teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,581 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: N Bhavana (bhavana.n@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.6
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
- from teradataml.analytics.mle.KNNRecommender import KNNRecommender
30
-
31
- class KNNRecommenderPredict:
32
-
33
- def __init__(self,
34
- object = None,
35
- ratings_data = None,
36
- weights_data = None,
37
- bias_data = None,
38
- userid_column = None,
39
- itemid_column = None,
40
- rating_column = None,
41
- topk = 3,
42
- showall = True,
43
- ratings_data_sequence_column = None,
44
- weights_data_sequence_column = None,
45
- bias_data_sequence_column = None,
46
- ratings_data_partition_column = None,
47
- ratings_data_order_column = None,
48
- weights_data_order_column = None,
49
- bias_data_order_column = None):
50
- """
51
- DESCRIPTION:
52
- The KNNRecommenderPredict function applies the model output by the KNNRecommender
53
- function to predict the ratings or preferences that users would assign to
54
- entities like books, songs, movies and other products.
55
-
56
-
57
- PARAMETERS:
58
- object:
59
- Optional Argument, when 'weights_data' and 'bias_data' provided.
60
- Specifies the instance of KNNRecommender containing the
61
- weights_data and bias_data.
62
-
63
- ratings_data:
64
- Required Argument.
65
- Specifies the teradataml DataFrame containing the user ratings.
66
-
67
- ratings_data_partition_column:
68
- Required Argument.
69
- Specifies the Partition By columns for ratings_data.
70
- Values to this argument can be provided as list, if multiple columns
71
- are used for partition.
72
- Types: str OR list of Strings (str)
73
-
74
- ratings_data_order_column:
75
- Optional Argument.
76
- Specifies Order By columns for ratings_data.
77
- Values to this argument can be provided as a list, if multiple
78
- columns are used for ordering.
79
- Types: str OR list of Strings (str)
80
-
81
- weights_data:
82
- Optional Argument.
83
- Specifies the teradataml DataFrame (produced by KNNRecommender function)
84
- containing the interpolation weights. Optional argument if
85
- object is provided. If the value is provided along with object this value
86
- will be overwritten with the weigths_data of object value.
87
-
88
- weights_data_order_column:
89
- Optional Argument.
90
- Specifies Order By columns for weights_data.
91
- Values to this argument can be provided as a list, if multiple
92
- columns are used for ordering.
93
- Types: str OR list of Strings (str)
94
-
95
- bias_data:
96
- Optional Argument.
97
- Specifies the teradataml DataFrame (produced by KNNRecommender function)
98
- containing the global, user, and item bias statistics. Optional argument if
99
- object is provided. If the value is provided along with object this value
100
- will be overwritten with the bias_data of object value.
101
-
102
- bias_data_order_column:
103
- Optional Argument.
104
- Specifies Order By columns for bias_data.
105
- Values to this argument can be provided as a list, if multiple
106
- columns are used for ordering.
107
- Types: str OR list of Strings (str)
108
-
109
- userid_column:
110
- Optional Argument.
111
- Specifies the user id column in the rating table. The default is the first
112
- column in the rating table.
113
- Types: str OR list of Strings (str)
114
-
115
- itemid_column:
116
- Optional Argument.
117
- Specifies the item id column in the rating table. The default is the second
118
- column in the rating table.
119
- Types: str OR list of Strings (str)
120
-
121
- rating_column:
122
- Optional Argument.
123
- Specifies the rating column in the rating table. The default is the third
124
- column in the rating table.
125
- Types: str OR list of Strings (str)
126
-
127
- topk:
128
- Optional Argument.
129
- Specifies the number of items to recommend for each user. The topk highest-rated
130
- items are recommended.
131
- Default Value: 3
132
- Types: int
133
-
134
- showall:
135
- Optional Argument.
136
- Specifies whether the function outputs only the top k values or all
137
- the values in case many recommendations have the same predicted
138
- rating.
