teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,581 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: N Bhavana (bhavana.n@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.6
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
from teradataml.analytics.mle.KNNRecommender import KNNRecommender
|
|
30
|
-
|
|
31
|
-
class KNNRecommenderPredict:
|
|
32
|
-
|
|
33
|
-
def __init__(self,
|
|
34
|
-
object = None,
|
|
35
|
-
ratings_data = None,
|
|
36
|
-
weights_data = None,
|
|
37
|
-
bias_data = None,
|
|
38
|
-
userid_column = None,
|
|
39
|
-
itemid_column = None,
|
|
40
|
-
rating_column = None,
|
|
41
|
-
topk = 3,
|
|
42
|
-
showall = True,
|
|
43
|
-
ratings_data_sequence_column = None,
|
|
44
|
-
weights_data_sequence_column = None,
|
|
45
|
-
bias_data_sequence_column = None,
|
|
46
|
-
ratings_data_partition_column = None,
|
|
47
|
-
ratings_data_order_column = None,
|
|
48
|
-
weights_data_order_column = None,
|
|
49
|
-
bias_data_order_column = None):
|
|
50
|
-
"""
|
|
51
|
-
DESCRIPTION:
|
|
52
|
-
The KNNRecommenderPredict function applies the model output by the KNNRecommender
|
|
53
|
-
function to predict the ratings or preferences that users would assign to
|
|
54
|
-
entities like books, songs, movies and other products.
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
PARAMETERS:
|
|
58
|
-
object:
|
|
59
|
-
Optional Argument, when 'weights_data' and 'bias_data' provided.
|
|
60
|
-
Specifies the instance of KNNRecommender containing the
|
|
61
|
-
weights_data and bias_data.
|
|
62
|
-
|
|
63
|
-
ratings_data:
|
|
64
|
-
Required Argument.
|
|
65
|
-
Specifies the teradataml DataFrame containing the user ratings.
|
|
66
|
-
|
|
67
|
-
ratings_data_partition_column:
|
|
68
|
-
Required Argument.
|
|
69
|
-
Specifies the Partition By columns for ratings_data.
|
|
70
|
-
Values to this argument can be provided as list, if multiple columns
|
|
71
|
-
are used for partition.
|
|
72
|
-
Types: str OR list of Strings (str)
|
|
73
|
-
|
|
74
|
-
ratings_data_order_column:
|
|
75
|
-
Optional Argument.
|
|
76
|
-
Specifies Order By columns for ratings_data.
|
|
77
|
-
Values to this argument can be provided as a list, if multiple
|
|
78
|
-
columns are used for ordering.
|
|
79
|
-
Types: str OR list of Strings (str)
|
|
80
|
-
|
|
81
|
-
weights_data:
|
|
82
|
-
Optional Argument.
|
|
83
|
-
Specifies the teradataml DataFrame (produced by KNNRecommender function)
|
|
84
|
-
containing the interpolation weights. Optional argument if
|
|
85
|
-
object is provided. If the value is provided along with object this value
|
|
86
|
-
will be overwritten with the weigths_data of object value.
|
|
87
|
-
|
|
88
|
-
weights_data_order_column:
|
|
89
|
-
Optional Argument.
|
|
90
|
-
Specifies Order By columns for weights_data.
|
|
91
|
-
Values to this argument can be provided as a list, if multiple
|
|
92
|
-
columns are used for ordering.
|
|
93
|
-
Types: str OR list of Strings (str)
|
|
94
|
-
|
|
95
|
-
bias_data:
|
|
96
|
-
Optional Argument.
|
|
97
|
-
Specifies the teradataml DataFrame (produced by KNNRecommender function)
|
|
98
|
-
containing the global, user, and item bias statistics. Optional argument if
|
|
99
|
-
object is provided. If the value is provided along with object this value
|
|
100
|
-
will be overwritten with the bias_data of object value.
|
|
101
|
-
|
|
102
|
-
bias_data_order_column:
|
|
103
|
-
Optional Argument.
|
|
104
|
-
Specifies Order By columns for bias_data.
|
|
105
|
-
Values to this argument can be provided as a list, if multiple
|
|
106
|
-
columns are used for ordering.
