teradataml 17.20.0.6__py3-none-any.whl → 20.0.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (432) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +238 -1
  4. teradataml/__init__.py +13 -3
  5. teradataml/_version.py +1 -1
  6. teradataml/analytics/Transformations.py +4 -4
  7. teradataml/analytics/__init__.py +0 -2
  8. teradataml/analytics/analytic_function_executor.py +3 -0
  9. teradataml/analytics/json_parser/utils.py +13 -12
  10. teradataml/analytics/sqle/DecisionTreePredict.py +15 -30
  11. teradataml/analytics/sqle/NaiveBayesPredict.py +11 -20
  12. teradataml/analytics/sqle/__init__.py +0 -13
  13. teradataml/analytics/utils.py +1 -0
  14. teradataml/analytics/valib.py +3 -0
  15. teradataml/automl/__init__.py +1628 -0
  16. teradataml/automl/custom_json_utils.py +1270 -0
  17. teradataml/automl/data_preparation.py +993 -0
  18. teradataml/automl/data_transformation.py +727 -0
  19. teradataml/automl/feature_engineering.py +1648 -0
  20. teradataml/automl/feature_exploration.py +547 -0
  21. teradataml/automl/model_evaluation.py +163 -0
  22. teradataml/automl/model_training.py +887 -0
  23. teradataml/catalog/__init__.py +0 -2
  24. teradataml/catalog/byom.py +49 -6
  25. teradataml/catalog/function_argument_mapper.py +0 -2
  26. teradataml/catalog/model_cataloging_utils.py +2 -1021
  27. teradataml/common/aed_utils.py +6 -2
  28. teradataml/common/constants.py +50 -58
  29. teradataml/common/deprecations.py +160 -0
  30. teradataml/common/garbagecollector.py +61 -104
  31. teradataml/common/messagecodes.py +27 -36
  32. teradataml/common/messages.py +11 -15
  33. teradataml/common/utils.py +205 -287
  34. teradataml/common/wrapper_utils.py +1 -110
  35. teradataml/context/context.py +150 -78
  36. teradataml/data/bank_churn.csv +10001 -0
  37. teradataml/data/bmi.csv +501 -0
  38. teradataml/data/docs/sqle/docs_17_10/BincodeFit.py +3 -3
  39. teradataml/data/docs/sqle/docs_17_10/BincodeTransform.py +6 -5
  40. teradataml/data/docs/sqle/docs_17_10/Fit.py +1 -1
  41. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +1 -1
  42. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +1 -1
  43. teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py +2 -2
  44. teradataml/data/docs/sqle/docs_17_10/RowNormalizeTransform.py +2 -1
  45. teradataml/data/docs/sqle/docs_17_10/ScaleTransform.py +1 -0
  46. teradataml/data/docs/sqle/docs_17_10/SimpleImputeTransform.py +1 -1
  47. teradataml/data/docs/sqle/docs_17_10/Transform.py +2 -1
  48. teradataml/data/docs/sqle/docs_17_20/BincodeFit.py +3 -3
  49. teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py +6 -5
  50. teradataml/data/docs/sqle/docs_17_20/Fit.py +1 -1
  51. teradataml/data/docs/sqle/docs_17_20/GLM.py +1 -1
  52. teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py +9 -10
  53. teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py +3 -2
  54. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py +16 -15
  55. teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py +2 -2
  56. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +2 -2
  57. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py +8 -8
  58. teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py +21 -20
  59. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +1 -1
  60. teradataml/data/docs/sqle/docs_17_20/OutlierFilterTransform.py +8 -3
  61. teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py +6 -5
  62. teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py +6 -6
  63. teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py +2 -1