139
- When set to True, and multiple items have the same predicted rating,
140
- the function outputs all these items, regardless of the value of topk.
141
- Otherwise, the function outputs at most topk items.
142
- Note:
143
- "showall" argument support is only available
144
- when teradataml is connected to Vantage 1.1.1 or later.
145
- Default Value: True
146
- Types: bool
147
-
148
- ratings_data_sequence_column:
149
- Optional Argument.
150
- Specifies the list of column(s) that uniquely identifies each row of
151
- the input argument "ratings_data". The argument is used to ensure
152
- deterministic results for functions which produce results that vary
153
- from run to run.
154
- Types: str OR list of Strings (str)
155
-
156
- weights_data_sequence_column:
157
- Optional Argument.
158
- Specifies the list of column(s) that uniquely identifies each row of
159
- the input argument "weights_data". The argument is used to ensure
160
- deterministic results for functions which produce results that vary
161
- from run to run.
162
- Types: str OR list of Strings (str)
163
-
164
- bias_data_sequence_column:
165
- Optional Argument.
166
- Specifies the list of column(s) that uniquely identifies each row of
167
- the input argument "bias_data". The argument is used to ensure
168
- deterministic results for functions which produce results that vary
169
- from run to run.
170
- Types: str OR list of Strings (str)
171
-
172
- RETURNS:
173
- Instance of KNNRecommenderPredict.
174
- Output teradataml DataFrames can be accessed using attribute
175
- references, such as KNNRecommenderPredictObj.<attribute_name>.
176
- Output teradataml DataFrame attribute name is:
177
- result
178
-
179
-
180
- RAISES:
181
- TeradataMlException
182
-
183
-
184
- EXAMPLES:
185
- # Load the data to run the example
186
- load_example_data("knnrecommenderpredict", ["ml_ratings", "ml_ratings_10"])
187
-
188
- # Create teradataml DataFrame objects.
189
- ml_ratings = DataFrame.from_table("ml_ratings")
190
-
191
- # Example 1 - Train the KNN Recommender system on the user ratings data
192
- knn_recommender_out = KNNRecommender(rating_table = ml_ratings,
193
- userid_column = "userid",
194
- itemid_column = "itemid",
195
- rating_column = "rating"
196
- )
197
-
198
- # ml_ratings_10 table has movie ratings from a subset of users from the ml_ratings
199
- # table. The ml_bias and ml_weights table has the weights and bias values
200
- # from the trained KNN Recommender model.
201
- ml_weights = knn_recommender_out.weight_model_table
202
- ml_bias = knn_recommender_out.bias_model_table
203
-
204
- # Here "bias_data" and "weights_data" have been made optional with the argument "object"
205
- # having the knn_recommender_out output object
206
- # Create teradataml DataFrame objects.
207
- ml_ratings_10 = DataFrame.from_table("ml_ratings_10")
208
-
209
- knn_recommender_predict_out = KNNRecommenderPredict(object = knn_recommender_out,
210
- ratings_data = ml_ratings_10,
211
- ratings_data_partition_column = "userid",
212
- topk = 5
213
- )
214
- # Print the result DataFrame
215
- print(knn_recommender_predict_out)
216
-
217
-
218
- # Use the generated model to make user rating predictions. Here the argument "object"
219
- # has been made optional with the specification of both the arguments "bias_data" and
220
- # "weights_data"
221
- knn_recommender_predict_out2 = KNNRecommenderPredict(ratings_data = ml_ratings_10,
222
- ratings_data_partition_column = "userid",
223
- weights_data = ml_weights,
224
- bias_data = ml_bias,
225
- topk = 5
226
- )
227
-
228
- # Print the result DataFrame
229
- print(knn_recommender_predict_out2)
230
-
231
- """
232
-
233
- # Start the timer to get the build time
234
- _start_time = time.time()
235
-
236
- self.object = object
237
- self.ratings_data = ratings_data
238
- self.weights_data = weights_data
239
- self.bias_data = bias_data
240
- self.userid_column = userid_column
241
- self.itemid_column = itemid_column
242
- self.rating_column = rating_column
243
- self.topk = topk
244
- self.showall = showall
245
- self.ratings_data_sequence_column = ratings_data_sequence_column
246
- self.weights_data_sequence_column = weights_data_sequence_column
247
- self.bias_data_sequence_column = bias_data_sequence_column
248
- self.ratings_data_partition_column = ratings_data_partition_column
249
- self.ratings_data_order_column = ratings_data_order_column
250
- self.weights_data_order_column = weights_data_order_column
251
- self.bias_data_order_column = bias_data_order_column
252
-
253
- # Create TeradataPyWrapperUtils instance which contains validation functions.