|
|
107
|
-
Types: str OR list of Strings (str)
|
|
108
|
-
|
|
109
|
-
userid_column:
|
|
110
|
-
Optional Argument.
|
|
111
|
-
Specifies the user id column in the rating table. The default is the first
|
|
112
|
-
column in the rating table.
|
|
113
|
-
Types: str OR list of Strings (str)
|
|
114
|
-
|
|
115
|
-
itemid_column:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the item id column in the rating table. The default is the second
|
|
118
|
-
column in the rating table.
|
|
119
|
-
Types: str OR list of Strings (str)
|
|
120
|
-
|
|
121
|
-
rating_column:
|
|
122
|
-
Optional Argument.
|
|
123
|
-
Specifies the rating column in the rating table. The default is the third
|
|
124
|
-
column in the rating table.
|
|
125
|
-
Types: str OR list of Strings (str)
|
|
126
|
-
|
|
127
|
-
topk:
|
|
128
|
-
Optional Argument.
|
|
129
|
-
Specifies the number of items to recommend for each user. The topk highest-rated
|
|
130
|
-
items are recommended.
|
|
131
|
-
Default Value: 3
|
|
132
|
-
Types: int
|
|
133
|
-
|
|
134
|
-
showall:
|
|
135
|
-
Optional Argument.
|
|
136
|
-
Specifies whether the function outputs only the top k values or all
|
|
137
|
-
the values in case many recommendations have the same predicted
|
|
138
|
-
rating.
|
|
139
|
-
When set to True, and multiple items have the same predicted rating,
|
|
140
|
-
the function outputs all these items, regardless of the value of topk.
|
|
141
|
-
Otherwise, the function outputs at most topk items.
|
|
142
|
-
Note:
|
|
143
|
-
"showall" argument support is only available
|
|
144
|
-
when teradataml is connected to Vantage 1.1.1 or later.
|
|
145
|
-
Default Value: True
|
|
146
|
-
Types: bool
|
|
147
|
-
|
|
148
|
-
ratings_data_sequence_column:
|
|
149
|
-
Optional Argument.
|
|
150
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
151
|
-
the input argument "ratings_data". The argument is used to ensure
|
|
152
|
-
deterministic results for functions which produce results that vary
|
|
153
|
-
from run to run.
|
|
154
|
-
Types: str OR list of Strings (str)
|
|
155
|
-
|
|
156
|
-
weights_data_sequence_column:
|
|
157
|
-
Optional Argument.
|
|
158
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
159
|
-
the input argument "weights_data". The argument is used to ensure
|
|
160
|
-
deterministic results for functions which produce results that vary
|
|
161
|
-
from run to run.
|
|
162
|
-
Types: str OR list of Strings (str)
|
|
163
|
-
|
|
164
|
-
bias_data_sequence_column:
|
|
165
|
-
Optional Argument.
|
|
166
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
167
|
-
the input argument "bias_data". The argument is used to ensure
|
|
168
|
-
deterministic results for functions which produce results that vary
|
|
169
|
-
from run to run.
|
|
170
|
-
Types: str OR list of Strings (str)
|
|
171
|
-
|
|
172
|
-
RETURNS:
|
|
173
|
-
Instance of KNNRecommenderPredict.
|
|
174
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
175
|
-
references, such as KNNRecommenderPredictObj.<attribute_name>.
|
|
176
|
-
Output teradataml DataFrame attribute name is:
|
|
177
|
-
result
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
RAISES:
|
|
181
|
-
TeradataMlException
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
EXAMPLES:
|
|
185
|
-
# Load the data to run the example
|
|
186
|
-
load_example_data("knnrecommenderpredict", ["ml_ratings", "ml_ratings_10"])
|
|
187
|
-
|
|
188
|
-
# Create teradataml DataFrame objects.
|
|
189
|
-
ml_ratings = DataFrame.from_table("ml_ratings")
|
|
190
|
-
|
|
191
|
-
# Example 1 - Train the KNN Recommender system on the user ratings data
|
|
192
|
-
knn_recommender_out = KNNRecommender(rating_table = ml_ratings,
|
|
193
|
-
userid_column = "userid",
|
|
194
|
-
itemid_column = "itemid",
|
|
195
|
-
rating_column = "rating"
|
|
196
|
-
)