  64. teradataml/data/docs/sqle/docs_17_20/SVM.py +1 -1
  65. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +16 -16
  66. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +1 -0
  67. teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py +3 -2
  68. teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py +4 -4
  69. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +19 -19
  70. teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py +5 -4
  71. teradataml/data/docs/sqle/docs_17_20/Transform.py +2 -2
  72. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +9 -9
  73. teradataml/data/fish.csv +160 -0
  74. teradataml/data/glass_types.csv +215 -0
  75. teradataml/data/insurance.csv +1 -1
  76. teradataml/data/iris_data.csv +151 -0
  77. teradataml/data/jsons/sqle/17.10/TD_FunctionTransform.json +1 -0
  78. teradataml/data/jsons/sqle/17.10/TD_OneHotEncodingTransform.json +1 -0
  79. teradataml/data/jsons/sqle/17.10/TD_OutlierFilterTransform.json +1 -0
  80. teradataml/data/jsons/sqle/17.10/TD_PolynomialFeaturesTransform.json +1 -0
  81. teradataml/data/jsons/sqle/17.10/TD_RowNormalizeTransform.json +1 -0
  82. teradataml/data/jsons/sqle/17.10/TD_ScaleTransform.json +1 -0
  83. teradataml/data/jsons/sqle/17.10/TD_SimpleImputeTransform.json +1 -0
  84. teradataml/data/load_example_data.py +3 -0
  85. teradataml/data/multi_model_classification.csv +401 -0
  86. teradataml/data/multi_model_regression.csv +401 -0
  87. teradataml/data/openml_example.json +63 -0
  88. teradataml/data/scripts/deploy_script.py +65 -0
  89. teradataml/data/scripts/mapper.R +20 -0
  90. teradataml/data/scripts/sklearn/__init__.py +0 -0
  91. teradataml/data/scripts/sklearn/sklearn_fit.py +175 -0
  92. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +135 -0
  93. teradataml/data/scripts/sklearn/sklearn_function.template +113 -0
  94. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +158 -0
  95. teradataml/data/scripts/sklearn/sklearn_neighbors.py +152 -0
  96. teradataml/data/scripts/sklearn/sklearn_score.py +128 -0
  97. teradataml/data/scripts/sklearn/sklearn_transform.py +179 -0
  98. teradataml/data/templates/open_source_ml.json +9 -0
  99. teradataml/data/teradataml_example.json +73 -1
  100. teradataml/data/test_classification.csv +101 -0
  101. teradataml/data/test_prediction.csv +101 -0
  102. teradataml/data/test_regression.csv +101 -0
  103. teradataml/data/train_multiclass.csv +101 -0
  104. teradataml/data/train_regression.csv +101 -0
  105. teradataml/data/train_regression_multiple_labels.csv +101 -0
  106. teradataml/data/wine_data.csv +1600 -0
  107. teradataml/dataframe/copy_to.py +79 -13
  108. teradataml/dataframe/data_transfer.py +8 -0
  109. teradataml/dataframe/dataframe.py +910 -311
  110. teradataml/dataframe/dataframe_utils.py +102 -5
  111. teradataml/dataframe/fastload.py +11 -3
  112. teradataml/dataframe/setop.py +15 -2
  113. teradataml/dataframe/sql.py +3735 -77
  114. teradataml/dataframe/sql_function_parameters.py +56 -5
  115. teradataml/dataframe/vantage_function_types.py +45 -1
  116. teradataml/dataframe/window.py +30 -29
  117. teradataml/dbutils/dbutils.py +18 -1
  118. teradataml/geospatial/geodataframe.py +18 -7
  119. teradataml/geospatial/geodataframecolumn.py +5 -0
  120. teradataml/hyperparameter_tuner/optimizer.py +910 -120
  121. teradataml/hyperparameter_tuner/utils.py +131 -37
  122. teradataml/lib/aed_0_1.dll +0 -0
  123. teradataml/lib/libaed_0_1.dylib +0 -0
  124. teradataml/lib/libaed_0_1.so +0 -0
  125. teradataml/libaed_0_1.dylib +0 -0
  126. teradataml/libaed_0_1.so +0 -0
