teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +238 -1
- teradataml/__init__.py +13 -3
- teradataml/_version.py +1 -1
- teradataml/analytics/Transformations.py +4 -4
- teradataml/analytics/__init__.py +0 -2
- teradataml/analytics/analytic_function_executor.py +3 -0
- teradataml/analytics/json_parser/utils.py +13 -12
- teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
- teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
- teradataml/analytics/sqle/__init__.py +0 -13
- teradataml/analytics/utils.py +1 -0
- teradataml/analytics/valib.py +3 -0
- teradataml/automl/__init__.py +1628 -0
- teradataml/automl/custom_json_utils.py +1270 -0
- teradataml/automl/data_preparation.py +993 -0
- teradataml/automl/data_transformation.py +727 -0
- teradataml/automl/feature_engineering.py +1648 -0
- teradataml/automl/feature_exploration.py +547 -0
- teradataml/automl/model_evaluation.py +163 -0
- teradataml/automl/model_training.py +887 -0
- teradataml/catalog/__init__.py +0 -2
- teradataml/catalog/byom.py +49 -6
- teradataml/catalog/function_argument_mapper.py +0 -2
- teradataml/catalog/model_cataloging_utils.py +2 -1021
- teradataml/common/aed_utils.py +6 -2
- teradataml/common/constants.py +50 -58
- teradataml/common/deprecations.py +160 -0
- teradataml/common/garbagecollector.py +61 -104
- teradataml/common/messagecodes.py +27 -36
- teradataml/common/messages.py +11 -15
- teradataml/common/utils.py +205 -287
- teradataml/common/wrapper_utils.py +1 -110
- teradataml/context/context.py +150 -78
- teradataml/data/bank_churn.csv +10001 -0
- teradataml/data/bmi.csv +501 -0
- teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
- teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
- teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
- teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
- teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
- teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
- teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
- teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
- teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
- teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
- teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
- teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
- teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
- teradataml/data/fish.csv +160 -0
- teradataml/data/glass_types.csv +215 -0
- teradataml/data/insurance.csv +1 -1
- teradataml/data/iris_data.csv +151 -0
- teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
- teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
- teradataml/data/load_example_data.py +3 -0
- teradataml/data/multi_model_classification.csv +401 -0
- teradataml/data/multi_model_regression.csv +401 -0
- teradataml/data/openml_example.json +63 -0
- teradataml/data/scripts/deploy_script.py +65 -0
- teradataml/data/scripts/mapper.R +20 -0
- teradataml/data/scripts/sklearn/__init__.py +0 -0
- teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
- teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
- teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
- teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
- teradataml/data/templates/open_source_ml.json +9 -0
- teradataml/data/teradataml_example.json +73 -1
- teradataml/data/test_classification.csv +101 -0
- teradataml/data/test_prediction.csv +101 -0
- teradataml/data/test_regression.csv +101 -0
- teradataml/data/train_multiclass.csv +101 -0
- teradataml/data/train_regression.csv +101 -0
- teradataml/data/train_regression_multiple_labels.csv +101 -0
- teradataml/data/wine_data.csv +1600 -0
- teradataml/dataframe/copy_to.py +79 -13
- teradataml/dataframe/data_transfer.py +8 -0
- teradataml/dataframe/dataframe.py +910 -311
- teradataml/dataframe/dataframe_utils.py +102 -5
- teradataml/dataframe/fastload.py +11 -3
- teradataml/dataframe/setop.py +15 -2
- teradataml/dataframe/sql.py +3735 -77
- teradataml/dataframe/sql_function_parameters.py +56 -5
- teradataml/dataframe/vantage_function_types.py +45 -1
- teradataml/dataframe/window.py +30 -29
- teradataml/dbutils/dbutils.py +18 -1
- teradataml/geospatial/geodataframe.py +18 -7
- teradataml/geospatial/geodataframecolumn.py +5 -0
- teradataml/hyperparameter_tuner/optimizer.py +910 -120
- teradataml/hyperparameter_tuner/utils.py +131 -37
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/lib/libaed_0_1.dylib +0 -0
- teradataml/lib/libaed_0_1.so +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/__init__.py +1 -0
- teradataml/opensource/sklearn/__init__.py +1 -0
- teradataml/opensource/sklearn/_class.py +255 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
- teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
- teradataml/opensource/sklearn/constants.py +54 -0
- teradataml/options/__init__.py +3 -6
- teradataml/options/configure.py +21 -20
- teradataml/scriptmgmt/UserEnv.py +61 -5
- teradataml/scriptmgmt/lls_utils.py +135 -53
- teradataml/table_operators/Apply.py +38 -6
- teradataml/table_operators/Script.py +45 -308
- teradataml/table_operators/TableOperator.py +182 -591
- teradataml/table_operators/__init__.py +0 -1
- teradataml/table_operators/table_operator_util.py +32 -40
- teradataml/utils/validators.py +127 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