|
|
197
|
-
|
|
198
|
-
# ml_ratings_10 table has movie ratings from a subset of users from the ml_ratings
|
|
199
|
-
# table. The ml_bias and ml_weights table has the weights and bias values
|
|
200
|
-
# from the trained KNN Recommender model.
|
|
201
|
-
ml_weights = knn_recommender_out.weight_model_table
|
|
202
|
-
ml_bias = knn_recommender_out.bias_model_table
|
|
203
|
-
|
|
204
|
-
# Here "bias_data" and "weights_data" have been made optional with the argument "object"
|
|
205
|
-
# having the knn_recommender_out output object
|
|
206
|
-
# Create teradataml DataFrame objects.
|
|
207
|
-
ml_ratings_10 = DataFrame.from_table("ml_ratings_10")
|
|
208
|
-
|
|
209
|
-
knn_recommender_predict_out = KNNRecommenderPredict(object = knn_recommender_out,
|
|
210
|
-
ratings_data = ml_ratings_10,
|
|
211
|
-
ratings_data_partition_column = "userid",
|
|
212
|
-
topk = 5
|
|
213
|
-
)
|
|
214
|
-
# Print the result DataFrame
|
|
215
|
-
print(knn_recommender_predict_out)
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
# Use the generated model to make user rating predictions. Here the argument "object"
|
|
219
|
-
# has been made optional with the specification of both the arguments "bias_data" and
|
|
220
|
-
# "weights_data"
|
|
221
|
-
knn_recommender_predict_out2 = KNNRecommenderPredict(ratings_data = ml_ratings_10,
|
|
222
|
-
ratings_data_partition_column = "userid",
|
|
223
|
-
weights_data = ml_weights,
|
|
224
|
-
bias_data = ml_bias,
|
|
225
|
-
topk = 5
|
|
226
|
-
)
|
|
227
|
-
|
|
228
|
-
# Print the result DataFrame
|
|
229
|
-
print(knn_recommender_predict_out2)
|
|
230
|
-
|
|
231
|
-
"""
|
|
232
|
-
|
|
233
|
-
# Start the timer to get the build time
|
|
234
|
-
_start_time = time.time()
|
|
235
|
-
|
|
236
|
-
self.object = object
|
|
237
|
-
self.ratings_data = ratings_data
|
|
238
|
-
self.weights_data = weights_data
|
|
239
|
-
self.bias_data = bias_data
|
|
240
|
-
self.userid_column = userid_column
|
|
241
|
-
self.itemid_column = itemid_column
|
|
242
|
-
self.rating_column = rating_column
|
|
243
|
-
self.topk = topk
|
|
244
|
-
self.showall = showall
|
|
245
|
-
self.ratings_data_sequence_column = ratings_data_sequence_column
|
|
246
|
-
self.weights_data_sequence_column = weights_data_sequence_column
|
|
247
|
-
self.bias_data_sequence_column = bias_data_sequence_column
|
|
248
|
-
self.ratings_data_partition_column = ratings_data_partition_column
|
|
249
|
-
self.ratings_data_order_column = ratings_data_order_column
|
|
250
|
-
self.weights_data_order_column = weights_data_order_column
|
|
251
|
-
self.bias_data_order_column = bias_data_order_column
|
|
252
|
-
|
|
253
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
254
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
255
|
-
self.__aed_utils = AedUtils()
|
|
256
|
-
|
|
257
|
-
# Create argument information matrix to do parameter checking
|
|
258
|
-
self.__arg_info_matrix = []
|
|
259
|
-
self.__arg_info_matrix.append(["ratings_data", self.ratings_data, False, (DataFrame)])
|
|
260
|
-
self.__arg_info_matrix.append(["ratings_data_partition_column", self.ratings_data_partition_column, False, (str,list)])
|
|
261
|
-
self.__arg_info_matrix.append(["ratings_data_order_column", self.ratings_data_order_column, True, (str,list)])
|
|
262
|
-
self.__arg_info_matrix.append(["weights_data", self.weights_data, True, (DataFrame)])
|
|
263
|
-
self.__arg_info_matrix.append(["weights_data_order_column", self.weights_data_order_column, True, (str,list)])
|
|
264
|
-
self.__arg_info_matrix.append(["bias_data", self.bias_data, True, (DataFrame)])
|
|
265
|
-
self.__arg_info_matrix.append(["bias_data_order_column", self.bias_data_order_column, True, (str,list)])
|
|
266
|
-
self.__arg_info_matrix.append(["userid_column", self.userid_column, True, (str)])
|
|
267
|
-
self.__arg_info_matrix.append(["itemid_column", self.itemid_column, True, (str)])
|
|
268
|
-
self.__arg_info_matrix.append(["rating_column", self.rating_column, True, (str)])
|
|
269
|
-
self.__arg_info_matrix.append(["topk", self.topk, True, (int)])
|
|
270
|
-
self.__arg_info_matrix.append(["showall", self.showall, True, (bool)])
|
|
271
|
-