  127. teradataml/opensource/__init__.py +1 -0
  128. teradataml/opensource/sklearn/__init__.py +1 -0
  129. teradataml/opensource/sklearn/_class.py +255 -0
  130. teradataml/opensource/sklearn/_sklearn_wrapper.py +1668 -0
  131. teradataml/opensource/sklearn/_wrapper_utils.py +268 -0
  132. teradataml/opensource/sklearn/constants.py +54 -0
  133. teradataml/options/__init__.py +3 -6
  134. teradataml/options/configure.py +21 -20
  135. teradataml/scriptmgmt/UserEnv.py +61 -5
  136. teradataml/scriptmgmt/lls_utils.py +135 -53
  137. teradataml/table_operators/Apply.py +38 -6
  138. teradataml/table_operators/Script.py +45 -308
  139. teradataml/table_operators/TableOperator.py +182 -591
  140. teradataml/table_operators/__init__.py +0 -1
  141. teradataml/table_operators/table_operator_util.py +32 -40
  142. teradataml/utils/validators.py +127 -3
  143. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/METADATA +243 -3
  144. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/RECORD +147 -391
  145. teradataml/analytics/mle/AdaBoost.py +0 -651
  146. teradataml/analytics/mle/AdaBoostPredict.py +0 -564
  147. teradataml/analytics/mle/Antiselect.py +0 -342
  148. teradataml/analytics/mle/Arima.py +0 -641
  149. teradataml/analytics/mle/ArimaPredict.py +0 -477
  150. teradataml/analytics/mle/Attribution.py +0 -1070
  151. teradataml/analytics/mle/Betweenness.py +0 -658
  152. teradataml/analytics/mle/Burst.py +0 -711
  153. teradataml/analytics/mle/CCM.py +0 -600
  154. teradataml/analytics/mle/CCMPrepare.py +0 -324
  155. teradataml/analytics/mle/CFilter.py +0 -460
  156. teradataml/analytics/mle/ChangePointDetection.py +0 -572
  157. teradataml/analytics/mle/ChangePointDetectionRT.py +0 -477
  158. teradataml/analytics/mle/Closeness.py +0 -737
  159. teradataml/analytics/mle/ConfusionMatrix.py +0 -420
  160. teradataml/analytics/mle/Correlation.py +0 -477
  161. teradataml/analytics/mle/Correlation2.py +0 -573
  162. teradataml/analytics/mle/CoxHazardRatio.py +0 -679
  163. teradataml/analytics/mle/CoxPH.py +0 -556
  164. teradataml/analytics/mle/CoxSurvival.py +0 -478
  165. teradataml/analytics/mle/CumulativeMovAvg.py +0 -363
  166. teradataml/analytics/mle/DTW.py +0 -623
  167. teradataml/analytics/mle/DWT.py +0 -564
  168. teradataml/analytics/mle/DWT2D.py +0 -599
  169. teradataml/analytics/mle/DecisionForest.py +0 -716
  170. teradataml/analytics/mle/DecisionForestEvaluator.py +0 -363
  171. teradataml/analytics/mle/DecisionForestPredict.py +0 -561
  172. teradataml/analytics/mle/DecisionTree.py +0 -830
  173. teradataml/analytics/mle/DecisionTreePredict.py +0 -528
  174. teradataml/analytics/mle/ExponentialMovAvg.py +0 -418
  175. teradataml/analytics/mle/FMeasure.py +0 -402
  176. teradataml/analytics/mle/FPGrowth.py +0 -734
  177. teradataml/analytics/mle/FrequentPaths.py +0 -695
  178. teradataml/analytics/mle/GLM.py +0 -558
  179. teradataml/analytics/mle/GLML1L2.py +0 -547
  180. teradataml/analytics/mle/GLML1L2Predict.py +0 -519
  181. teradataml/analytics/mle/GLMPredict.py +0 -529
  182. teradataml/analytics/mle/HMMDecoder.py +0 -945
  183. teradataml/analytics/mle/HMMEvaluator.py +0 -901
  184. teradataml/analytics/mle/HMMSupervised.py +0 -521
  185. teradataml/analytics/mle/HMMUnsupervised.py +0 -572
  186. teradataml/analytics/mle/Histogram.py +0 -561
  187. teradataml/analytics/mle/IDWT.py +0 -476
  188. teradataml/analytics/mle/IDWT2D.py +0 -493
  189. teradataml/analytics/mle/IdentityMatch.py +0 -763
  190. teradataml/analytics/mle/Interpolator.py +0 -918
  191. teradataml/analytics/mle/KMeans.py +0 -485