- teradataml/analytics/mle/AdaBoost.py +0 -651
- teradataml/analytics/mle/AdaBoostPredict.py +0 -564
- teradataml/analytics/mle/Antiselect.py +0 -342
- teradataml/analytics/mle/Arima.py +0 -641
- teradataml/analytics/mle/ArimaPredict.py +0 -477
- teradataml/analytics/mle/Attribution.py +0 -1070
- teradataml/analytics/mle/Betweenness.py +0 -658
- teradataml/analytics/mle/Burst.py +0 -711
- teradataml/analytics/mle/CCM.py +0 -600
- teradataml/analytics/mle/CCMPrepare.py +0 -324
- teradataml/analytics/mle/CFilter.py +0 -460
- teradataml/analytics/mle/ChangePointDetection.py +0 -572
- teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
- teradataml/analytics/mle/Closeness.py +0 -737
- teradataml/analytics/mle/ConfusionMatrix.py +0 -420
- teradataml/analytics/mle/Correlation.py +0 -477
- teradataml/analytics/mle/Correlation2.py +0 -573
- teradataml/analytics/mle/CoxHazardRatio.py +0 -679
- teradataml/analytics/mle/CoxPH.py +0 -556
- teradataml/analytics/mle/CoxSurvival.py +0 -478
- teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
- teradataml/analytics/mle/DTW.py +0 -623
- teradataml/analytics/mle/DWT.py +0 -564
- teradataml/analytics/mle/DWT2D.py +0 -599
- teradataml/analytics/mle/DecisionForest.py +0 -716
- teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
- teradataml/analytics/mle/DecisionForestPredict.py +0 -561
- teradataml/analytics/mle/DecisionTree.py +0 -830
- teradataml/analytics/mle/DecisionTreePredict.py +0 -528
- teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
- teradataml/analytics/mle/FMeasure.py +0 -402
- teradataml/analytics/mle/FPGrowth.py +0 -734
- teradataml/analytics/mle/FrequentPaths.py +0 -695
- teradataml/analytics/mle/GLM.py +0 -558
- teradataml/analytics/mle/GLML1L2.py +0 -547
- teradataml/analytics/mle/GLML1L2Predict.py +0 -519
- teradataml/analytics/mle/GLMPredict.py +0 -529
- teradataml/analytics/mle/HMMDecoder.py +0 -945
- teradataml/analytics/mle/HMMEvaluator.py +0 -901
- teradataml/analytics/mle/HMMSupervised.py +0 -521
- teradataml/analytics/mle/HMMUnsupervised.py +0 -572
- teradataml/analytics/mle/Histogram.py +0 -561
- teradataml/analytics/mle/IDWT.py +0 -476
- teradataml/analytics/mle/IDWT2D.py +0 -493
- teradataml/analytics/mle/IdentityMatch.py +0 -763
- teradataml/analytics/mle/Interpolator.py +0 -918
- teradataml/analytics/mle/KMeans.py +0 -485
- teradataml/analytics/mle/KNN.py +0 -627
- teradataml/analytics/mle/KNNRecommender.py +0 -488
- teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
- teradataml/analytics/mle/LAR.py +0 -439
- teradataml/analytics/mle/LARPredict.py +0 -478
- teradataml/analytics/mle/LDA.py +0 -548
- teradataml/analytics/mle/LDAInference.py +0 -492
- teradataml/analytics/mle/LDATopicSummary.py +0 -464
- teradataml/analytics/mle/LevenshteinDistance.py +0 -450
- teradataml/analytics/mle/LinReg.py +0 -433
- teradataml/analytics/mle/LinRegPredict.py +0 -438
- teradataml/analytics/mle/MinHash.py +0 -544
- teradataml/analytics/mle/Modularity.py +0 -587
- teradataml/analytics/mle/NEREvaluator.py +0 -410
- teradataml/analytics/mle/NERExtractor.py +0 -595
- teradataml/analytics/mle/NERTrainer.py +0 -458
- teradataml/analytics/mle/NGrams.py +0 -570
- teradataml/analytics/mle/NPath.py +0 -634
- teradataml/analytics/mle/NTree.py +0 -549
- teradataml/analytics/mle/NaiveBayes.py +0 -462
- teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
- teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
- teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
- teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
- teradataml/analytics/mle/NamedEntityFinder.py +0 -529
- teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
- teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
- teradataml/analytics/mle/POSTagger.py +0 -417
- teradataml/analytics/mle/Pack.py +0 -411
- teradataml/analytics/mle/PageRank.py +0 -535
- teradataml/analytics/mle/PathAnalyzer.py +0 -426
- teradataml/analytics/mle/PathGenerator.py +0 -367
- teradataml/analytics/mle/PathStart.py +0 -464
- teradataml/analytics/mle/PathSummarizer.py +0 -470
- teradataml/analytics/mle/Pivot.py +0 -471
- teradataml/analytics/mle/ROC.py +0 -425
- teradataml/analytics/mle/RandomSample.py +0 -637
- teradataml/analytics/mle/RandomWalkSample.py +0 -490
- teradataml/analytics/mle/SAX.py +0 -779
- teradataml/analytics/mle/SVMDense.py +0 -677
- teradataml/analytics/mle/SVMDensePredict.py +0 -536
- teradataml/analytics/mle/SVMDenseSummary.py +0 -437
- teradataml/analytics/mle/SVMSparse.py +0 -557
- teradataml/analytics/mle/SVMSparsePredict.py +0 -553
- teradataml/analytics/mle/SVMSparseSummary.py +0 -435
- teradataml/analytics/mle/Sampling.py +0 -549
- teradataml/analytics/mle/Scale.py +0 -565
- teradataml/analytics/mle/ScaleByPartition.py +0 -496
- teradataml/analytics/mle/ScaleMap.py +0 -378
- teradataml/analytics/mle/ScaleSummary.py +0 -320
- teradataml/analytics/mle/SentenceExtractor.py +0 -363
- teradataml/analytics/mle/SentimentEvaluator.py +0 -432
- teradataml/analytics/mle/SentimentExtractor.py +0 -578
- teradataml/analytics/mle/SentimentTrainer.py +0 -405
- teradataml/analytics/mle/SeriesSplitter.py +0 -641
- teradataml/analytics/mle/Sessionize.py +0 -475
- teradataml/analytics/mle/SimpleMovAvg.py +0 -397
- teradataml/analytics/mle/StringSimilarity.py +0 -425
- teradataml/analytics/mle/TF.py +0 -389
- teradataml/analytics/mle/TFIDF.py +0 -504
- teradataml/analytics/mle/TextChunker.py +0 -414
- teradataml/analytics/mle/TextClassifier.py +0 -399
- teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
- teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
- teradataml/analytics/mle/TextMorph.py +0 -494
- teradataml/analytics/mle/TextParser.py +0 -623
- teradataml/analytics/mle/TextTagger.py +0 -530
- teradataml/analytics/mle/TextTokenizer.py +0 -502
- teradataml/analytics/mle/UnivariateStatistics.py +0 -488
- teradataml/analytics/mle/Unpack.py +0 -526
- teradataml/analytics/mle/Unpivot.py +0 -438
- teradataml/analytics/mle/VarMax.py +0 -776
- teradataml/analytics/mle/VectorDistance.py +0 -762
- teradataml/analytics/mle/WeightedMovAvg.py +0 -400
- teradataml/analytics/mle/XGBoost.py +0 -842
- teradataml/analytics/mle/XGBoostPredict.py +0 -627
- teradataml/analytics/mle/__init__.py +0 -123
- teradataml/analytics/mle/json/adaboost_mle.json +0 -135
- teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
- teradataml/analytics/mle/json/antiselect_mle.json +0 -34
- teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
- teradataml/analytics/mle/json/arima_mle.json +0 -172
- teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
- teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
- teradataml/analytics/mle/json/betweenness_mle.json +0 -97
- teradataml/analytics/mle/json/burst_mle.json +0 -140
- teradataml/analytics/mle/json/ccm_mle.json +0 -124
- teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
- teradataml/analytics/mle/json/cfilter_mle.json +0 -93
- teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
- teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
- teradataml/analytics/mle/json/closeness_mle.json +0 -104
- teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
- teradataml/analytics/mle/json/correlation_mle.json +0 -86
- teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
- teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
- teradataml/analytics/mle/json/coxph_mle.json +0 -98
- teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
- teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
- teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
- teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
- teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
- teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
- teradataml/analytics/mle/json/dtw_mle.json +0 -97
- teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
- teradataml/analytics/mle/json/dwt_mle.json +0 -101
- teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
- teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
- teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
- teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
- teradataml/analytics/mle/json/glm_mle.json +0 -111
- teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
- teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
- teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
- teradataml/analytics/mle/json/histogram_mle.json +0 -100
- teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
- teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
- teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
- teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
- teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
- teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
- teradataml/analytics/mle/json/idwt_mle.json +0 -66
- teradataml/analytics/mle/json/interpolator_mle.json +0 -151
- teradataml/analytics/mle/json/kmeans_mle.json +0 -97
- teradataml/analytics/mle/json/knn_mle.json +0 -141
- teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
- teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
- teradataml/analytics/mle/json/lar_mle.json +0 -78
- teradataml/analytics/mle/json/larpredict_mle.json +0 -69
- teradataml/analytics/mle/json/lda_mle.json +0 -130
- teradataml/analytics/mle/json/ldainference_mle.json +0 -78
- teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
- teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
- teradataml/analytics/mle/json/linreg_mle.json +0 -42
- teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
- teradataml/analytics/mle/json/minhash_mle.json +0 -113
- teradataml/analytics/mle/json/modularity_mle.json +0 -91
- teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
- teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
- teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
- teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
- teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
- teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
- teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
- teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
- teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
- teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
- teradataml/analytics/mle/json/ngrams_mle.json +0 -137
- teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
- teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
- teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
- teradataml/analytics/mle/json/pack_mle.json +0 -58
- teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
- teradataml/analytics/mle/json/pagerank_mle.json +0 -81
- teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
- teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
- teradataml/analytics/mle/json/pathstart_mle.json +0 -62
- teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
- teradataml/analytics/mle/json/pivoting_mle.json +0 -71
- teradataml/analytics/mle/json/postagger_mle.json +0 -51
- teradataml/analytics/mle/json/randomsample_mle.json +0 -131
- teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
- teradataml/analytics/mle/json/roc_mle.json +0 -73
- teradataml/analytics/mle/json/sampling_mle.json +0 -75
- teradataml/analytics/mle/json/sax_mle.json +0 -154
- teradataml/analytics/mle/json/scale_mle.json +0 -93
- teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
- teradataml/analytics/mle/json/scalemap_mle.json +0 -44
- teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
- teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
- teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
- teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
- teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
- teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
- teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
- teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
- teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
- teradataml/analytics/mle/json/svmdense_mle.json +0 -165
- teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
- teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
- teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
- teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
- teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
- teradataml/analytics/mle/json/textchunker_mle.json +0 -40
- teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
- teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
- teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
- teradataml/analytics/mle/json/textmorph_mle.json +0 -63
- teradataml/analytics/mle/json/textparser_mle.json +0 -166
- teradataml/analytics/mle/json/texttagger_mle.json +0 -81
- teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
- teradataml/analytics/mle/json/tf_mle.json +0 -33
- teradataml/analytics/mle/json/tfidf_mle.json +0 -34
- teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
- teradataml/analytics/mle/json/unpack_mle.json +0 -91
- teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
- teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
- teradataml/analytics/mle/json/varmax_mle.json +0 -176
- teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
- teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
- teradataml/analytics/mle/json/xgboost_mle.json +0 -178
- teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
- teradataml/analytics/sqle/Antiselect.py +0 -321
- teradataml/analytics/sqle/Attribution.py +0 -603
- teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
- teradataml/analytics/sqle/GLMPredict.py +0 -430
- teradataml/analytics/sqle/MovingAverage.py +0 -543
- teradataml/analytics/sqle/NGramSplitter.py +0 -548
- teradataml/analytics/sqle/NPath.py +0 -632
- teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
- teradataml/analytics/sqle/Pack.py +0 -388
- teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
- teradataml/analytics/sqle/Sessionize.py +0 -390
- teradataml/analytics/sqle/StringSimilarity.py +0 -400
- teradataml/analytics/sqle/Unpack.py +0 -503
- teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
- teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
- teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
- teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
- teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
- teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
- teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
- teradataml/analytics/sqle/json/npath_sqle.json +0 -67
- teradataml/analytics/sqle/json/pack_sqle.json +0 -47
- teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
- teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
- teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
- teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
- teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
- teradataml/catalog/model_cataloging.py +0 -980
- teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
- teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
- teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
- teradataml/table_operators/sandbox_container_util.py +0 -643
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
- {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
|
@@ -1,830 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/python
|
|
2
|
-
# ##################################################################
|
|
3
|
-
#
|
|
4
|
-
# Copyright 2018 Teradata. All rights reserved.
|
|
5
|
-
# TERADATA CONFIDENTIAL AND TRADE SECRET
|
|
6
|
-
#
|
|
7
|
-
# Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
|
|
8
|
-
# Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
|
|
9
|
-
#
|
|
10
|
-
# Version: 1.2
|
|
11
|
-
# Function Version: 1.31
|
|
12
|
-
#
|
|
13
|
-
# ##################################################################
|
|
14
|
-
|
|
15
|
-
import inspect
|
|
16
|
-
import time
|
|
17
|
-
from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
|
|
18
|
-
from teradataml.common.utils import UtilFuncs
|
|
19
|
-
from teradataml.context.context import *
|
|
20
|
-
from teradataml.dataframe.dataframe import DataFrame
|
|
21
|
-
from teradataml.common.aed_utils import AedUtils
|
|
22
|
-
from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
|
|
23
|
-
from teradataml.common.exceptions import TeradataMlException
|
|
24
|
-
from teradataml.common.messages import Messages
|
|
25
|
-
from teradataml.common.messagecodes import MessageCodes
|
|
26
|
-
from teradataml.common.constants import TeradataConstants
|
|
27
|
-
from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
|
|
28
|
-
from teradataml.options.display import display
|
|
29
|
-
|
|
30
|
-
class DecisionTree:
|
|
31
|
-
|
|
32
|
-
def __init__(self,
|
|
33
|
-
data = None,
|
|
34
|
-
attribute_name_columns = None,
|
|
35
|
-
attribute_value_column = None,
|
|
36
|
-
id_columns = None,
|
|
37
|
-
attribute_table = None,
|
|
38
|
-
response_table = None,
|
|
39
|
-
response_column = None,
|
|
40
|
-
categorical_attribute_table = None,
|
|
41
|
-
splits_table = None,
|
|
42
|
-
split_value = None,
|
|
43
|
-
num_splits = 10,
|
|
44
|
-
approx_splits = True,
|
|
45
|
-
nodesize = 1,
|
|
46
|
-
max_depth = 30,
|
|
47
|
-
weighted = False,
|
|
48
|
-
weight_column = None,
|
|
49
|
-
split_measure = "gini",
|
|
50
|
-
output_response_probdist = False,
|
|
51
|
-
response_probdist_type = "Laplace",
|
|
52
|
-
categorical_encoding = "graycode",
|
|
53
|
-
attribute_table_sequence_column = None,
|
|
54
|
-
data_sequence_column = None,
|
|
55
|
-
categorical_attribute_table_sequence_column = None,
|
|
56
|
-
response_table_sequence_column = None,
|
|
57
|
-
splits_table_sequence_column = None):
|
|
58
|
-
"""
|
|
59
|
-
DESCRIPTION:
|
|
60
|
-
The Decision Tree function creates a single decision tree in a
|
|
61
|
-
distributed fashion, either weighted or unweighted. The model teradataml
|
|
62
|
-
DataFrame that this function outputs can be input to the function
|
|
63
|
-
DecisionTreePredict.
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
PARAMETERS:
|
|
67
|
-
data:
|
|
68
|
-
Optional Argument.
|
|
69
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
70
|
-
input data set.
|
|
71
|
-
Note: This argument is required if you omit attribute_table
|
|
72
|
-
and response_table.
|
|
73
|
-
|
|
74
|
-
attribute_name_columns:
|
|
75
|
-
Required Argument.
|
|
76
|
-
Specifies the names of the attribute teradataml DataFrame columns
|
|
77
|
-
that define the attribute.
|
|
78
|
-
Types: str OR list of Strings (str)
|
|
79
|
-
|
|
80
|
-
attribute_value_column:
|
|
81
|
-
Required Argument.
|
|
82
|
-
Specifies the names of the attribute teradataml DataFrame columns
|
|
83
|
-
that define the value.
|
|
84
|
-
Types: str
|
|
85
|
-
|
|
86
|
-
id_columns:
|
|
87
|
-
Required Argument.
|
|
88
|
-
Specifies the names of the columns in the response and attribute
|
|
89
|
-
tables that specify the ID of the instance.
|
|
90
|
-
Types: str OR list of Strings (str)
|
|
91
|
-
|
|
92
|
-
attribute_table:
|
|
93
|
-
Optional Argument.
|
|
94
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
95
|
-
attribute names and the values.
|
|
96
|
-
Note : This argument is required if you omit data.
|
|
97
|
-
|
|
98
|
-
response_table:
|
|
99
|
-
Optional Argument.
|
|
100
|
-
Specifies the name of the teradataml DataFrame that contains the
|
|
101
|
-
response values.
|
|
102
|
-
Note : This argument is required if you omit data.
|
|
103
|
-
|
|
104
|
-
response_column:
|
|
105
|
-
Required Argument.
|
|
106
|
-
Specifies the name of the response teradataml DataFrame column that
|
|
107
|
-
contains the response variable.
|
|
108
|
-
Types: str
|
|
109
|
-
|
|
110
|
-
categorical_attribute_table:
|
|
111
|
-
Optional Argument.
|
|
112
|
-
The name of the input teradataml DataFrame containing the categorical
|
|
113
|
-
attributes.
|
|
114
|
-
|
|
115
|
-
splits_table:
|
|
116
|
-
Optional Argument.
|
|
117
|
-
Specifies the name of the input teradataml DataFrame that contains
|
|
118
|
-
the user-specified splits. By default, the function creates new
|
|
119
|
-
splits.
|
|
120
|
-
|
|
121
|
-
split_value:
|
|
122
|
-
Optional Argument.
|
|
123
|
-
If you specify splits_table, this argument specifies the name of the
|
|
124
|
-
column that contains the split value. If approx_splits is "true",
|
|
125
|
-
then the default value is splits_valcol; if not, then the default
|
|
126
|
-
value is the attribute_value_column argument, node_column.
|
|
127
|
-
Types: str
|
|
128
|
-
|
|
129
|
-
num_splits:
|
|
130
|
-
Optional Argument.
|
|
131
|
-
Specifies the number of splits to consider for each variable. The
|
|
132
|
-
function does not consider all possible splits for all attributes.
