|
-
test_loan_prediction = DataFrame.from_table("test_loan_prediction")
|
|
310
|
-
HMMDecoder_out1 = HMMDecoder(init_state_prob = HMMUnsupervised_out.output_initialstate_table,
|
|
311
|
-
init_state_prob_partition_column = ["model_id"],
|
|
312
|
-
state_transition_prob = HMMUnsupervised_out.output_statetransition_table,
|
|
313
|
-
state_transition_prob_partition_column = ["model_id"],
|
|
314
|
-
emission_prob = HMMUnsupervised_out.output_emission_table,
|
|
315
|
-
emission_prob_partition_column = ["model_id"],
|
|
316
|
-
observation = test_loan_prediction,
|
|
317
|
-
observation_partition_column = ["model_id"],
|
|
318
|
-
observation_order_column = ["model_id", "seq_id", "seq_vertex_id"],
|
|
319
|
-
state_model_key = ["model_id"],
|
|
320
|
-
state_key = ["state"],
|
|
321
|
-
state_prob_key = ["probability"],
|
|
322
|
-
trans_model_key = ["model_id"],
|
|
323
|
-
trans_from_key = ["from_state"],
|
|
324
|
-
trans_to_key = ["to_state"],
|
|
325
|
-
trans_prob_key = ["probability"],
|
|
326
|
-
emit_model_key = ["model_id"],
|
|
327
|
-
emit_state_key = ["state"],
|
|
328
|
-
emit_observed_key = ["observed"],
|
|
329
|
-
emit_prob_key = ["probability"],
|
|
330
|
-
model_key = "model_id",
|
|
331
|
-
sequence_key = "seq_id",
|
|
332
|
-
observed_key = "observed_id",
|
|
333
|
-
accumulate = ["seq_vertex_id"]
|
|
334
|
-
)
|
|
335
|
-
# Print the results.
|
|
336
|
-
print(HMMDecoder_out1)
|
|
337
|
-
|
|
338
|
-
# Example 2 - This example uses the output of a HMM Supervised model with the input
|
|
339
|
-
# to determine the loyalty levels of customers from the new sequence of purchases.
|
|
340
|
-
load_example_data("hmmdecoder", "customer_loyalty_newseq")
|
|
341
|
-
customer_loyalty = DataFrame.from_table("customer_loyalty")
|
|
342
|
-
|
|
343
|
-
HMMSupervised_out = HMMSupervised(vertices = customer_loyalty,
|
|
344
|
-
vertices_partition_column = ["user_id", "seq_id"],
|
|
345
|
-
vertices_order_column = ["user_id", "seq_id", "purchase_date"],
|
|
346
|
-
model_key = "user_id",
|
|
347
|
-
sequence_key = "seq_id",
|
|
348
|
-
observed_key = "observation",
|
|
349
|
-
state_key = "loyalty_level"
|
|
350
|
-
)
|
|
351
|
-
|
|
352
|
-
customer_loyalty_newseq = DataFrame.from_table("customer_loyalty_newseq")
|
|
353
|
-
|
|
354
|
-
HMMDecoder_out2 = HMMDecoder(init_state_prob = HMMSupervised_out.output_initialstate_table,
|
|
355
|
-
init_state_prob_partition_column = ["user_id"],
|
|
356
|
-
state_transition_prob = HMMSupervised_out.output_statetransition_table,
|
|
357
|
-
state_transition_prob_partition_column = ["user_id"],
|
|
358
|
-
emission_prob = HMMSupervised_out.output_emission_table,
|
|
359
|
-
emission_prob_partition_column = ["user_id"],
|
|
360
|
-
observation = customer_loyalty_newseq,
|
|
361
|
-
observation_partition_column = ["user_id"],
|
|
362
|
-
observation_order_column = ["user_id", "seq_id", "purchase_date"],
|
|
363
|
-
state_model_key = ["user_id"],
|
|
364
|
-
state_key = ["state"],
|
|
365
|
-
state_prob_key = ["probability"],
|
|
366
|
-
trans_model_key = ["user_id"],
|
|
367
|
-
trans_from_key = ["from_state"],
|
|
368
|
-
trans_to_key = ["to_state"],
|
|
369
|
-
trans_prob_key = ["probability"],
|
|
370
|
-
emit_model_key = ["user_id"],
|
|
371
|
-
emit_state_key = ["state"],
|
|
372
|
-
emit_observed_key = ["observed"],
|
|
373
|
-
emit_prob_key = ["probability"],
|
|
374
|
-
model_key = "user_id",
|
|
375
|
-
sequence_key = "seq_id",
|
|
376
|
-
observed_key = "observation",
|
|
377
|
-
accumulate = ["purchase_date"]
|
|
378
|
-
)