254
- self.__awu = AnalyticsWrapperUtils()
255
- self.__aed_utils = AedUtils()
256
-
257
- # Create argument information matrix to do parameter checking
258
- self.__arg_info_matrix = []
259
- self.__arg_info_matrix.append(["ratings_data", self.ratings_data, False, (DataFrame)])
260
- self.__arg_info_matrix.append(["ratings_data_partition_column", self.ratings_data_partition_column, False, (str,list)])
261
- self.__arg_info_matrix.append(["ratings_data_order_column", self.ratings_data_order_column, True, (str,list)])
262
- self.__arg_info_matrix.append(["weights_data", self.weights_data, True, (DataFrame)])
263
- self.__arg_info_matrix.append(["weights_data_order_column", self.weights_data_order_column, True, (str,list)])
264
- self.__arg_info_matrix.append(["bias_data", self.bias_data, True, (DataFrame)])
265
- self.__arg_info_matrix.append(["bias_data_order_column", self.bias_data_order_column, True, (str,list)])
266
- self.__arg_info_matrix.append(["userid_column", self.userid_column, True, (str)])
267
- self.__arg_info_matrix.append(["itemid_column", self.itemid_column, True, (str)])
268
- self.__arg_info_matrix.append(["rating_column", self.rating_column, True, (str)])
269
- self.__arg_info_matrix.append(["topk", self.topk, True, (int)])
270
- self.__arg_info_matrix.append(["showall", self.showall, True, (bool)])
271
- self.__arg_info_matrix.append(["ratings_data_sequence_column", self.ratings_data_sequence_column, True, (str,list)])
272
- self.__arg_info_matrix.append(["weights_data_sequence_column", self.weights_data_sequence_column, True, (str,list)])
273
- self.__arg_info_matrix.append(["bias_data_sequence_column", self.bias_data_sequence_column, True, (str,list)])
274
-
275
- if inspect.stack()[1][3] != '_from_model_catalog':
276
- # Perform the function validations
277
- self.__validate()
278
- # Generate the ML query
279
- self.__form_tdml_query()
280
- # Execute ML query
281
- self.__execute()
282
- # Get the prediction type
283
- self._prediction_type = self.__awu._get_function_prediction_type(self)
284
-
285
- # End the timer to get the build time
286
- _end_time = time.time()
287
-
288
- # Calculate the build time
289
- self._build_time = (int)(_end_time - _start_time)
290
-
291
- def __validate(self):
292
- """
293
- Function to validate sqlmr function arguments, which verifies missing
294
- arguments, input argument and table types. Also processes the
295
- argument values.
296
- """
297
- # Make sure either object or (weights_.data and bias_data) is provided.
298
- if not self.object and not (self.weights_data and self.bias_data):
299
- raise TeradataMlException(
300
- Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "object", "weights_data and bias_data"),
301
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
302
-
303
- # If object is not NULL, and if weights_data or bias_data is NULL, then initialize them from object
304
- if self.object and self.__awu._validate_argument_types([["object", self.object, True, (KNNRecommender)]]):
305
- self.weights_data = self.object._mlresults[0]
306
- self.bias_data = self.object._mlresults[1]
307
-
308
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
309
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
310
-
311
- # Make sure that a non-NULL value has been supplied correct type of argument
312
- self.__awu._validate_argument_types(self.__arg_info_matrix)
313
-
314
- # Check to make sure input table types are strings or data frame objects or of valid type.