|
|
133
|
-
Default Value: 10
|
|
134
|
-
Types: int
|
|
135
|
-
|
|
136
|
-
approx_splits:
|
|
137
|
-
Optional Argument.
|
|
138
|
-
Specifies whether to use approximate percentiles (true) or exact
|
|
139
|
-
percentiles (false). Internally, the function uses percentile values
|
|
140
|
-
as split values.
|
|
141
|
-
Default Value: True
|
|
142
|
-
Types: bool
|
|
143
|
-
|
|
144
|
-
nodesize:
|
|
145
|
-
Optional Argument.
|
|
146
|
-
Specifies the decision tree stopping criteria and the minimum size
|
|
147
|
-
of any particular node within each decision tree.
|
|
148
|
-
Default Value: 1
|
|
149
|
-
Types: int
|
|
150
|
-
|
|
151
|
-
max_depth:
|
|
152
|
-
Optional Argument.
|
|
153
|
-
Specifies a decision tree stopping criteria. If the tree reaches a
|
|
154
|
-
depth past this value, the algorithm stops looking for splits.
|
|
155
|
-
Decision trees can grow up to (2(max_depth+1) - 1) nodes. This
|
|
156
|
-
stopping criteria has the greatest effect on function performance.
|
|
157
|
-
The maximum value is 60.
|
|
158
|
-
Default Value: 30
|
|
159
|
-
Types: int
|
|
160
|
-
|
|
161
|
-
weighted:
|
|
162
|
-
Optional Argument.
|
|
163
|
-
Specifies whether to build a weighted decision tree. If you specify
|
|
164
|
-
"true", then you must also specify the weight_column argument.
|
|
165
|
-
Default Value: False
|
|
166
|
-
Types: bool
|
|
167
|
-
|
|
168
|
-
weight_column:
|
|
169
|
-
Optional Argument.
|
|
170
|
-
Specifies the name of the response teradataml DataFrame column that
|
|
171
|
-
contains the weights of the attribute values.
|
|
172
|
-
Types: str
|
|
173
|
-
|
|
174
|
-
split_measure:
|
|
175
|
-
Optional Argument.
|
|
176
|
-
Specifies the impurity measurement to use while constructing the
|
|
177
|
-
decision tree.
|
|
178
|
-
Default Value: "gini"
|
|
179
|
-
Permitted Values: GINI, ENTROPY, CHISQUARE
|
|
180
|
-
Types: str
|
|
181
|
-
|
|
182
|
-
output_response_probdist:
|
|
183
|
-
Optional Argument.
|
|
184
|
-
Specifies switch to enable or disable output of probability
|
|
185
|
-
distribution for output labels.
|
|
186
|
-
Note: 'output_response_probdist' argument can accept input value True
|
|
187
|
-
only when teradataml is connected to Vantage 1.0 Maintenance
|
|
188
|
-
Update 2 version or later.
|
|
189
|
-
Default Value: False
|
|
190
|
-
Types: bool
|
|
191
|
-
|
|
192
|
-
response_probdist_type:
|
|
193
|
-
Optional Argument.
|
|
194
|
-
Specifies the type of algorithm to use to generate output probability
|
|
195
|
-
distribution for output labels. Uses one of Laplace, Frequency or
|
|
196
|
-
RawCounts to generate Probability Estimation Trees (PET) based
|
|
197
|
-
distributions.
|
|
198
|
-
Note: This argument can only be used when output_response_probdist is
|
|
199
|
-
set to True.
|
|
200
|
-
Default Value: "Laplace"
|
|
201
|
-
Permitted Values: Laplace, Frequency, RawCount
|
|
202
|
-
Types: str
|
|
203
|
-
|
|
204
|
-
categorical_encoding:
|
|
205
|
-
Optional Argument.
|
|
206
|
-
Specifies which encoding method is used for categorical variables.
|
|
207
|
-
Note: categorical_encoding argument support is only available
|
|
208
|
-
when teradataml is connected to Vantage 1.1 or later.
|
|
209
|
-
Default Value: "graycode"
|
|
210
|
-
Permitted Values: graycode, hashing
|
|
211
|
-
Types: str
|
|
212
|
-
|
|
213
|
-
attribute_table_sequence_column:
|
|
214
|
-
Optional Argument.
|
|
215
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
216
|
-
the input argument "attribute_table". The argument is used to ensure
|
|
217
|
-
deterministic results for functions which produce results that vary
|
|
218
|
-
from run to run.
|
|
219
|
-
Types: str OR list of Strings (str)
|
|
220
|
-
|
|
221
|
-
data_sequence_column:
|
|
222
|
-
Optional Argument.
|
|
223
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
224
|
-
the input argument "data". The argument is used to ensure
|
|
225
|
-
deterministic results for functions which produce results that vary
|
|
226
|
-
from run to run.
|
|
227
|
-
Types: str OR list of Strings (str)
|
|
228
|
-
|
|
229
|
-
categorical_attribute_table_sequence_column:
|
|
230
|
-
Optional Argument.
|
|
231
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
232
|
-
the input argument "categorical_attribute_table". The argument is
|
|
233
|
-
used to ensure deterministic results for functions which produce
|
|
234
|
-
results that vary from run to run.
|
|
235
|
-
Types: str OR list of Strings (str)
|
|
236
|
-
|
|
237
|
-
response_table_sequence_column:
|
|
238
|
-
Optional Argument.
|
|
239
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
240
|
-
the input argument "response_table". The argument is used to ensure
|
|
241
|
-
deterministic results for functions which produce results that vary
|
|
242
|
-
from run to run.
|
|
243
|
-
Types: str OR list of Strings (str)
|
|
244
|
-
|
|
245
|
-
splits_table_sequence_column:
|
|
246
|
-
Optional Argument.
|
|
247
|
-
Specifies the list of column(s) that uniquely identifies each row of
|
|
248
|
-
the input argument "splits_table". The argument is used to ensure
|
|
249
|
-
deterministic results for functions which produce results that vary
|
|
250
|
-
from run to run.
|
|
251
|
-
Types: str OR list of Strings (str)
|
|
252
|
-
|
|
253
|
-
RETURNS:
|
|
254
|
-
Instance of DecisionTree.
|
|
255
|
-
Output teradataml DataFrames can be accessed using attribute
|
|
256
|
-
references, such as DecisionTreeObj.<attribute_name>.
|
|
257
|
-
Output teradataml DataFrame attribute names are:
|
|
258
|
-
1. model_table
|
|
259
|
-
2. intermediate_splits_table
|
|
260
|
-
3. final_response_tableto
|
|
261
|
-
4. output
|
|
262
|
-
|
|
263
|
-
Note: When argument splits_table is used, output teradataml DataFrame,
|
|
264
|
-
intermediate_splits_table, is not created. If tried to access this
|
|
265
|
-
attribute an AttributeError will be raised.
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
RAISES:
|
|
269
|
-
TeradataMlException
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
EXAMPLES:
|
|
273
|
-
# Load the data to run the example.
|
|
274
|
-
load_example_data("DecisionTree", ["iris_attribute_train", "iris_response_train", "iris_altinput"])
|
|
275
|
-
|
|
276
|
-
# Create teradataml DataFrame
|
|
277
|
-
iris_attribute_train = DataFrame.from_table("iris_attribute_train")
|
|
278
|
-
iris_altinput = DataFrame.from_table("iris_altinput")
|
|
279
|
-
iris_response_train = DataFrame.from_table("iris_response_train")
|
|
280
|
-
|
|
281
|
-
# Example 1 -
|
|
282
|
-
sdt_out1 = DecisionTree(attribute_name_columns = 'attribute',
|
|
283
|
-
attribute_value_column = 'attrvalue',
|
|
284
|
-
id_columns = 'pid',
|
|
285
|
-
attribute_table = iris_attribute_train,
|
|
286
|
-
response_table = iris_response_train,
|
|
287
|
-
response_column = 'response',
|
|
288
|
-
approx_splits = True,
|
|
289
|
-
nodesize = 100,
|
|
290
|
-
max_depth = 5,
|
|
291
|
-
weighted = False,
|
|
292
|
-
split_measure = "gini",
|
|
293
|
-
output_response_probdist = False)
|
|
294
|
-
|
|
295
|
-
# Print the result DataFrame
|
|
296
|
-
print(sdt_out1.model_table)
|
|
297
|
-
print(sdt_out1.intermediate_splits_table)
|
|
298
|
-
print(sdt_out1.final_response_tableto)
|
|
299
|
-
print(sdt_out1.output)
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
# Example 2 -
|
|
303
|
-
sdt_out2 = DecisionTree(data = iris_altinput,
|
|
304
|
-
attribute_name_columns = 'attribute',
|
|
305
|
-
attribute_value_column = 'attrvalue',
|
|
306
|
-
id_columns = 'pid',
|
|
307
|
-
response_column = 'response',
|
|
308
|
-
num_splits = 10,
|
|
309
|
-
nodesize = 100,
|
|
310
|
-
max_depth = 5,
|
|
311
|
-
weighted = False,
|
|
312
|
-
split_measure = "gini",
|
|
313
|
-
output_response_probdist = False,
|
|
314
|
-
response_probdist_type = "Laplace")
|
|
315
|
-
|
|
316
|
-
# Print the result DataFrame
|
|
317
|
-
print(sdt_out2.model_table)
|
|
318
|
-
print(sdt_out2.intermediate_splits_table)
|
|
319
|
-
print(sdt_out2.final_response_tableto)
|
|
320
|
-
print(sdt_out2.output)
|
|
321
|
-
|
|
322
|
-
"""
|
|
323
|
-
|
|
324
|
-
# Start the timer to get the build time
|
|
325
|
-
_start_time = time.time()
|
|
326
|
-
|
|
327
|
-
self.data = data
|
|
328
|
-
self.attribute_name_columns = attribute_name_columns
|
|
329
|
-
self.attribute_value_column = attribute_value_column
|
|
330
|
-
self.id_columns = id_columns
|
|
331
|
-
self.attribute_table = attribute_table
|
|
332
|
-
self.response_table = response_table
|
|
333
|
-
self.response_column = response_column
|
|
334
|
-
self.categorical_attribute_table = categorical_attribute_table
|
|
335
|
-
self.splits_table = splits_table
|
|
336
|
-
self.split_value = split_value
|
|
337
|
-
self.num_splits = num_splits
|
|
338
|
-
self.approx_splits = approx_splits
|
|
339
|
-
self.nodesize = nodesize
|
|
340
|
-
self.max_depth = max_depth
|
|
341
|
-
self.weighted = weighted
|
|
342
|
-
self.weight_column = weight_column
|
|
343
|
-
self.split_measure = split_measure
|
|
344
|
-
self.output_response_probdist = output_response_probdist
|
|
345
|
-
self.response_probdist_type = response_probdist_type
|
|
346
|
-
self.categorical_encoding = categorical_encoding
|
|
347
|
-
self.attribute_table_sequence_column = attribute_table_sequence_column
|
|
348
|
-
self.data_sequence_column = data_sequence_column
|
|
349
|
-
self.categorical_attribute_table_sequence_column = categorical_attribute_table_sequence_column
|
|
350
|
-
self.response_table_sequence_column = response_table_sequence_column
|
|
351
|
-
self.splits_table_sequence_column = splits_table_sequence_column
|
|
352
|
-
|
|
353
|
-
# Create TeradataPyWrapperUtils instance which contains validation functions.
|
|
354
|
-
self.__awu = AnalyticsWrapperUtils()
|
|
355
|
-
self.__aed_utils = AedUtils()
|
|
356
|
-
|
|
357
|
-
# Create argument information matrix to do parameter checking
|
|
358
|
-
self.__arg_info_matrix = []
|
|
359
|
-
self.__arg_info_matrix.append(["data", self.data, True, (DataFrame)])
|
|
360
|
-
self.__arg_info_matrix.append(["attribute_name_columns", self.attribute_name_columns, False, (str,list)])
|
|
361
|
-
self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, False, (str)])
|
|
362
|
-
self.__arg_info_matrix.append(["id_columns", self.id_columns, False, (str,list)])
|
|
363
|
-
self.__arg_info_matrix.append(["attribute_table", self.attribute_table, True, (DataFrame)])
|
|
364
|
-
self.__arg_info_matrix.append(["response_table", self.response_table, True, (DataFrame)])
|
|
365
|
-
self.__arg_info_matrix.append(["response_column", self.response_column, False, (str)])
|
|
366
|
-
self.__arg_info_matrix.append(["categorical_attribute_table", self.categorical_attribute_table, True, (DataFrame)])
|
|
367
|
-
self.__arg_info_matrix.append(["splits_table", self.splits_table, True, (DataFrame)])
|
|
368
|
-
self.__arg_info_matrix.append(["split_value", self.split_value, True, (str)])
|
|
369
|
-
self.__arg_info_matrix.append(["num_splits", self.num_splits, True, (int)])
|
|
370
|
-
self.__arg_info_matrix.append(["approx_splits", self.approx_splits, True, (bool)])
|
|
371
|
-
self.__arg_info_matrix.append(["nodesize", self.nodesize, True, (int)])
|
|
372
|
-
self.__arg_info_matrix.append(["max_depth", self.max_depth, True, (int)])
|
|
373
|
-
self.__arg_info_matrix.append(["weighted", self.weighted, True, (bool)])
|
|
374
|
-
self.__arg_info_matrix.append(["weight_column", self.weight_column, True, (str)])
|
|
375
|
-
self.__arg_info_matrix.append(["split_measure", self.split_measure, True, (str)])
|
|
376
|
-
self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
|
|
377
|
-
self.__arg_info_matrix.append(["response_probdist_type", self.response_probdist_type, True, (str)])
|
|
378
|
-
self.__arg_info_matrix.append(["categorical_encoding", self.categorical_encoding, True, (str)])
|
|
379
|
-
self.__arg_info_matrix.append(["attribute_table_sequence_column", self.attribute_table_sequence_column, True, (str,list)])
|
|
380
|
-
self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
|
|
381
|
-
self.__arg_info_matrix.append(["categorical_attribute_table_sequence_column", self.categorical_attribute_table_sequence_column, True, (str,list)])
|
|
382
|
-
self.__arg_info_matrix.append(["response_table_sequence_column", self.response_table_sequence_column, True, (str,list)])
|
|
383
|
-
self.__arg_info_matrix.append(["splits_table_sequence_column", self.splits_table_sequence_column, True, (str,list)])
|
|
384
|
-
|
|
385
|
-
if inspect.stack()[1][3] != '_from_model_catalog':
|
|
386
|
-
# Perform the function validations
|
|
387
|
-
self.__validate()
|
|
388
|
-
# Generate the ML query
|
|
389
|
-
self.__form_tdml_query()
|
|
390
|
-
# Execute ML query
|
|
391
|
-
self.__execute()
|
|
392
|
-
# Get the prediction type
|
|
393
|
-
self._prediction_type = self.__awu._get_function_prediction_type(self)
|
|
394
|
-
|
|
395
|
-
# End the timer to get the build time
|
|
396
|
-
_end_time = time.time()
|
|
397
|
-
|
|
398
|
-
# Calculate the build time
|
|
399
|
-
self._build_time = (int)(_end_time - _start_time)
|
|
400
|
-
|
|
401
|
-
def __validate(self):
|
|
402
|
-
"""
|
|
403
|
-
Function to validate sqlmr function arguments, which verifies missing
|
|
404
|
-
arguments, input argument and table types. Also processes the
|
|
405
|
-
argument values.