|
|
379
|
-
# Print the results.
|
|
380
|
-
print(HMMDecoder_out2)
|
|
381
|
-
|
|
382
|
-
# Example 3 - Part of Speech Tagging example
|
|
383
|
-
load_example_data("hmmdecoder", ["initial", "state_transition", "emission", "phrases"])
|
|
384
|
-
initial = DataFrame.from_table("initial")
|
|
385
|
-
state_transition = DataFrame.from_table("state_transition")
|
|
386
|
-
emission = DataFrame.from_table("emission")
|
|
387
|
-
phrases = DataFrame.from_table("phrases")
|
|
388
|
-
|
|
389
|
-
HMMDecoder_out3 = HMMDecoder(init_state_prob = initial,
|
|
390
|
-
init_state_prob_partition_column = ["model"],
|
|
391
|
-
state_transition_prob = state_transition,
|
|
392
|
-
state_transition_prob_partition_column = ["model"],
|
|
393
|
-
emission_prob = emission,
|
|
394
|
-
emission_prob_partition_column = ["model"],
|
|
395
|
-
observation = phrases,
|
|
396
|
-
observation_partition_column = ["model"],
|
|
397
|
-
observation_order_column = ["model", "phrase_id"],
|
|
398
|
-
state_model_key = ["model"],
|
|
399
|
-
state_key = ["tag"],
|
|
400
|
-
state_prob_key = ["probability"],
|
|
401
|
-
trans_model_key = ["model"],
|
|
402
|
-
trans_from_key = ["from_tag"],
|
|
403
|
-
trans_to_key = ["to_tag"],
|
|
404
|
-
trans_prob_key = ["probability"],
|
|
405
|
-
emit_model_key = ["model"],
|
|
406
|
-
emit_state_key = ["tag"],
|
|
407
|
-
emit_observed_key = ["word"],
|
|
408
|
-
emit_prob_key = ["probability"],
|
|
409
|
-
model_key = "model",
|
|
410
|
-
sequence_key = "phrase_id",
|
|
411
|
-
observed_key = "word"
|
|
412
|
-
)
|
|
413
|
-
|
|
414
|
-
# Print the results.
|
|
415
|
-
print(HMMDecoder_out3)
|
|
416
|
-
|
|
417
|
-
# Example 4 - This example uses HMMDecoder to find the propensity of customer churn,
|
|
418
|
-
# given the actions or transactions of a bank customer.
|
|
419
|
-
load_example_data("hmmdecoder", ["churn_initial", "churn_state_transition", "churn_emission", "churn_data"])
|
|
420
|
-
churn_initial = DataFrame.from_table("churn_initial")
|
|
421
|
-
churn_state_transition = DataFrame.from_table("churn_state_transition")
|
|
422
|
-
churn_emission = DataFrame.from_table("churn_emission")
|
|
423
|
-
churn_data = DataFrame.from_table("churn_data")
|
|
424
|
-
|
|
425
|
-
HMMDecoder_out4 = HMMDecoder(init_state_prob = churn_initial,
|
|
426
|
-
init_state_prob_partition_column = ["model"],
|
|
427
|
-
state_transition_prob = churn_state_transition,
|
|
428
|
-
state_transition_prob_partition_column = ["model"],
|
|
429
|
-
emission_prob = churn_emission,
|
|
430
|
-
emission_prob_partition_column = ["model"],
|
|
431
|
-
observation = churn_data,
|
|
432
|
-
observation_partition_column = ["model"],
|
|
433
|
-
observation_order_column = ["model","id", "path_id"],
|
|
434
|
-
state_model_key = ["model"],
|
|
435
|
-
state_key = ["tag"],
|
|
436
|
-
state_prob_key = ["probability"],
|
|
437
|
-
trans_model_key = ["model"],
|
|
438
|
-
trans_from_key = ["from_tag"],
|
|
439
|
-
trans_to_key = ["to_tag"],
|
|
440
|
-
trans_prob_key = ["probability"],
|
|
441
|
-
emit_model_key = ["model"],
|
|
442
|
-
emit_state_key = ["state"],
|
|
443
|
-
emit_observed_key = ["observed"],
|
|
444
|
-
emit_prob_key = ["probability"],
|
|
445
|
-
model_key = "model",
|
|
446
|
-
sequence_key = "id",
|
|
447
|
-
observed_key = "action",
|
|
448
|
-
accumulate = ["path_id"]
|
|
449
|
-
)