  192. teradataml/analytics/mle/KNN.py +0 -627
  193. teradataml/analytics/mle/KNNRecommender.py +0 -488
  194. teradataml/analytics/mle/KNNRecommenderPredict.py +0 -581
  195. teradataml/analytics/mle/LAR.py +0 -439
  196. teradataml/analytics/mle/LARPredict.py +0 -478
  197. teradataml/analytics/mle/LDA.py +0 -548
  198. teradataml/analytics/mle/LDAInference.py +0 -492
  199. teradataml/analytics/mle/LDATopicSummary.py +0 -464
  200. teradataml/analytics/mle/LevenshteinDistance.py +0 -450
  201. teradataml/analytics/mle/LinReg.py +0 -433
  202. teradataml/analytics/mle/LinRegPredict.py +0 -438
  203. teradataml/analytics/mle/MinHash.py +0 -544
  204. teradataml/analytics/mle/Modularity.py +0 -587
  205. teradataml/analytics/mle/NEREvaluator.py +0 -410
  206. teradataml/analytics/mle/NERExtractor.py +0 -595
  207. teradataml/analytics/mle/NERTrainer.py +0 -458
  208. teradataml/analytics/mle/NGrams.py +0 -570
  209. teradataml/analytics/mle/NPath.py +0 -634
  210. teradataml/analytics/mle/NTree.py +0 -549
  211. teradataml/analytics/mle/NaiveBayes.py +0 -462
  212. teradataml/analytics/mle/NaiveBayesPredict.py +0 -513
  213. teradataml/analytics/mle/NaiveBayesTextClassifier.py +0 -607
  214. teradataml/analytics/mle/NaiveBayesTextClassifier2.py +0 -531
  215. teradataml/analytics/mle/NaiveBayesTextClassifierPredict.py +0 -799
  216. teradataml/analytics/mle/NamedEntityFinder.py +0 -529
  217. teradataml/analytics/mle/NamedEntityFinderEvaluator.py +0 -414
  218. teradataml/analytics/mle/NamedEntityFinderTrainer.py +0 -396
  219. teradataml/analytics/mle/POSTagger.py +0 -417
  220. teradataml/analytics/mle/Pack.py +0 -411
  221. teradataml/analytics/mle/PageRank.py +0 -535
  222. teradataml/analytics/mle/PathAnalyzer.py +0 -426
  223. teradataml/analytics/mle/PathGenerator.py +0 -367
  224. teradataml/analytics/mle/PathStart.py +0 -464
  225. teradataml/analytics/mle/PathSummarizer.py +0 -470
  226. teradataml/analytics/mle/Pivot.py +0 -471
  227. teradataml/analytics/mle/ROC.py +0 -425
  228. teradataml/analytics/mle/RandomSample.py +0 -637
  229. teradataml/analytics/mle/RandomWalkSample.py +0 -490
  230. teradataml/analytics/mle/SAX.py +0 -779
  231. teradataml/analytics/mle/SVMDense.py +0 -677
  232. teradataml/analytics/mle/SVMDensePredict.py +0 -536
  233. teradataml/analytics/mle/SVMDenseSummary.py +0 -437
  234. teradataml/analytics/mle/SVMSparse.py +0 -557
  235. teradataml/analytics/mle/SVMSparsePredict.py +0 -553
  236. teradataml/analytics/mle/SVMSparseSummary.py +0 -435
  237. teradataml/analytics/mle/Sampling.py +0 -549
  238. teradataml/analytics/mle/Scale.py +0 -565
  239. teradataml/analytics/mle/ScaleByPartition.py +0 -496
  240. teradataml/analytics/mle/ScaleMap.py +0 -378
  241. teradataml/analytics/mle/ScaleSummary.py +0 -320
  242. teradataml/analytics/mle/SentenceExtractor.py +0 -363
  243. teradataml/analytics/mle/SentimentEvaluator.py +0 -432
  244. teradataml/analytics/mle/SentimentExtractor.py +0 -578
  245. teradataml/analytics/mle/SentimentTrainer.py +0 -405
  246. teradataml/analytics/mle/SeriesSplitter.py +0 -641
  247. teradataml/analytics/mle/Sessionize.py +0 -475
  248. teradataml/analytics/mle/SimpleMovAvg.py +0 -397
  249. teradataml/analytics/mle/StringSimilarity.py +0 -425
  250. teradataml/analytics/mle/TF.py +0 -389
  251. teradataml/analytics/mle/TFIDF.py +0 -504
  252. teradataml/analytics/mle/TextChunker.py +0 -414
  253. teradataml/analytics/mle/TextClassifier.py +0 -399
  254. teradataml/analytics/mle/TextClassifierEvaluator.py +0 -413
  255. teradataml/analytics/mle/TextClassifierTrainer.py +0 -565