|
|
406
|
-
"""
|
|
407
|
-
|
|
408
|
-
# Make sure that a non-NULL value has been supplied for all mandatory arguments
|
|
409
|
-
self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
|
|
410
|
-
|
|
411
|
-
# Make sure that a non-NULL value has been supplied correct type of argument
|
|
412
|
-
self.__awu._validate_argument_types(self.__arg_info_matrix)
|
|
413
|
-
|
|
414
|
-
# Check to make sure input table types are strings or data frame objects or of valid type.
|
|
415
|
-
self.__awu._validate_input_table_datatype(self.attribute_table, "attribute_table", None)
|
|
416
|
-
self.__awu._validate_input_table_datatype(self.data, "data", None)
|
|
417
|
-
self.__awu._validate_input_table_datatype(self.categorical_attribute_table, "categorical_attribute_table", None)
|
|
418
|
-
self.__awu._validate_input_table_datatype(self.response_table, "response_table", None)
|
|
419
|
-
self.__awu._validate_input_table_datatype(self.splits_table, "splits_table", None)
|
|
420
|
-
|
|
421
|
-
# Make sure either of the input tables are provided
|
|
422
|
-
if ((self.data is None and (self.attribute_table is None or self.response_table is None)) or
|
|
423
|
-
(self.data is not None and (self.attribute_table is not None or self.response_table is not None))):
|
|
424
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "data",
|
|
425
|
-
"attribute_table and response_table"),
|
|
426
|
-
MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
|
|
427
|
-
|
|
428
|
-
# Check for permitted values
|
|
429
|
-
split_measure_permitted_values = ["GINI", "ENTROPY", "CHISQUARE"]
|
|
430
|
-
self.__awu._validate_permitted_values(self.split_measure, split_measure_permitted_values, "split_measure")
|
|
431
|
-
|
|
432
|
-
response_probdist_type_permitted_values = ["LAPLACE", "FREQUENCY", "RAWCOUNT"]
|
|
433
|
-
self.__awu._validate_permitted_values(self.response_probdist_type, response_probdist_type_permitted_values, "response_probdist_type")
|
|
434
|
-
|
|
435
|
-
categorical_encoding_permitted_values = ["GRAYCODE", "HASHING"]
|
|
436
|
-
self.__awu._validate_permitted_values(self.categorical_encoding, categorical_encoding_permitted_values, "categorical_encoding")
|
|
437
|
-
|
|
438
|
-
# Check whether the input columns passed to the argument are not empty.
|
|
439
|
-
# Also check whether the input columns passed to the argument valid or not.
|
|
440
|
-
if self.data is not None:
|
|
441
|
-
input_data = self.data
|
|
442
|
-
input_data_arg_name = "data"
|
|
443
|
-
else:
|
|
444
|
-
input_data = self.attribute_table
|
|
445
|
-
input_data_arg_name = "attribute_table"
|
|
446
|
-
|
|
447
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_name_columns, "attribute_name_columns")
|
|
448
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_columns, "attribute_name_columns", input_data, input_data_arg_name, False)
|
|
449
|
-
|
|
450
|
-
self.__awu._validate_input_columns_not_empty(self.id_columns, "id_columns")
|
|
451
|
-
self.__awu._validate_dataframe_has_argument_columns(self.id_columns, "id_columns", input_data, input_data_arg_name, False)
|
|
452
|
-
|
|
453
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
|
|
454
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", input_data, input_data_arg_name, False)
|
|
455
|
-
|
|
456
|
-
if self.data is None:
|
|
457
|
-
input_data = self.response_table
|
|
458
|
-
input_data_arg_name = "response_table"
|
|
459
|
-
|
|
460
|
-
self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
|
|
461
|
-
self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", input_data, input_data_arg_name, False)
|
|
462
|
-
|
|
463
|
-
self.__awu._validate_input_columns_not_empty(self.split_value, "split_value")
|
|
464
|
-
self.__awu._validate_dataframe_has_argument_columns(self.split_value, "split_value", self.splits_table, "splits_table", False)
|
|
465
|
-
|
|
466
|
-
self.__awu._validate_input_columns_not_empty(self.weight_column, "weight_column")
|
|
467
|
-
self.__awu._validate_dataframe_has_argument_columns(self.weight_column, "weight_column", input_data, input_data_arg_name, False)
|
|
468
|
-
|
|
469
|
-
self.__awu._validate_input_columns_not_empty(self.attribute_table_sequence_column, "attribute_table_sequence_column")
|
|
470
|
-
self.__awu._validate_dataframe_has_argument_columns(self.attribute_table_sequence_column, "attribute_table_sequence_column", self.attribute_table, "attribute_table", False)
|
|
471
|
-
|
|
472
|
-
self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
|
|
473
|
-
self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
|
|
474
|
-
|
|
475
|
-
self.__awu._validate_input_columns_not_empty(self.categorical_attribute_table_sequence_column, "categorical_attribute_table_sequence_column")
|
|
476
|
-
self.__awu._validate_dataframe_has_argument_columns(self.categorical_attribute_table_sequence_column, "categorical_attribute_table_sequence_column", self.categorical_attribute_table, "categorical_attribute_table", False)
|
|
477
|
-
|
|
478
|
-
self.__awu._validate_input_columns_not_empty(self.response_table_sequence_column, "response_table_sequence_column")
|
|
479
|
-
self.__awu._validate_dataframe_has_argument_columns(self.response_table_sequence_column, "response_table_sequence_column", self.response_table, "response_table", False)
|
|
480
|
-
|
|
481
|
-
self.__awu._validate_input_columns_not_empty(self.splits_table_sequence_column, "splits_table_sequence_column")
|
|
482
|
-
self.__awu._validate_dataframe_has_argument_columns(self.splits_table_sequence_column, "splits_table_sequence_column", self.splits_table, "splits_table", False)
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
def __form_tdml_query(self):
|
|
486
|
-
"""
|
|
487
|
-
Function to generate the analytical function queries. The function defines
|
|
488
|
-
variables and list of arguments required to form the query.
|
|
489
|
-
"""
|
|
490
|
-
# Generate temp table names for output table parameters if any.
|
|
491
|
-
self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
492
|
-
self.__intermediate_splits_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
493
|
-
self.__final_response_tableto_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
494
|
-
|
|
495
|
-
# Output table arguments list
|
|
496
|
-
if (self.splits_table is None):
|
|
497
|
-
self.__func_output_args_sql_names = ["OutputTable", "IntermediateSplitsTable", "SaveFinalResponseTableTo"]
|
|
498
|
-
self.__func_output_args = [self.__model_table_temp_tablename, self.__intermediate_splits_table_temp_tablename, self.__final_response_tableto_temp_tablename]
|
|
499
|
-
else:
|
|
500
|
-
self.__func_output_args_sql_names = ["OutputTable", "SaveFinalResponseTableTo"]
|
|
501
|
-
self.__func_output_args = [self.__model_table_temp_tablename, self.__final_response_tableto_temp_tablename]