|
|
450
|
-
|
|
451
|
-
# Print the results.
|
|
452
|
-
print(HMMDecoder_out4)
|
|
453
|
-
|
|
454
|
-
"""
|
|
455
|
-
|
|
456
|
-
# Start the timer to get the build time
|
|
457
|
-
_start_time = time.time()
|
|
458
|
-
|
|
459
|
-
self.init_state_prob = init_state_prob
|
|
460
|
-
self.state_transition_prob = state_transition_prob
|
|
461
|
-
self.emission_prob = emission_prob
|
|
462
|
-
self.observation = observation
|
|
463
|
-
self.state_model_key = state_model_key
|
|
464
|
-
self.state_key = state_key
|
|
465
|
-
self.state_prob_key = state_prob_key
|
|
466
|
-
self.trans_model_key = trans_model_key
|
|
467
|
-
self.trans_from_key = trans_from_key
|
|
468
|
-
self.trans_to_key = trans_to_key
|
|
469
|
-
self.trans_prob_key = trans_prob_key
|
|
470
|
-
self.emit_model_key = emit_model_key
|
|
471
|
-
self.emit_state_key = emit_state_key
|
|
472
|
-
self.emit_observed_key = emit_observed_key
|
|
473
|
-
self.emit_prob_key = emit_prob_key
|
|
474
|
-
self.model_key = model_key
|
|
475
|
-
self.sequence_key = sequence_key
|
|
476
|
-
self.observed_key = observed_key
|
|
477
|
-
self.sequence_max_size = sequence_max_size
|
|
478
|
-
self.skip_key = skip_key
|
|
479
|
-
self.accumulate = accumulate
|
|
480
|
-
self.observation_sequence_column = observation_sequence_column
|
|
481
|
-
self.init_state_prob_sequence_column = init_state_prob_sequence_column
|
|
482
|
-
self.state_transition_prob_sequence_column = state_transition_prob_sequence_column
|
|
483
|
-
self.emission_prob_sequence_column = emission_prob_sequence_column
|
|
484
|
-
self.observation_partition_column = observation_partition_column
|
|
485
|
-
self.init_state_prob_partition_column = init_state_prob_partition_column
|
|
486
|
-
self.state_transition_prob_partition_column = state_transition_prob_partition_column
|
|
487
|
-
self.emission_prob_partition_column = emission_prob_partition_column
|
|
488
|
-
self.observation_order_column = observation_order_column
|
|
489
|
-
self.init_state_prob_order_column = init_state_prob_order_column
|
|
490
|
-
self.state_transition_prob_order_column = state_transition_prob_order_column
|
|
491
|
-
self.emission_prob_order_column = emission_prob_order_column
|
|
492
|
-
|
|
493
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
494
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
495
|
-
self.__aed_utils = AedUtils()
|
|
496
|
-
|
|
497
|
-
# Create argument information matrix to do parameter checking
|
|
498
|
-
self.__arg_info_matrix = []
|
|
499
|
-
self.__arg_info_matrix.append(["init_state_prob", self.init_state_prob, False, (DataFrame)])
|
|
500
|
-
self.__arg_info_matrix.append(["init_state_prob_partition_column", self.init_state_prob_partition_column, False, (str,list)])
|
|
501
|
-
self.__arg_info_matrix.append(["init_state_prob_order_column", self.init_state_prob_order_column, True, (str,list)])
|
|
502
|
-
self.__arg_info_matrix.append(["state_transition_prob", self.state_transition_prob, False, (DataFrame)])
|
|
503
|
-
self.__arg_info_matrix.append(["state_transition_prob_partition_column", self.state_transition_prob_partition_column, False, (str,list)])
|
|
504
|
-
self.__arg_info_matrix.append(["state_transition_prob_order_column", self.state_transition_prob_order_column, True, (str,list)])
|
|
505
|
-
self.__arg_info_matrix.append(["emission_prob", self.emission_prob, False, (DataFrame)])
|
|
506
|
-
self.__arg_info_matrix.append(["emission_prob_partition_column", self.emission_prob_partition_column, False, (str,list)])
|
|
507
|
-
self.__arg_info_matrix.append(["emission_prob_order_column", self.emission_prob_order_column, True, (str,list)])
|
|
508
|
-
self.__arg_info_matrix.append(["observation", self.observation, False, (DataFrame)])
|
|
509
|
-
self.__arg_info_matrix.append(["observation_partition_column", self.observation_partition_column, False, (str,list)])
|
|
510
|
-
self.__arg_info_matrix.append(["observation_order_column", self.observation_order_column, False, (str,list)])
|
|
511
|
-
self.__arg_info_matrix.append(["state_model_key", self.state_model_key, False, (str,list)])
|
|
512
|
-
self.__arg_info_matrix.append(["state_key", self.state_key, False, (str,list)])
|
|
513
|
-
self.__arg_info_matrix.append(["state_prob_key", self.state_prob_key, False, (str,list)])
|
|
514
|
-
self.__arg_info_matrix.append(["trans_model_key", self.trans_model_key, False, (str,list)])
|
|
515
|
-
self.__arg_info_matrix.append(["trans_from_key", self.trans_from_key, False, (str,list)])
|
|
516
|
-
self.__arg_info_matrix.append(["trans_to_key", self.trans_to_key, False, (str,list)])
|
|
517
|
-
self.__arg_info_matrix.append(["trans_prob_key", self.trans_prob_key, False, (str,list)])
|
|
518
|
-
self.__arg_info_matrix.append(["emit_model_key", self.emit_model_key, False, (str,list)])
|
|
519
|
-
self.__arg_info_matrix.append(["emit_state_key", self.emit_state_key, False, (str,list)])
|
|
520
|
-
self.__arg_info_matrix.append(["emit_observed_key", self.emit_observed_key, False, (str,list)])
|
|
521
|
-
self.__arg_info_matrix.append(["emit_prob_key", self.emit_prob_key, False, (str,list)])
|
|
522
|
-
self.__arg_info_matrix.append(["model_key", self.model_key, False, (str)])
|
|
523
|
-
self.__arg_info_matrix.append(["sequence_key", self.sequence_key, False, (str)])