315
- self.__awu._validate_input_table_datatype(self.ratings_data, "ratings_data", None)
316
- self.__awu._validate_input_table_datatype(self.weights_data, "weights_data", None)
317
- self.__awu._validate_input_table_datatype(self.bias_data, "bias_data", None)
318
-
319
- # Check whether the input columns passed to the argument are not empty.
320
- # Also check whether the input columns passed to the argument valid or not.
321
- self.__awu._validate_input_columns_not_empty(self.userid_column, "userid_column")
322
- self.__awu._validate_dataframe_has_argument_columns(self.userid_column, "userid_column", self.ratings_data, "ratings_data", False)
323
-
324
- self.__awu._validate_input_columns_not_empty(self.itemid_column, "itemid_column")
325
- self.__awu._validate_dataframe_has_argument_columns(self.itemid_column, "itemid_column", self.ratings_data, "ratings_data", False)
326
-
327
- self.__awu._validate_input_columns_not_empty(self.rating_column, "rating_column")
328
- self.__awu._validate_dataframe_has_argument_columns(self.rating_column, "rating_column", self.ratings_data, "ratings_data", False)
329
-
330
- self.__awu._validate_input_columns_not_empty(self.ratings_data_sequence_column, "ratings_data_sequence_column")
331
- self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_sequence_column, "ratings_data_sequence_column", self.ratings_data, "ratings_data", False)
332
-
333
- self.__awu._validate_input_columns_not_empty(self.weights_data_sequence_column, "weights_data_sequence_column")
334
- self.__awu._validate_dataframe_has_argument_columns(self.weights_data_sequence_column, "weights_data_sequence_column", self.weights_data, "weights_data", False)
335
-
336
- self.__awu._validate_input_columns_not_empty(self.bias_data_sequence_column, "bias_data_sequence_column")
337
- self.__awu._validate_dataframe_has_argument_columns(self.bias_data_sequence_column, "bias_data_sequence_column", self.bias_data, "bias_data", False)
338
-
339
- self.__awu._validate_input_columns_not_empty(self.ratings_data_partition_column, "ratings_data_partition_column")
340
- self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_partition_column, "ratings_data_partition_column", self.ratings_data, "ratings_data", True)
341
-
342
- self.__awu._validate_input_columns_not_empty(self.ratings_data_order_column, "ratings_data_order_column")
343
- self.__awu._validate_dataframe_has_argument_columns(self.ratings_data_order_column, "ratings_data_order_column", self.ratings_data, "ratings_data", False)
344
-
345
- self.__awu._validate_input_columns_not_empty(self.weights_data_order_column, "weights_data_order_column")
346
- self.__awu._validate_dataframe_has_argument_columns(self.weights_data_order_column, "weights_data_order_column", self.weights_data, "weights_data", False)
347
-
348
- self.__awu._validate_input_columns_not_empty(self.bias_data_order_column, "bias_data_order_column")
349
- self.__awu._validate_dataframe_has_argument_columns(self.bias_data_order_column, "bias_data_order_column", self.bias_data, "bias_data", False)
350
-
351
-
352
- def __form_tdml_query(self):
353
- """
354
- Function to generate the analytical function queries. The function defines
355
- variables and list of arguments required to form the query.
356
- """
357
-
358
- # Output table arguments list
359
- self.__func_output_args_sql_names = []
360
- self.__func_output_args = []
361
-
362
- # Model Cataloging related attributes.