  256. teradataml/analytics/mle/TextMorph.py +0 -494
  257. teradataml/analytics/mle/TextParser.py +0 -623
  258. teradataml/analytics/mle/TextTagger.py +0 -530
  259. teradataml/analytics/mle/TextTokenizer.py +0 -502
  260. teradataml/analytics/mle/UnivariateStatistics.py +0 -488
  261. teradataml/analytics/mle/Unpack.py +0 -526
  262. teradataml/analytics/mle/Unpivot.py +0 -438
  263. teradataml/analytics/mle/VarMax.py +0 -776
  264. teradataml/analytics/mle/VectorDistance.py +0 -762
  265. teradataml/analytics/mle/WeightedMovAvg.py +0 -400
  266. teradataml/analytics/mle/XGBoost.py +0 -842
  267. teradataml/analytics/mle/XGBoostPredict.py +0 -627
  268. teradataml/analytics/mle/__init__.py +0 -123
  269. teradataml/analytics/mle/json/adaboost_mle.json +0 -135
  270. teradataml/analytics/mle/json/adaboostpredict_mle.json +0 -85
  271. teradataml/analytics/mle/json/antiselect_mle.json +0 -34
  272. teradataml/analytics/mle/json/antiselect_mle_mle.json +0 -34
  273. teradataml/analytics/mle/json/arima_mle.json +0 -172
  274. teradataml/analytics/mle/json/arimapredict_mle.json +0 -52
  275. teradataml/analytics/mle/json/attribution_mle_mle.json +0 -143
  276. teradataml/analytics/mle/json/betweenness_mle.json +0 -97
  277. teradataml/analytics/mle/json/burst_mle.json +0 -140
  278. teradataml/analytics/mle/json/ccm_mle.json +0 -124
  279. teradataml/analytics/mle/json/ccmprepare_mle.json +0 -14
  280. teradataml/analytics/mle/json/cfilter_mle.json +0 -93
  281. teradataml/analytics/mle/json/changepointdetection_mle.json +0 -92
  282. teradataml/analytics/mle/json/changepointdetectionrt_mle.json +0 -78
  283. teradataml/analytics/mle/json/closeness_mle.json +0 -104
  284. teradataml/analytics/mle/json/confusionmatrix_mle.json +0 -79
  285. teradataml/analytics/mle/json/correlation_mle.json +0 -86
  286. teradataml/analytics/mle/json/correlationreduce_mle.json +0 -49
  287. teradataml/analytics/mle/json/coxhazardratio_mle.json +0 -89
  288. teradataml/analytics/mle/json/coxph_mle.json +0 -98
  289. teradataml/analytics/mle/json/coxsurvival_mle.json +0 -79
  290. teradataml/analytics/mle/json/cumulativemovavg_mle.json +0 -34
  291. teradataml/analytics/mle/json/decisionforest_mle.json +0 -167
  292. teradataml/analytics/mle/json/decisionforestevaluator_mle.json +0 -33
  293. teradataml/analytics/mle/json/decisionforestpredict_mle_mle.json +0 -74
  294. teradataml/analytics/mle/json/decisiontree_mle.json +0 -194
  295. teradataml/analytics/mle/json/decisiontreepredict_mle_mle.json +0 -86
  296. teradataml/analytics/mle/json/dtw_mle.json +0 -97
  297. teradataml/analytics/mle/json/dwt2d_mle.json +0 -116
  298. teradataml/analytics/mle/json/dwt_mle.json +0 -101
  299. teradataml/analytics/mle/json/exponentialmovavg_mle.json +0 -55
  300. teradataml/analytics/mle/json/fmeasure_mle.json +0 -58
  301. teradataml/analytics/mle/json/fpgrowth_mle.json +0 -159
  302. teradataml/analytics/mle/json/frequentpaths_mle.json +0 -129
  303. teradataml/analytics/mle/json/glm_mle.json +0 -111
  304. teradataml/analytics/mle/json/glml1l2_mle.json +0 -106
  305. teradataml/analytics/mle/json/glml1l2predict_mle.json +0 -57
  306. teradataml/analytics/mle/json/glmpredict_mle_mle.json +0 -74
  307. teradataml/analytics/mle/json/histogram_mle.json +0 -100
  308. teradataml/analytics/mle/json/hmmdecoder_mle.json +0 -192
  309. teradataml/analytics/mle/json/hmmevaluator_mle.json +0 -206
  310. teradataml/analytics/mle/json/hmmsupervised_mle.json +0 -91
  311. teradataml/analytics/mle/json/hmmunsupervised_mle.json +0 -114