|
|
524
|
-
self.__arg_info_matrix.append(["observed_key", self.observed_key, False, (str)])
|
|
525
|
-
self.__arg_info_matrix.append(["sequence_max_size", self.sequence_max_size, True, (int)])
|
|
526
|
-
self.__arg_info_matrix.append(["skip_key", self.skip_key, True, (str)])
|
|
527
|
-
self.__arg_info_matrix.append(["accumulate", self.accumulate, True, (str,list)])
|
|
528
|
-
self.__arg_info_matrix.append(["observation_sequence_column", self.observation_sequence_column, True, (str,list)])
|
|
529
|
-
self.__arg_info_matrix.append(["init_state_prob_sequence_column", self.init_state_prob_sequence_column, True, (str,list)])
|
|
530
|
-
self.__arg_info_matrix.append(["state_transition_prob_sequence_column", self.state_transition_prob_sequence_column, True, (str,list)])
|
|
531
|
-
self.__arg_info_matrix.append(["emission_prob_sequence_column", self.emission_prob_sequence_column, True, (str,list)])
|
|
532
|
-
|
|
533
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
534
|
-
# Perform the function validations
|
|
535
|
-
self.__validate()
|
|
536
|
-
# Generate the ML query
|
|
537
|
-
self.__form_tdml_query()
|
|
538
|
-
# Execute ML query
|
|
539
|
-
self.__execute()
|
|
540
|
-
# Get the prediction type
|
|
541
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
542
|
-
|
|
543
|
-
# End the timer to get the build time
|
|
544
|
-
_end_time = time.time()
|
|
545
|
-
|
|
546
|
-
# Calculate the build time
|
|
547
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
548
|
-
|
|
549
|
-
def __validate(self):
|
|
550
|
-
"""
|
|
551
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
552
|
-
arguments, input argument and table types. Also processes the
|
|
553
|
-
argument values.
|
|
554
|
-
"""
|
|
555
|
-
|
|
556
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
557
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
558
|
-
|
|
559
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
560
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
561
|
-
|
|
562
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
563
|
-
self.__awu._validate_input_table_datatype(self.observation, "observation", None)
|
|
564
|
-
self.__awu._validate_input_table_datatype(self.init_state_prob, "init_state_prob", None)
|
|
565
|
-
self.__awu._validate_input_table_datatype(self.state_transition_prob, "state_transition_prob", None)
|
|
566
|
-
self.__awu._validate_input_table_datatype(self.emission_prob, "emission_prob", None)
|
|
567
|
-
|
|
568
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
569
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
570
|
-
self.__awu._validate_input_columns_not_empty(self.state_model_key, "state_model_key")
|
|
571
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_model_key, "state_model_key", self.init_state_prob, "init_state_prob", False)
|
|
572
|
-
|
|
573
|
-
self.__awu._validate_input_columns_not_empty(self.state_key, "state_key")
|
|
574
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_key, "state_key", self.init_state_prob, "init_state_prob", False)
|
|
575
|
-
|
|
576
|
-
self.__awu._validate_input_columns_not_empty(self.state_prob_key, "state_prob_key")
|
|
577
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_prob_key, "state_prob_key", self.init_state_prob, "init_state_prob", False)
|
|
578
|
-
|
|
579
|
-
self.__awu._validate_input_columns_not_empty(self.trans_model_key, "trans_model_key")
|
|
580
|
-
self.__awu._validate_dataframe_has_argument_columns(self.trans_model_key, "trans_model_key", self.state_transition_prob, "state_transition_prob", False)
|
|
581
|
-
|
|
582
|
-
self.__awu._validate_input_columns_not_empty(self.trans_from_key, "trans_from_key")
|
|
583
|
-
self.__awu._validate_dataframe_has_argument_columns(self.trans_from_key, "trans_from_key", self.state_transition_prob, "state_transition_prob", False)
|
|
584
|
-
|
|
585
|
-
self.__awu._validate_input_columns_not_empty(self.trans_to_key, "trans_to_key")
|
|
586
|
-
self.__awu._validate_dataframe_has_argument_columns(self.trans_to_key, "trans_to_key", self.state_transition_prob, "state_transition_prob", False)
|
|
587
|
-
|
|
588
|
-
self.__awu._validate_input_columns_not_empty(self.trans_prob_key, "trans_prob_key")
|
|
589
|
-
self.__awu._validate_dataframe_has_argument_columns(self.trans_prob_key, "trans_prob_key", self.state_transition_prob, "state_transition_prob", False)
|
|
590
|
-
|
|
591
|
-
self.__awu._validate_input_columns_not_empty(self.emit_model_key, "emit_model_key")
|
|
592
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emit_model_key, "emit_model_key", self.emission_prob, "emission_prob", False)
|
|
593
|
-
|
|
594
|
-
self.__awu._validate_input_columns_not_empty(self.emit_state_key, "emit_state_key")
|
|
595
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emit_state_key, "emit_state_key", self.emission_prob, "emission_prob", False)
|
|
596
|
-
|
|
597
|
-
self.__awu._validate_input_columns_not_empty(self.emit_observed_key, "emit_observed_key")
|
|
598
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emit_observed_key, "emit_observed_key", self.emission_prob, "emission_prob", False)
|
|
599
|
-
|
|
600
|
-
self.__awu._validate_input_columns_not_empty(self.emit_prob_key, "emit_prob_key")
|
|
601