363
- self._sql_specific_attributes = {}
364
- self._sql_formula_attribute_mapper = {}
365
- self._target_column = None
366
- self._algorithm_name = None
367
-
368
- # Generate lists for rest of the function arguments
369
- self.__func_other_arg_sql_names = []
370
- self.__func_other_args = []
371
- self.__func_other_arg_json_datatypes = []
372
-
373
- if self.userid_column is not None:
374
- self.__func_other_arg_sql_names.append("UserIdColumn")
375
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.userid_column, "\""), "'"))
376
- self.__func_other_arg_json_datatypes.append("COLUMNS")
377
-
378
- if self.itemid_column is not None:
379
- self.__func_other_arg_sql_names.append("ItemIdColumn")
380
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.itemid_column, "\""), "'"))
381
- self.__func_other_arg_json_datatypes.append("COLUMNS")
382
-
383
- if self.rating_column is not None:
384
- self.__func_other_arg_sql_names.append("RatingColumn")
385
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.rating_column, "\""), "'"))
386
- self.__func_other_arg_json_datatypes.append("COLUMNS")
387
-
388
- if self.topk is not None and self.topk != 3:
389
- self.__func_other_arg_sql_names.append("Topk")
390
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.topk, "'"))
391
- self.__func_other_arg_json_datatypes.append("INTEGER")
392
-
393
- if self.showall is not None and self.showall != True:
394
- self.__func_other_arg_sql_names.append("ShowAll")
395
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.showall, "'"))
396
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
397
-
398
- # Generate lists for rest of the function arguments
399
- sequence_input_by_list = []
400
- if self.ratings_data_sequence_column is not None:
401
- sequence_input_by_list.append("ratings:" + UtilFuncs._teradata_collapse_arglist(self.ratings_data_sequence_column, ""))
402
-
403
- if self.weights_data_sequence_column is not None:
404
- sequence_input_by_list.append("weights:" + UtilFuncs._teradata_collapse_arglist(self.weights_data_sequence_column, ""))
405
-
406
- if self.bias_data_sequence_column is not None:
407
- sequence_input_by_list.append("bias:" + UtilFuncs._teradata_collapse_arglist(self.bias_data_sequence_column, ""))
408
-
409
- if len(sequence_input_by_list) > 0:
410
- self.__func_other_arg_sql_names.append("SequenceInputBy")
411
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
412
- self.__func_other_args.append(sequence_input_by_arg_value)
413
- self.__func_other_arg_json_datatypes.append("STRING")
414
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
415
-
416
-
417
- # Declare empty lists to hold input table information.
418
- self.__func_input_arg_sql_names = []
419
- self.__func_input_table_view_query = []
420
- self.__func_input_dataframe_type = []
421
- self.__func_input_distribution = []
422
- self.__func_input_partition_by_cols = []
423
- self.__func_input_order_by_cols = []
424
-
425
- # Process ratings_data
426
- self.ratings_data_partition_column = UtilFuncs._teradata_collapse_arglist(self.ratings_data_partition_column, "\"")
427
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.ratings_data, False)
428
- self.__func_input_distribution.append("FACT")
429
- self.__func_input_arg_sql_names.append("ratings")
430
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
431
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
432
- self.__func_input_partition_by_cols.append(self.ratings_data_partition_column)
433
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.ratings_data_order_column, "\""))
434
-
435
- # Process weights_data
436
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.weights_data, False)
437
- self.__func_input_distribution.append("DIMENSION")
438
- self.__func_input_arg_sql_names.append("weights")
439
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
440
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
441
- self.__func_input_partition_by_cols.append("NA_character_")
442
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.weights_data_order_column, "\""))
443
-
444
- # Process bias_data
445
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.bias_data, False)
446
- self.__func_input_distribution.append("DIMENSION")
447
- self.__func_input_arg_sql_names.append("bias")
448
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
449
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
450
- self.__func_input_partition_by_cols.append("NA_character_")
451
- self.__func_input_order_by_cols.append(UtilFuncs._teradata_collapse_arglist(self.bias_data_order_column, "\""))
452
-
453
- function_name = "KNNRecommenderPredict"
454
- # Create instance to generate SQLMR.