self.__arg_info_matrix.append(["ratings_data_sequence_column", self.ratings_data_sequence_column, True, (str,list)])
|
|
272
|
-
self.__arg_info_matrix.append(["weights_data_sequence_column", self.weights_data_sequence_column, True, (str,list)])
|
|
273
|
-
self.__arg_info_matrix.append(["bias_data_sequence_column", self.bias_data_sequence_column, True, (str,list)])
|
|
274
|
-
|
|
275
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
276
|
-
# Perform the function validations
|
|
277
|
-
self.__validate()
|
|
278
|
-
# Generate the ML query
|
|
279
|
-
self.__form_tdml_query()
|
|
280
|
-
# Execute ML query
|
|
281
|
-
self.__execute()
|
|
282
|
-
# Get the prediction type
|
|
283
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
284
|
-
|
|
285
|
-
# End the timer to get the build time
|
|
286
|
-
_end_time = time.time()
|
|
287
|
-
|
|
288
|
-
# Calculate the build time
|
|
289
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
290
|
-
|
|
291
|
-
def __validate(self):
|
|
292
|
-
"""
|
|
293
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
294
|
-
arguments, input argument and table types. Also processes the
|
|
295
|
-
argument values.
|
|
296
|
-
"""
|
|
297
|
-
# Make sure either object or (weights_.data and bias_data) is provided.
|
|
298
|
-
if not self.object and not (self.weights_data and self.bias_data):
|
|
299
|
-
raise TeradataMlException(
|
|
300
|
-
Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "object", "weights_data and bias_data"),
|
|
301
|
-
MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
|
|
302
|
-
|
|
303
|
-
# If object is not NULL, and if weights_data or bias_data is NULL, then initialize them from object
|
|
304
|
-
if self.object and self.__awu._validate_argument_types([["object", self.object, True, (KNNRecommender)]]):
|
|
305
|
-
self.weights_data = self.object._mlresults[0]
|
|
306
|
-
self.bias_data = self.object._mlresults[1]
|
|
307
|
-
|
|
308
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
309
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
310
|
-
|
|
311
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
312
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
313
|
-
|
|
314
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
315
|
-
self.__awu._validate_input_table_datatype(self.ratings_data, "ratings_data", None)
|
|
316
|
-
self.__awu._validate_input_table_datatype(self.weights_data, "weights_data", None)
|
|
317
|
-
self.__awu._validate_input_table_datatype(self.bias_data, "bias_data", None)
|
|
318
|
-
|
|
319
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
320
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
321
|
-
self.__awu._validate_input_columns_not_empty(self.userid_column, "userid_column")
|
|
322
|
-
self.__awu._validate_dataframe_has_argument_columns(self.userid_column, "userid_column", self.ratings_data, "ratings_data", False)
|
|
323
|
-
|
|
324
|
-
self.__awu._validate_input_columns_not_empty(self.itemid_column, "itemid_column")
|
|
325
|
-
self.__awu._validate_dataframe_has_argument_columns(self.itemid_column, "itemid_column", self.ratings_data, "ratings_data", False)
|
|
326
|
-
|
|
327
|
-
self.__awu._validate_input_columns_not_empty(self.rating_column, "rating_column")
|
|
328
|
-
self.__awu._validate_dataframe_has_argument_columns(self.rating_column, "rating_column", self.ratings_data, "ratings_data", False)
|
|
329
|
-
|
|
330
|
-
self.__awu._validate_input_columns_not_empty(self.ratings_data_sequence_column, "ratings_data_sequence_column")
|
|
331
|
-
self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_sequence_column, "ratings_data_sequence_column", self.ratings_data, "ratings_data", False)
|
|
332
|
-
|
|
333
|
-
self.__awu._validate_input_columns_not_empty(self.weights_data_sequence_column, "weights_data_sequence_column")
|
|
334
|
-
self.__awu._validate_dataframe_has_argument_columns(self.weights_data_sequence_column, "weights_data_sequence_column", self.weights_data, "weights_data", False)
|
|
335
|
-
|
|
336
|
-
self.__awu._validate_input_columns_not_empty(self.bias_data_sequence_column, "bias_data_sequence_column")
|
|
337
|
-
self.__awu._validate_dataframe_has_argument_columns(self.bias_data_sequence_column, "bias_data_sequence_column", self.bias_data, "bias_data", False)