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emit_prob_key, "emit_prob_key", self.emission_prob, "emission_prob", False)
|
|
602
|
-
|
|
603
|
-
self.__awu._validate_input_columns_not_empty(self.model_key, "model_key")
|
|
604
|
-
self.__awu._validate_dataframe_has_argument_columns(self.model_key, "model_key", self.observation, "observation", False)
|
|
605
|
-
|
|
606
|
-
self.__awu._validate_input_columns_not_empty(self.sequence_key, "sequence_key")
|
|
607
|
-
self.__awu._validate_dataframe_has_argument_columns(self.sequence_key, "sequence_key", self.observation, "observation", False)
|
|
608
|
-
|
|
609
|
-
self.__awu._validate_input_columns_not_empty(self.observed_key, "observed_key")
|
|
610
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observed_key, "observed_key", self.observation, "observation", False)
|
|
611
|
-
|
|
612
|
-
self.__awu._validate_input_columns_not_empty(self.accumulate, "accumulate")
|
|
613
|
-
self.__awu._validate_dataframe_has_argument_columns(self.accumulate, "accumulate", self.observation, "observation", False)
|
|
614
|
-
|
|
615
|
-
self.__awu._validate_input_columns_not_empty(self.skip_key, "skip_key")
|
|
616
|
-
self.__awu._validate_dataframe_has_argument_columns(self.skip_key, "skip_key", self.observation, "observation", False)
|
|
617
|
-
|
|
618
|
-
self.__awu._validate_input_columns_not_empty(self.observation_sequence_column, "observation_sequence_column")
|
|
619
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observation_sequence_column, "observation_sequence_column", self.observation, "observation", False)
|
|
620
|
-
|
|
621
|
-
self.__awu._validate_input_columns_not_empty(self.init_state_prob_sequence_column, "init_state_prob_sequence_column")
|
|
622
|
-
self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_sequence_column, "init_state_prob_sequence_column", self.init_state_prob, "init_state_prob", False)
|
|
623
|
-
|
|
624
|
-
self.__awu._validate_input_columns_not_empty(self.state_transition_prob_sequence_column, "state_transition_prob_sequence_column")
|
|
625
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_sequence_column, "state_transition_prob_sequence_column", self.state_transition_prob, "state_transition_prob", False)
|
|
626
|
-
|
|
627
|
-
self.__awu._validate_input_columns_not_empty(self.emission_prob_sequence_column, "emission_prob_sequence_column")
|
|
628
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_sequence_column, "emission_prob_sequence_column", self.emission_prob, "emission_prob", False)
|
|
629
|
-
|
|
630
|
-
self.__awu._validate_input_columns_not_empty(self.observation_partition_column, "observation_partition_column")
|
|
631
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observation_partition_column, "observation_partition_column", self.observation, "observation", True)
|
|
632
|
-
|
|
633
|
-
self.__awu._validate_input_columns_not_empty(self.init_state_prob_partition_column, "init_state_prob_partition_column")
|
|
634
|
-
self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_partition_column, "init_state_prob_partition_column", self.init_state_prob, "init_state_prob", True)
|
|
635
|
-
|
|
636
|
-
self.__awu._validate_input_columns_not_empty(self.state_transition_prob_partition_column, "state_transition_prob_partition_column")
|
|
637
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_partition_column, "state_transition_prob_partition_column", self.state_transition_prob, "state_transition_prob", True)
|
|
638
|
-
|
|
639
|
-
self.__awu._validate_input_columns_not_empty(self.emission_prob_partition_column, "emission_prob_partition_column")
|
|
640
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_partition_column, "emission_prob_partition_column", self.emission_prob, "emission_prob", True)
|
|
641
|
-
|
|
642
|
-
self.__awu._validate_input_columns_not_empty(self.observation_order_column, "observation_order_column")
|
|
643
|
-
self.__awu._validate_dataframe_has_argument_columns(self.observation_order_column, "observation_order_column", self.observation, "observation", False)
|
|
644
|
-
|
|
645
|
-
self.__awu._validate_input_columns_not_empty(self.init_state_prob_order_column, "init_state_prob_order_column")
|
|
646
|
-
self.__awu._validate_dataframe_has_argument_columns(self.init_state_prob_order_column, "init_state_prob_order_column", self.init_state_prob, "init_state_prob", False)
|
|
647
|
-
|
|
648
|
-
self.__awu._validate_input_columns_not_empty(self.state_transition_prob_order_column, "state_transition_prob_order_column")
|
|
649
|
-
self.__awu._validate_dataframe_has_argument_columns(self.state_transition_prob_order_column, "state_transition_prob_order_column", self.state_transition_prob, "state_transition_prob", False)
|
|
650
|
-
|
|
651
|
-
self.__awu._validate_input_columns_not_empty(self.emission_prob_order_column, "emission_prob_order_column")
|
|
652
|
-
self.__awu._validate_dataframe_has_argument_columns(self.emission_prob_order_column, "emission_prob_order_column", self.emission_prob, "emission_prob", False)
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
def __form_tdml_query(self):
|
|
656
|
-
"""
|
|
657
|
-
Function to generate the analytical function queries. The function defines
|
|
658
|
-
variables and list of arguments required to form the query.