|
|
502
|
-
|
|
503
|
-
# Model Cataloging related attributes.
|
|
504
|
-
self._sql_specific_attributes = {}
|
|
505
|
-
self._sql_formula_attribute_mapper = {}
|
|
506
|
-
self._target_column = None
|
|
507
|
-
self._algorithm_name = None
|
|
508
|
-
|
|
509
|
-
# Generate lists for rest of the function arguments
|
|
510
|
-
self.__func_other_arg_sql_names = []
|
|
511
|
-
self.__func_other_args = []
|
|
512
|
-
self.__func_other_arg_json_datatypes = []
|
|
513
|
-
|
|
514
|
-
self.__func_other_arg_sql_names.append("AttributeNameColumns")
|
|
515
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_columns, "\""), "'"))
|
|
516
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
517
|
-
|
|
518
|
-
self.__func_other_arg_sql_names.append("IdColumns")
|
|
519
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_columns, "\""), "'"))
|
|
520
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
521
|
-
|
|
522
|
-
self.__func_other_arg_sql_names.append("AttributeValueColumn")
|
|
523
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
|
|
524
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
525
|
-
|
|
526
|
-
self.__func_other_arg_sql_names.append("ResponseColumn")
|
|
527
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
|
|
528
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
529
|
-
|
|
530
|
-
if self.split_value is not None:
|
|
531
|
-
self.__func_other_arg_sql_names.append("SplitsValueColumn")
|
|
532
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.split_value, "\""), "'"))
|
|
533
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
534
|
-
|
|
535
|
-
if self.weight_column is not None:
|
|
536
|
-
self.__func_other_arg_sql_names.append("WeightColumn")
|
|
537
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.weight_column, "\""), "'"))
|
|
538
|
-
self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
|
|
539
|
-
|
|
540
|
-
if self.num_splits is not None and self.num_splits != 10:
|
|
541
|
-
self.__func_other_arg_sql_names.append("NumSplits")
|
|
542
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_splits, "'"))
|
|
543
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
544
|
-
|
|
545
|
-
if self.approx_splits is not None and self.approx_splits != True:
|
|
546
|
-
self.__func_other_arg_sql_names.append("ApproxSplits")
|
|
547
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.approx_splits, "'"))
|
|
548
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
549
|
-
|
|
550
|
-
if self.nodesize is not None:
|
|
551
|
-
self.__func_other_arg_sql_names.append("MinNodeSize")
|
|
552
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.nodesize, "'"))
|
|
553
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
554
|
-
|
|
555
|
-
if self.max_depth is not None:
|
|
556
|
-
self.__func_other_arg_sql_names.append("MaxDepth")
|
|
557
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_depth, "'"))
|
|
558
|
-
self.__func_other_arg_json_datatypes.append("INTEGER")
|
|
559
|
-
|
|
560
|
-
if self.split_measure is not None and self.split_measure != "gini":
|
|
561
|
-
self.__func_other_arg_sql_names.append("SplitMeasure")
|
|
562
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.split_measure, "'"))
|
|
563
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
564
|
-
|
|
565
|
-
if self.weighted is not None and self.weighted != False:
|
|
566
|
-
self.__func_other_arg_sql_names.append("Weighted")
|
|
567
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.weighted, "'"))
|
|
568
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
569
|
-
|
|
570
|
-
if self.output_response_probdist is not None and self.output_response_probdist != False:
|
|
571
|
-
self.__func_other_arg_sql_names.append("OutputResponseProbDist")
|
|
572
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
|
|
573
|
-
self.__func_other_arg_json_datatypes.append("BOOLEAN")
|
|
574
|
-
|
|
575
|
-
if self.response_probdist_type is not None and self.response_probdist_type != "Laplace":
|
|
576
|
-
self.__func_other_arg_sql_names.append("ResponseProbDistType")
|
|
577
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.response_probdist_type, "'"))
|
|
578
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
579
|
-
|
|
580
|
-
if self.categorical_encoding is not None and self.categorical_encoding != "graycode":
|
|
581
|
-
self.__func_other_arg_sql_names.append("CategoricalEncoding")
|
|
582
|
-
self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.categorical_encoding, "'"))
|
|
583
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
584
|
-
|
|
585
|
-
# Generate lists for rest of the function arguments
|
|
586
|
-
sequence_input_by_list = []
|
|
587
|
-
if self.attribute_table_sequence_column is not None:
|
|
588
|
-
sequence_input_by_list.append("AttributeTableName:" + UtilFuncs._teradata_collapse_arglist(self.attribute_table_sequence_column, ""))
|
|
589
|
-
|
|
590
|
-
if self.data_sequence_column is not None:
|
|
591
|
-
sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
|
|
592
|
-
|
|
593
|
-
if self.categorical_attribute_table_sequence_column is not None:
|
|
594
|
-
sequence_input_by_list.append("CategoricalAttributeTableName:" + UtilFuncs._teradata_collapse_arglist(self.categorical_attribute_table_sequence_column, ""))
|
|
595
|
-
|
|
596
|
-
if self.response_table_sequence_column is not None:
|
|
597
|
-
sequence_input_by_list.append("ResponseTableName:" + UtilFuncs._teradata_collapse_arglist(self.response_table_sequence_column, ""))
|
|
598
|
-
|
|
599
|
-
if self.splits_table_sequence_column is not None:
|
|
600
|
-
sequence_input_by_list.append("SplitsTable:" + UtilFuncs._teradata_collapse_arglist(self.splits_table_sequence_column, ""))
|
|
601
|
-
|
|
602
|
-
if len(sequence_input_by_list) > 0:
|
|
603
|
-
self.__func_other_arg_sql_names.append("SequenceInputBy")
|
|
604
|
-
sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
|
|
605
|
-
self.__func_other_args.append(sequence_input_by_arg_value)
|
|
606
|
-
self.__func_other_arg_json_datatypes.append("STRING")
|
|
607
|
-
self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
# Declare empty lists to hold input table information.
|
|
611
|
-
self.__func_input_arg_sql_names = []
|
|
612
|
-
self.__func_input_table_view_query = []
|
|
613
|
-
self.__func_input_dataframe_type = []
|
|
614
|
-
self.__func_input_distribution = []
|
|
615
|
-
self.__func_input_partition_by_cols = []
|
|
616
|
-
self.__func_input_order_by_cols = []
|
|
617
|
-
|
|
618
|
-
# Process attribute_table
|
|
619
|
-
if self.attribute_table is not None:
|
|
620
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.attribute_table, False)
|
|
621
|
-
self.__func_input_distribution.append("NONE")
|
|
622
|
-
self.__func_input_arg_sql_names.append("AttributeTableName")
|
|
623
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
624
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
625
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
626
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
627
|
-
|
|
628
|
-
# Process data
|
|
629
|
-
if self.data is not None:
|
|
630
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
|
|
631
|
-
self.__func_input_distribution.append("NONE")
|
|
632
|
-
self.__func_input_arg_sql_names.append("InputTable")
|
|
633
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
634
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
635
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
636
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
637
|
-
|
|
638
|
-
# Process categorical_attribute_table
|
|
639
|
-
if self.categorical_attribute_table is not None:
|
|
640
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.categorical_attribute_table, False)
|
|
641
|
-
self.__func_input_distribution.append("NONE")
|
|
642
|
-
self.__func_input_arg_sql_names.append("CategoricalAttributeTableName")
|
|
643
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
644
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
645
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
646
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
647
|
-
|
|
648
|
-
# Process response_table
|
|
649
|
-
if self.response_table is not None:
|
|
650
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.response_table, False)
|
|
651
|
-
self.__func_input_distribution.append("NONE")
|
|
652
|
-
self.__func_input_arg_sql_names.append("ResponseTableName")
|
|
653
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
654
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
655
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
656
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
657
|
-
|
|
658
|
-
# Process splits_table
|
|
659
|
-
if self.splits_table is not None:
|
|
660
|
-
self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.splits_table, False)
|
|
661
|
-
self.__func_input_distribution.append("NONE")
|
|
662
|
-
self.__func_input_arg_sql_names.append("SplitsTable")
|
|
663
|
-
self.__func_input_table_view_query.append(self.__table_ref["ref"])
|
|
664
|
-
self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
|
|
665
|
-
self.__func_input_partition_by_cols.append("NA_character_")
|
|
666
|
-
self.__func_input_order_by_cols.append("NA_character_")
|
|
667
|
-
|
|
668
|
-
function_name = "DecisionTree"
|
|
669
|
-
# Create instance to generate SQLMR.
|
|
670
|
-
self.__aqg_obj = AnalyticQueryGenerator(function_name,
|
|
671
|
-
self.__func_input_arg_sql_names,
|
|
672
|
-
self.__func_input_table_view_query,
|
|
673
|
-
self.__func_input_dataframe_type,
|
|
674
|
-
self.__func_input_distribution,
|
|
675
|
-
self.__func_input_partition_by_cols,
|
|
676
|
-
self.__func_input_order_by_cols,
|
|
677
|
-
self.__func_other_arg_sql_names,
|
|
678
|
-
self.__func_other_args,
|
|
679
|
-
self.__func_other_arg_json_datatypes,
|
|
680
|
-
self.__func_output_args_sql_names,
|
|
681
|
-
self.__func_output_args,
|
|
682
|
-
engine="ENGINE_ML")
|
|
683
|
-
# Invoke call to SQL-MR generation.
|
|
684
|
-
self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
|
|
685
|
-
|
|
686
|
-
# Print SQL-MR query if requested to do so.
|
|
687
|
-
if display.print_sqlmr_query:
|
|
688
|
-
print(self.sqlmr_query)
|
|
689
|
-
|
|
690
|
-
# Set the algorithm name for Model Cataloging.
|
|
691
|
-
self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
|
|
692
|
-
|
|
693
|
-
def __execute(self):
|
|
694
|
-
"""
|
|
695
|
-
Function to execute SQL-MR queries.