|
|
338
|
-
|
|
339
|
-
self.__awu._validate_input_columns_not_empty(self.ratings_data_partition_column, "ratings_data_partition_column")
|
|
340
|
-
self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_partition_column, "ratings_data_partition_column", self.ratings_data, "ratings_data", True)
|
|
341
|
-
|
|
342
|
-
self.__awu._validate_input_columns_not_empty(self.ratings_data_order_column, "ratings_data_order_column")
|
|
343
|
-
self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_order_column, "ratings_data_order_column", self.ratings_data, "ratings_data", False)
|
|
344
|
-
|
|
345
|
-
self.__awu._validate_input_columns_not_empty(self.weights_data_order_column, "weights_data_order_column")
|
|
346
|
-
self.__awu._validate_dataframe_has_argument_columns(self.weights_data_order_column, "weights_data_order_column", self.weights_data, "weights_data", False)
|
|
347
|
-
|
|
348
|
-
self.__awu._validate_input_columns_not_empty(self.bias_data_order_column, "bias_data_order_column")
|
|
349
|
-
self.__awu._validate_dataframe_has_argument_columns(self.bias_data_order_column, "bias_data_order_column", self.bias_data, "bias_data", False)
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
def __form_tdml_query(self):
|
|
353
|
-
"""
|
|
354
|
-
Function to generate the analytical function queries. The function defines
|
|
355
|
-
variables and list of arguments required to form the query.
|
|
356
|
-
"""
|
|
357
|
-
|
|
358
|
-
# Output table arguments list
|
|
359
|
-
self.__func_output_args_sql_names = []
|
|
360
|
-
self.__func_output_args = []
|
|
361
|
-
|
|
362
|
-
# Model Cataloging related attributes.
|
|
363
|
-
self._sql_specific_attributes = {}
|
|
364
|
-
self._sql_formula_attribute_mapper = {}
|
|
365
|
-
self._target_column = None
|
|
366
|
-
self._algorithm_name = None
|
|
367
|
-
|
|
368
|
-
# Generate lists for rest of the function arguments
|
|
369
|
-
self.__func_other_arg_sql_names = []
|
|
370
|
-
self.__func_other_args = []
|
|
371
|
-
self.__func_other_arg_json_datatypes = []
|
|
372
|
-
|
|
373
|
-
if self.userid_column is not None:
|
|
374
|
-
self.__func_other_arg_sql_names.append("UserIdColumn")
|
|
375
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.userid_column, "\""), "'"))
|
|
376
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
377
|
-
|
|
378
|
-
if self.itemid_column is not None:
|
|
379
|
-
self.__func_other_arg_sql_names.append("ItemIdColumn")
|
|
380
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.itemid_column, "\""), "'"))
|
|
381
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
382
|
-
|
|
383
|
-
if self.rating_column is not None:
|
|
384
|
-
self.__func_other_arg_sql_names.append("RatingColumn")
|
|
385
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.rating_column, "\""), "'"))
|
|
386
|
-
self.__func_other_arg_json_datatypes.append("COLUMNS")
|
|
387
|
-
|
|
388
|
-
if self.topk is not None and self.topk != 3:
|
|
389
|
-
self.__func_other_arg_sql_names.append("Topk")
|
|
390
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.topk, "'"))
|
|
391
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
392
|
-
|
|
393
|
-
if self.showall is not None and self.showall != True:
|
|
394
|
-
self.__func_other_arg_sql_names.append("ShowAll")
|
|
395
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.showall, "'"))
|
|
396
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
397
|
-
|
|
398
|
-
# Generate lists for rest of the function arguments
|
|
399
|
-
sequence_input_by_list = []
|
|
400
|
-
if self.ratings_data_sequence_column is not None:
|
|
401
|
-
sequence_input_by_list.append("ratings:" + UtilFuncs._teradata_collapse_arglist(self.ratings_data_sequence_column, ""))
|
|
402
|
-
|
|
403
|
-
if self.weights_data_sequence_column is not None:
|
|
404
|
-
sequence_input_by_list.append("weights:" + UtilFuncs._teradata_collapse_arglist(self.weights_data_sequence_column, ""))
|
|
405
|
-
|
|
406
|
-
if self.bias_data_sequence_column is not None:
|
|
407
|
-
sequence_input_by_list.append("bias:" + UtilFuncs._teradata_collapse_arglist(self.bias_data_sequence_column, ""))
|
|
408
|
-
|
|
409
|
-
if len(sequence_input_by_list) > 0:
|
|
410
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
411
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
412
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
413
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
414
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
# Declare empty lists to hold input table information.
|
|
418
|
-
self.__func_input_arg_sql_names = []
|
|
419
|
-
self.__func_input_table_view_query = []
|
|
420
|
-
self.__func_input_dataframe_type = []
|
|
421
|
-
self.__func_input_distribution = []
|
|
422
|
-
self.__func_input_partition_by_cols = []
|
|
423
|
-
self.__func_input_order_by_cols = []
|
|
424
|
-
|
|
425
|
-
# Process ratings_data
|
|
426
|
-
self.ratings_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.ratings_data_partition_column, "\"")
|
|
427
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.ratings_data, False)
|
|
428
|
-
self.__func_input_distribution.append("FACT")
|
|
429
|
-
self.__func_input_arg_sql_names.append("ratings")
|
|
430
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
431
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
432
|
-
self.__func_input_partition_by_cols.append(self.ratings_data_partition_column)
|
|
433
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.ratings_data_order_column, "\""))
|
|
434
|
-
|
|
435
|
-
# Process weights_data
|
|
436
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.weights_data, False)
|
|
437
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
438
|
-
self.__func_input_arg_sql_names.append("weights")
|
|
439
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
440
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
441
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
442
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.weights_data_order_column, "\""))
|
|
443
|
-
|
|
444
|
-
# Process bias_data
|
|
445
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.bias_data, False)
|
|
446
|
-
self.__func_input_distribution.append("DIMENSION")
|
|
447
|
-
self.__func_input_arg_sql_names.append("bias")
|
|
448
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
449
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
450
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
451
|
-
self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.bias_data_order_column, "\""))
|
|
452
|
-
|
|
453
|
-
function_name = "KNNRecommenderPredict"
|
|
454
|
-
# Create instance to generate SQLMR.
|
|
455
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
456
|
-
self.__func_input_arg_sql_names,
|
|
457
|
-
self.__func_input_table_view_query,
|
|
458
|
-
self.__func_input_dataframe_type,
|
|
459
|
-
self.__func_input_distribution,
|
|
460
|
-
self.__func_input_partition_by_cols,
|
|
461
|
-
self.__func_input_order_by_cols,
|
|
462
|
-
self.__func_other_arg_sql_names,
|
|
463
|
-
self.__func_other_args,
|
|
464
|
-
self.__func_other_arg_json_datatypes,
|
|
465
|
-
self.__func_output_args_sql_names,
|
|
466
|
-
self.__func_output_args,
|
|
467
|
-
engine="ENGINE_ML")
|
|
468
|
-
# Invoke call to SQL-MR generation.
|
|
469
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
470
|
-
|
|
471
|
-
# Print SQL-MR query if requested to do so.
|
|
472
|
-
if display.print_sqlmr_query:
|
|
473
|
-
print(self.sqlmr_query)
|
|
474
|
-
|
|
475
|
-
# Set the algorithm name for Model Cataloging.
|
|
476
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
477
|
-
|
|
478
|
-
def __execute(self):
|
|
479
|
-
"""
|
|
480
|
-
Function to execute SQL-MR queries.