|
|
659
|
-
"""
|
|
660
|
-
|
|
661
|
-
# Output table arguments list
|
|
662
|
-
self.__func_output_args_sql_names = []
|
|
663
|
-
self.__func_output_args = []
|
|
664
|
-
|
|
665
|
-
# Model Cataloging related attributes.
|
|
666
|
-
self._sql_specific_attributes = {}
|
|
667
|
-
self._sql_formula_attribute_mapper = {}
|
|
668
|
-
self._target_column = None
|
|
669
|
-
self._algorithm_name = None
|
|
670
|
-
|
|
671
|
-
# Generate lists for rest of the function arguments
|
|
672
|
-
self.__func_other_arg_sql_names = []
|
|
673
|
-
self.__func_other_args = []
|
|
674
|
-
self.__func_other_arg_json_datatypes = []
|
|
675
|
-
|
|
676
|
-
self.__func_other_arg_sql_names.append("InitStateModelColumn")
|
|
677
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_model_key, "\""), "'"))
|
|
678
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
679
|
-
|
|
680
|
-
self.__func_other_arg_sql_names.append("InitStateColumn")
|
|
681
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_key, "\""), "'"))
|
|
682
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
683
|
-
|
|
684
|
-
self.__func_other_arg_sql_names.append("InitStateProbColumn")
|
|
685
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.state_prob_key, "\""), "'"))
|
|
686
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
687
|
-
|
|
688
|
-
self.__func_other_arg_sql_names.append("TransAttributeColumn")
|
|
689
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_model_key, "\""), "'"))
|
|
690
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
691
|
-
|
|
692
|
-
self.__func_other_arg_sql_names.append("TransFromStateColumn")
|
|
693
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_from_key, "\""), "'"))
|
|
694
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
695
|
-
|
|
696
|
-
self.__func_other_arg_sql_names.append("TransToStateColumn")
|
|
697
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_to_key, "\""), "'"))
|
|
698
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
699
|
-
|
|
700
|
-
self.__func_other_arg_sql_names.append("TransProbColumn")
|
|
701
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.trans_prob_key, "\""), "'"))
|
|
702
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
703
|
-
|
|
704
|
-
self.__func_other_arg_sql_names.append("EmitModelColumn")
|
|
705
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_model_key, "\""), "'"))
|
|
706
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
707
|
-
|
|
708
|
-
self.__func_other_arg_sql_names.append("EmitStateColumn")
|
|
709
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_state_key, "\""), "'"))
|
|
710
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
711
|
-
|
|
712
|
-
self.__func_other_arg_sql_names.append("EmitObsColumn")
|
|
713
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_observed_key, "\""), "'"))
|
|
714
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
715
|
-
|
|
716
|
-
self.__func_other_arg_sql_names.append("EmitProbColumn")
|
|
717
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.emit_prob_key, "\""), "'"))
|
|
718
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
719
|
-
|
|
720
|
-
self.__func_other_arg_sql_names.append("ModelColumn")
|
|
721
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.model_key, "\""), "'"))
|
|
722
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
723
|
-
|
|
724
|
-
self.__func_other_arg_sql_names.append("SeqColumn")
|
|
725
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.sequence_key, "\""), "'"))
|
|
726
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
727
|
-
|
|
728
|
-
self.__func_other_arg_sql_names.append("ObsColumn")
|
|
729
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.observed_key, "\""), "'"))
|
|
730
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
731
|
-
|
|
732
|
-
if self.accumulate is not None:
|
|
733
|
-
self.__func_other_arg_sql_names.append("Accumulate")
|
|
734
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.accumulate, "\""), "'"))
|
|
735
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
736
|
-
|
|
737
|
-
if self.skip_key is not None:
|
|
738
|
-
self.__func_other_arg_sql_names.append("SkipColumn")
|
|
739
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.skip_key, "\""), "'"))
|
|
740
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
741
|
-
|
|
742
|
-
if self.sequence_max_size is not None and self.sequence_max_size != 2147483647:
|
|
743
|
-
self.__func_other_arg_sql_names.append("SequenceMaxSize")
|
|
744
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.sequence_max_size, "'"))