455
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
456
- self.__func_input_arg_sql_names,
457
- self.__func_input_table_view_query,
458
- self.__func_input_dataframe_type,
459
- self.__func_input_distribution,
460
- self.__func_input_partition_by_cols,
461
- self.__func_input_order_by_cols,
462
- self.__func_other_arg_sql_names,
463
- self.__func_other_args,
464
- self.__func_other_arg_json_datatypes,
465
- self.__func_output_args_sql_names,
466
- self.__func_output_args,
467
- engine="ENGINE_ML")
468
- # Invoke call to SQL-MR generation.
469
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
470
-
471
- # Print SQL-MR query if requested to do so.
472
- if display.print_sqlmr_query:
473
- print(self.sqlmr_query)
474
-
475
- # Set the algorithm name for Model Cataloging.
476
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
477
-
478
- def __execute(self):
479
- """
480
- Function to execute SQL-MR queries.
481
- Create DataFrames for the required SQL-MR outputs.
482
- """
483
- # Generate STDOUT table name and add it to the output table list.
484
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False)
485
- try:
486
- # Generate the output.
487
- UtilFuncs._create_view(sqlmr_stdout_temp_tablename, self.sqlmr_query)
488
- except Exception as emsg:
489
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
490
-
491
- # Update output table data frames.
492
- self._mlresults = []
493
- self.result = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
494
- self._mlresults.append(self.result)
495
-
496
- def show_query(self):
497
- """
498
- Function to return the underlying SQL query.
499
- When model object is created using retrieve_model(), then None is returned.
500
- """
501
- return self.sqlmr_query
502
-
503
- def get_prediction_type(self):
504
- """
505
- Function to return the Prediction type of the algorithm.
506
- When model object is created using retrieve_model(), then the value returned is
507
- as saved in the Model Catalog.
508
- """
509
- return self._prediction_type
510
-
511
- def get_target_column(self):
512
- """
513
- Function to return the Target Column of the algorithm.
514
- When model object is created using retrieve_model(), then the value returned is
515
- as saved in the Model Catalog.
516
- """
517
- return self._target_column
518
-
519
- def get_build_time(self):
520
- """
521
- Function to return the build time of the algorithm in seconds.
522
- When model object is created using retrieve_model(), then the value returned is
523
- as saved in the Model Catalog.
524
- """
525
- return self._build_time
526
-
527
- def _get_algorithm_name(self):
528
- """
529
- Function to return the name of the algorithm.
530
- """
531
- return self._algorithm_name
532
-
533
- def _get_sql_specific_attributes(self):
534
- """
535
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
536
- """
537
- return self._sql_specific_attributes
538
-
539
- @classmethod
540
- def _from_model_catalog(cls,
541
- result = None,
542
- **kwargs):
543
- """
544
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
545
- """
546
- kwargs.pop("result", None)
547
-
548
- # Model Cataloging related attributes.
549
- target_column = kwargs.pop("__target_column", None)
550
- prediction_type = kwargs.pop("__prediction_type", None)
551
- algorithm_name = kwargs.pop("__algorithm_name", None)
552
- build_time = kwargs.pop("__build_time", None)
553
-
554
- # Let's create an object of this class.
555
- obj = cls(**kwargs)
556
- obj.result = result
557
-
558
- # Initialize the sqlmr_query class attribute.
559
- obj.sqlmr_query = None
560
-
561
- # Initialize the SQL specific Model Cataloging attributes.
562
- obj._sql_specific_attributes = None
563
- obj._target_column = target_column
564
- obj._prediction_type = prediction_type
565
- obj._algorithm_name = algorithm_name
566
- obj._build_time = build_time
567
-
568
- # Update output table data frames.
569
- obj._mlresults = []
570
- obj.result = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.result), source_type="table", database_name=UtilFuncs._extract_db_name(obj.result))
571
- obj._mlresults.append(obj.result)
572
- return obj
573
-
574
- def __repr__(self):
575
- """
576
- Returns the string representation for a KNNRecommenderPredict class instance.
577
- """
578
- repr_string="############ STDOUT Output ############"
579
- repr_string = "{}\n\n{}".format(repr_string,self.result)
580
- return repr_string
581
-