|
|
481
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
482
|
-
"""
|
|
483
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
484
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
|
|
485
|
-
try:
|
|
486
|
-
# Generate the output.
|
|
487
|
-
UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
488
|
-
except Exception as emsg:
|
|
489
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
490
|
-
|
|
491
|
-
# Update output table data frames.
|
|
492
|
-
self._mlresults = []
|
|
493
|
-
self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
494
|
-
self._mlresults.append(self.result)
|
|
495
|
-
|
|
496
|
-
def show_query(self):
|
|
497
|
-
"""
|
|
498
|
-
Function to return the underlying SQL query.
|
|
499
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
500
|
-
"""
|
|
501
|
-
return self.sqlmr_query
|
|
502
|
-
|
|
503
|
-
def get_prediction_type(self):
|
|
504
|
-
"""
|
|
505
|
-
Function to return the Prediction type of the algorithm.
|
|
506
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
507
|
-
as saved in the Model Catalog.
|
|
508
|
-
"""
|
|
509
|
-
return self._prediction_type
|
|
510
|
-
|
|
511
|
-
def get_target_column(self):
|
|
512
|
-
"""
|
|
513
|
-
Function to return the Target Column of the algorithm.
|
|
514
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
515
|
-
as saved in the Model Catalog.
|
|
516
|
-
"""
|
|
517
|
-
return self._target_column
|
|
518
|
-
|
|
519
|
-
def get_build_time(self):
|
|
520
|
-
"""
|
|
521
|
-
Function to return the build time of the algorithm in seconds.
|
|
522
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
523
|
-
as saved in the Model Catalog.
|
|
524
|
-
"""
|
|
525
|
-
return self._build_time
|
|
526
|
-
|
|
527
|
-
def _get_algorithm_name(self):
|
|
528
|
-
"""
|
|
529
|
-
Function to return the name of the algorithm.
|
|
530
|
-
"""
|
|
531
|
-
return self._algorithm_name
|
|
532
|
-
|
|
533
|
-
def _get_sql_specific_attributes(self):
|
|
534
|
-
"""
|
|
535
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
536
|
-
"""
|
|
537
|
-
return self._sql_specific_attributes
|
|
538
|
-
|
|
539
|
-
@classmethod
|
|
540
|
-
def _from_model_catalog(cls,
|
|
541
|
-
result = None,
|
|
542
|
-
**kwargs):
|
|
543
|
-
"""
|
|
544
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
545
|
-
"""
|
|
546
|
-
kwargs.pop("result", None)
|
|
547
|
-
|
|
548
|
-
# Model Cataloging related attributes.
|
|
549
|
-
target_column = kwargs.pop("__target_column", None)
|
|
550
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
551
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
552
|
-
build_time = kwargs.pop("__build_time", None)
|
|
553
|
-
|
|
554
|
-
# Let's create an object of this class.
|
|
555
|
-
obj = cls(**kwargs)
|
|
556
|
-
obj.result = result
|
|
557
|
-
|
|
558
|
-
# Initialize the sqlmr_query class attribute.
|
|
559
|
-
obj.sqlmr_query = None
|
|
560
|
-
|
|
561
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
562
|
-
obj._sql_specific_attributes = None
|
|
563
|
-
obj._target_column = target_column
|
|
564
|
-
obj._prediction_type = prediction_type
|
|
565
|
-
obj._algorithm_name = algorithm_name
|
|
566
|
-
obj._build_time = build_time
|
|
567
|
-
|
|
568
|
-
# Update output table data frames.
|
|
569
|
-
obj._mlresults = []
|
|
570
|
-
obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
|
|
571
|
-
obj._mlresults.append(obj.result)
|
|
572
|
-
return obj
|
|
573
|
-
|
|
574
|
-
def __repr__(self):
|
|
575
|
-
"""
|
|
576
|
-
Returns the string representation for a KNNRecommenderPredict class instance.
|
|
577
|
-
"""
|
|
578
|
-
repr_string="############ STDOUT Output ############"
|
|
579
|
-
repr_string = "{}\n\n{}".format(repr_string,self.result)
|
|
580
|
-
return repr_string
|
|
581
|
-
|