|
|
696
|
-
Create DataFrames for the required SQL-MR outputs.
|
|
697
|
-
"""
|
|
698
|
-
# Generate STDOUT table name and add it to the output table list.
|
|
699
|
-
sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
|
|
700
|
-
try:
|
|
701
|
-
# Generate the output.
|
|
702
|
-
UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
|
|
703
|
-
except Exception as emsg:
|
|
704
|
-
raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
|
|
705
|
-
|
|
706
|
-
# Update output table data frames.
|
|
707
|
-
self._mlresults = []
|
|
708
|
-
self.model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__model_table_temp_tablename))
|
|
709
|
-
if self.splits_table is None:
|
|
710
|
-
self.intermediate_splits_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__intermediate_splits_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__intermediate_splits_table_temp_tablename))
|
|
711
|
-
self.final_response_tableto = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__final_response_tableto_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__final_response_tableto_temp_tablename))
|
|
712
|
-
self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
|
|
713
|
-
self._mlresults.append(self.model_table)
|
|
714
|
-
if self.splits_table is None:
|
|
715
|
-
self._mlresults.append(self.intermediate_splits_table)
|
|
716
|
-
self._mlresults.append(self.final_response_tableto)
|
|
717
|
-
self._mlresults.append(self.output)
|
|
718
|
-
|
|
719
|
-
def show_query(self):
|
|
720
|
-
"""
|
|
721
|
-
Function to return the underlying SQL query.
|
|
722
|
-
When model object is created using retrieve_model(), then None is returned.
|
|
723
|
-
"""
|
|
724
|
-
return self.sqlmr_query
|
|
725
|
-
|
|
726
|
-
def get_prediction_type(self):
|
|
727
|
-
"""
|
|
728
|
-
Function to return the Prediction type of the algorithm.
|
|
729
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
730
|
-
as saved in the Model Catalog.
|
|
731
|
-
"""
|
|
732
|
-
return self._prediction_type
|
|
733
|
-
|
|
734
|
-
def get_target_column(self):
|
|
735
|
-
"""
|
|
736
|
-
Function to return the Target Column of the algorithm.
|
|
737
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
738
|
-
as saved in the Model Catalog.
|
|
739
|
-
"""
|
|
740
|
-
return self._target_column
|
|
741
|
-
|
|
742
|
-
def get_build_time(self):
|
|
743
|
-
"""
|
|
744
|
-
Function to return the build time of the algorithm in seconds.
|
|
745
|
-
When model object is created using retrieve_model(), then the value returned is
|
|
746
|
-
as saved in the Model Catalog.
|
|
747
|
-
"""
|
|
748
|
-
return self._build_time
|
|
749
|
-
|
|
750
|
-
def _get_algorithm_name(self):
|
|
751
|
-
"""
|
|
752
|
-
Function to return the name of the algorithm.
|
|
753
|
-
"""
|
|
754
|
-
return self._algorithm_name
|
|
755
|
-
|
|
756
|
-
def _get_sql_specific_attributes(self):
|
|
757
|
-
"""
|
|
758
|
-
Function to return the dictionary containing the SQL specific attributes of the algorithm.
|
|
759
|
-
"""
|
|
760
|
-
return self._sql_specific_attributes
|
|
761
|
-
|
|
762
|
-
@classmethod
|
|
763
|
-
def _from_model_catalog(cls,
|
|
764
|
-
model_table = None,
|
|
765
|
-
final_response_tableto = None,
|
|
766
|
-
output = None,
|
|
767
|
-
**kwargs):
|
|
768
|
-
"""
|
|
769
|
-
Classmethod is used by Model Cataloging, to instantiate this wrapper class.
|
|
770
|
-
"""
|
|
771
|
-
kwargs.pop("model_table", None)
|
|
772
|
-
intermediate_splits_table = None
|
|
773
|
-
if "intermediate_splits_table" in kwargs.keys():
|
|
774
|
-
intermediate_splits_table = kwargs["intermediate_splits_table"]
|
|
775
|
-
kwargs.pop("intermediate_splits_table", None)
|
|
776
|
-
kwargs.pop("final_response_tableto", None)
|
|
777
|
-
kwargs.pop("output", None)
|
|
778
|
-
|
|
779
|
-
# Model Cataloging related attributes.
|
|
780
|
-
target_column = kwargs.pop("__target_column", None)
|
|
781
|
-
prediction_type = kwargs.pop("__prediction_type", None)
|
|
782
|
-
algorithm_name = kwargs.pop("__algorithm_name", None)
|
|
783
|
-
build_time = kwargs.pop("__build_time", None)
|
|
784
|
-
|
|
785
|
-
# Let's create an object of this class.
|
|
786
|
-
obj = cls(**kwargs)
|
|
787
|
-
obj.model_table = model_table
|
|
788
|
-
obj.intermediate_splits_table = intermediate_splits_table
|
|
789
|
-
obj.final_response_tableto = final_response_tableto
|
|
790
|
-
obj.output = output
|
|
791
|
-
|
|
792
|
-
# Initialize the sqlmr_query class attribute.
|
|
793
|
-
obj.sqlmr_query = None
|
|
794
|
-
|
|
795
|
-
# Initialize the SQL specific Model Cataloging attributes.
|
|
796
|
-
obj._sql_specific_attributes = None
|
|
797
|
-
obj._target_column = target_column
|
|
798
|
-
obj._prediction_type = prediction_type
|
|
799
|
-
obj._algorithm_name = algorithm_name
|
|
800
|
-
obj._build_time = build_time
|
|
801
|
-
|
|
802
|
-
# Update output table data frames.
|
|
803
|
-
obj._mlresults = []
|
|
804
|
-
obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
|
|
805
|
-
if intermediate_splits_table is not None:
|
|
806
|
-
obj.intermediate_splits_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.intermediate_splits_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.intermediate_splits_table))
|
|
807
|
-
obj.final_response_tableto = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.final_response_tableto), source_type="table", database_name=UtilFuncs._extract_db_name(obj.final_response_tableto))
|
|
808
|
-
obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
|
|
809
|
-
obj._mlresults.append(obj.model_table)
|
|
810
|
-
if intermediate_splits_table is not None:
|
|
811
|
-
obj._mlresults.append(obj.intermediate_splits_table)
|
|
812
|
-
obj._mlresults.append(obj.final_response_tableto)
|
|
813
|
-
obj._mlresults.append(obj.output)
|
|
814
|
-
return obj
|
|
815
|
-
|
|
816
|
-
def __repr__(self):
|
|
817
|
-
"""
|
|
818
|
-
Returns the string representation for a DecisionTree class instance.
|
|
819
|
-
"""
|
|
820
|
-
repr_string="############ STDOUT Output ############"
|
|
821
|
-
repr_string = "{}\n\n{}".format(repr_string,self.output)
|
|
822
|
-
repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
|
|
823
|
-
repr_string = "{}\n\n{}".format(repr_string,self.model_table)
|
|
824
|
-
if self.splits_table is None:
|
|
825
|
-
repr_string="{}\n\n\n############ intermediate_splits_table Output ############".format(repr_string)
|
|
826
|
-
repr_string = "{}\n\n{}".format(repr_string,self.intermediate_splits_table)
|
|
827
|
-
repr_string="{}\n\n\n############ final_response_tableto Output ############".format(repr_string)
|
|
828
|
-
repr_string = "{}\n\n{}".format(repr_string,self.final_response_tableto)
|
|
829
|
-
return repr_string
|
|
830
|
-
|