|
|
745
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
746
|
-
|
|
747
|
-
# Generate lists for rest of the function arguments
|
|
748
|
-
sequence_input_by_list = []
|
|
749
|
-
if self.observation_sequence_column is not None:
|
|
750
|
-
sequence_input_by_list.append("observation:" + UtilFuncs._teradata_collapse_arglist(self.observation_sequence_column, ""))
|
|
751
|
-
|
|
752
|
-
if self.init_state_prob_sequence_column is not None:
|
|
753
|
-
sequence_input_by_list.append("InitStateProb:" + UtilFuncs._teradata_collapse_arglist(self.init_state_prob_sequence_column, ""))
|
|
754
|
-
|
|
755
|
-
if self.state_transition_prob_sequence_column is not None:
|
|
756
|
-
sequence_input_by_list.append("TransProb:" + UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_sequence_column, ""))
|
|
757
|
-
|
|
758
|
-
if self.emission_prob_sequence_column is not None:
|
|
759
|
-
sequence_input_by_list.append("EmissionProb:" + UtilFuncs._teradata_collapse_arglist(self.emission_prob_sequence_column, ""))
|
|
760
|
-
|
|
761
|
-
if len(sequence_input_by_list) > 0:
|
|
762
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
763
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
764
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
765
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
766
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
767
|
-
|
|
768
|
-
|
|
769
|
-
# Declare empty lists to hold input table information.
|
|
770
|
-
self.__func_input_arg_sql_names = []
|
|
771
|
-
self.__func_input_table_view_query = []
|
|
772
|
-
self.__func_input_dataframe_type = []
|
|
773
|
-
self.__func_input_distribution = []
|
|
774
|
-
self.__func_input_partition_by_cols = []
|
|
775
|
-
self.__func_input_order_by_cols = []
|
|
776
|
-
|
|
777
|
-
# Process observation
|
|
778
|
-
self.observation_partition_column = UtilFuncs._teradata_collapse_arglist(self.observation_partition_column, "\"")
|
|
779
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.observation, False)
|
|
780
|
-
self.__func_input_distribution.append("FACT")
|
|
781
|
-
self.__func_input_arg_sql_names.append("observation")
|
|
782
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
783
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
784
|
-
self.__func_input_partition_by_cols.append(self.observation_partition_column)
|
|
785
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.observation_order_column, "\""))
|
|
786
|
-
|
|
787
|
-
# Process init_state_prob
|
|
788
|
-
self.init_state_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.init_state_prob_partition_column, "\"")
|
|
789
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.init_state_prob, False)
|
|
790
|
-
self.__func_input_distribution.append("FACT")
|
|
791
|
-
self.__func_input_arg_sql_names.append("InitStateProb")
|
|
792
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
793
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
794
|
-
self.__func_input_partition_by_cols.append(self.init_state_prob_partition_column)
|
|
795
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.init_state_prob_order_column, "\""))
|
|
796
|
-
|
|
797
|
-
# Process state_transition_prob
|
|
798
|
-
self.state_transition_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_partition_column, "\"")
|
|
799
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.state_transition_prob, False)
|
|
800
|
-
self.__func_input_distribution.append("FACT")
|
|
801
|
-
self.__func_input_arg_sql_names.append("TransProb")
|
|
802
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
803
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
804
|
-
self.__func_input_partition_by_cols.append(self.state_transition_prob_partition_column)
|
|
805
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.state_transition_prob_order_column, "\""))
|
|
806
|
-
|
|
807
|
-
# Process emission_prob
|
|
808
|
-
self.emission_prob_partition_column = UtilFuncs._teradata_collapse_arglist(self.emission_prob_partition_column, "\"")
|
|
809
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.emission_prob, False)
|
|
810
|
-
self.__func_input_distribution.append("FACT")
|
|
811
|
-
self.__func_input_arg_sql_names.append("EmissionProb")
|
|
812
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
813
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
814
|
-
self.__func_input_partition_by_cols.append(self.emission_prob_partition_column)
|
|
815
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.emission_prob_order_column, "\""))
|
|
816
|
-
|
|
817
|
-
function_name = "HMMDecoder"
|
|
818
|
-
# Create instance to generate SQLMR.
|
|
819
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
820
|
-
self.__func_input_arg_sql_names,
|
|
821
|
-
self.__func_input_table_view_query,
|
|
822
|
-
self.__func_input_dataframe_type,
|
|
823
|
-
self.__func_input_distribution,
|
|
824
|
-
self.__func_input_partition_by_cols,
|
|
825
|
-
self.__func_input_order_by_cols,
|
|
826
|
-
self.__func_other_arg_sql_names,
|
|
827
|
-
self.__func_other_args,
|
|
828
|
-
self.__func_other_arg_json_datatypes,
|
|
829
|
-
self.__func_output_args_sql_names,
|
|
830
|
-
self.__func_output_args,
|
|
831
|
-
engine="ENGINE_ML")
|
|
832
|
-
# Invoke call to SQL-MR generation.
|
|
833
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
834
|
-
|
|
835
|
-
# Print SQL-MR query if requested to do so.
|
|
836
|
-
if display.print_sqlmr_query:
|
|
837
|
-
print(self.sqlmr_query)
|
|
838
|
-
|
|
839
|
-
# Set the algorithm name for Model Cataloging.
|
|
840
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
841
|
-
|
|
842
|
-
def __execute(self):
|
|
843
|
-
"""
|
|
844
|
-
Function to execute SQL-MR queries.
|
|
845
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
846
|
-
"""
|
|
847
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
848
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
849
|
-
try:
|
|
850
|
-
# Generate the output.
|
|
851
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
852
|
-
except Exception as emsg:
|
|
853
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
854
|
-
|
|
855
|
-
# Update output table data frames.
|
|
856
|
-
self._mlresults = []
|
|
857
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
858
|
-
self._mlresults.append(self.result)
|
|
859
|
-
|
|
860
|
-
def show_query(self):
|
|
861
|
-
"""
|
|
862
|
-
Function to return the underlying SQL query.
|
|
863
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
864
|
-
"""
|
|
865
|
-
return self.sqlmr_query
|
|
866
|
-
|
|
867
|
-
def get_prediction_type(self):
|
|
868
|
-
"""
|
|
869
|
-
Function to return the Prediction type of the algorithm.
|
|
870
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
871
|
-
as saved in the Model Catalog.
|
|
872
|
-
"""
|
|
873
|
-
return self._prediction_type
|
|
874
|
-
|
|
875
|
-
def get_target_column(self):
|
|
876
|
-
"""
|
|
877
|
-
Function to return the Target Column of the algorithm.
|
|
878
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
879
|
-
as saved in the Model Catalog.
|
|
880
|
-
"""
|
|
881
|
-
return self._target_column
|
|
882
|
-
|
|
883
|
-
def get_build_time(self):
|
|
884
|
-
"""
|
|
885
|
-
Function to return the build time of the algorithm in seconds.
|
|
886
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
887
|
-
as saved in the Model Catalog.
|
|
888
|
-
"""
|
|
889
|
-
return self._build_time
|
|
890
|
-
|
|
891
|
-
def _get_algorithm_name(self):
|
|
892
|
-
"""
|
|
893
|
-
Function to return the name of the algorithm.
|
|
894
|
-
"""
|
|
895
|
-
return self._algorithm_name
|
|
896
|
-
|
|
897
|
-
def _get_sql_specific_attributes(self):
|
|
898
|
-
"""
|
|
899
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
900
|
-
"""
|
|
901
|
-
return self._sql_specific_attributes
|
|
902
|
-
|
|
903
|
-
@classmethod
|
|
904
|
-
def _from_model_catalog(cls,
|
|
905
|
-
result = None,
|
|
906
|
-
**kwargs):
|
|
907
|
-
"""
|
|
908
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
909
|
-
"""
|
|
910
|
-
kwargs.pop("result", None)
|
|
911
|
-
|
|
912
|
-
# Model Cataloging related attributes.
|
|
913
|
-
target_column = kwargs.pop("__target_column", None)
|
|
914
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
915
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
916
|
-
build_time = kwargs.pop("__build_time", None)
|
|
917
|
-
|
|
918
|
-
# Let's create an object of this class.
|
|
919
|
-
obj = cls(**kwargs)
|
|
920
|
-
obj.result = result
|
|
921
|
-
|
|
922
|
-
# Initialize the sqlmr_query class attribute.
|
|
923
|
-
obj.sqlmr_query = None
|
|
924
|
-
|
|
925
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
926
|
-
obj._sql_specific_attributes = None
|
|
927
|
-
obj._target_column = target_column
|
|
928
|
-
obj._prediction_type = prediction_type
|
|
929
|
-
obj._algorithm_name = algorithm_name
|
|
930
|
-
obj._build_time = build_time
|
|
931
|
-
|
|
932
|
-
# Update output table data frames.
|
|
933
|
-
obj._mlresults = []
|
|
934
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
935
|
-
obj._mlresults.append(obj.result)
|
|
936
|
-
return obj
|
|
937
|
-
|
|
938
|
-
def __repr__(self):
|
|
939
|
-
"""
|
|
940
|
-
Returns the string representation for a HMMDecoder class instance.
|
|
941
|
-
"""
|
|
942
|
-
repr_string="############ STDOUT Output ############"
|
|
943
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
944
|
-
return repr_string
|
|
945
|
-
|