  312. teradataml/analytics/mle/json/identitymatch_mle.json +0 -88
  313. teradataml/analytics/mle/json/idwt2d_mle.json +0 -73
  314. teradataml/analytics/mle/json/idwt_mle.json +0 -66
  315. teradataml/analytics/mle/json/interpolator_mle.json +0 -151
  316. teradataml/analytics/mle/json/kmeans_mle.json +0 -97
  317. teradataml/analytics/mle/json/knn_mle.json +0 -141
  318. teradataml/analytics/mle/json/knnrecommender_mle.json +0 -111
  319. teradataml/analytics/mle/json/knnrecommenderpredict_mle.json +0 -75
  320. teradataml/analytics/mle/json/lar_mle.json +0 -78
  321. teradataml/analytics/mle/json/larpredict_mle.json +0 -69
  322. teradataml/analytics/mle/json/lda_mle.json +0 -130
  323. teradataml/analytics/mle/json/ldainference_mle.json +0 -78
  324. teradataml/analytics/mle/json/ldatopicsummary_mle.json +0 -64
  325. teradataml/analytics/mle/json/levenshteindistance_mle.json +0 -92
  326. teradataml/analytics/mle/json/linreg_mle.json +0 -42
  327. teradataml/analytics/mle/json/linregpredict_mle.json +0 -56
  328. teradataml/analytics/mle/json/minhash_mle.json +0 -113
  329. teradataml/analytics/mle/json/modularity_mle.json +0 -91
  330. teradataml/analytics/mle/json/naivebayespredict_mle_mle.json +0 -85
  331. teradataml/analytics/mle/json/naivebayesreduce_mle.json +0 -52
  332. teradataml/analytics/mle/json/naivebayestextclassifierpredict_mle_mle.json +0 -147
  333. teradataml/analytics/mle/json/naivebayestextclassifiertrainer2_mle.json +0 -108
  334. teradataml/analytics/mle/json/naivebayestextclassifiertrainer_mle.json +0 -102
  335. teradataml/analytics/mle/json/namedentityfinder_mle.json +0 -84
  336. teradataml/analytics/mle/json/namedentityfinderevaluatorreduce_mle.json +0 -43
  337. teradataml/analytics/mle/json/namedentityfindertrainer_mle.json +0 -64
  338. teradataml/analytics/mle/json/nerevaluator_mle.json +0 -54
  339. teradataml/analytics/mle/json/nerextractor_mle.json +0 -87
  340. teradataml/analytics/mle/json/nertrainer_mle.json +0 -89
  341. teradataml/analytics/mle/json/ngrams_mle.json +0 -137
  342. teradataml/analytics/mle/json/ngramsplitter_mle_mle.json +0 -137
  343. teradataml/analytics/mle/json/npath@coprocessor_mle.json +0 -73
  344. teradataml/analytics/mle/json/ntree@coprocessor_mle.json +0 -123
  345. teradataml/analytics/mle/json/pack_mle.json +0 -58
  346. teradataml/analytics/mle/json/pack_mle_mle.json +0 -58
  347. teradataml/analytics/mle/json/pagerank_mle.json +0 -81
  348. teradataml/analytics/mle/json/pathanalyzer_mle.json +0 -63
  349. teradataml/analytics/mle/json/pathgenerator_mle.json +0 -40
  350. teradataml/analytics/mle/json/pathstart_mle.json +0 -62
  351. teradataml/analytics/mle/json/pathsummarizer_mle.json +0 -72
  352. teradataml/analytics/mle/json/pivoting_mle.json +0 -71
  353. teradataml/analytics/mle/json/postagger_mle.json +0 -51
  354. teradataml/analytics/mle/json/randomsample_mle.json +0 -131
  355. teradataml/analytics/mle/json/randomwalksample_mle.json +0 -85
  356. teradataml/analytics/mle/json/roc_mle.json +0 -73
  357. teradataml/analytics/mle/json/sampling_mle.json +0 -75
  358. teradataml/analytics/mle/json/sax_mle.json +0 -154
  359. teradataml/analytics/mle/json/scale_mle.json +0 -93
  360. teradataml/analytics/mle/json/scalebypartition_mle.json +0 -89
  361. teradataml/analytics/mle/json/scalemap_mle.json +0 -44
  362. teradataml/analytics/mle/json/scalesummary_mle.json +0 -14
  363. teradataml/analytics/mle/json/sentenceextractor_mle.json +0 -41
  364. teradataml/analytics/mle/json/sentimentevaluator_mle.json +0 -43
  365. teradataml/analytics/mle/json/sentimentextractor_mle.json +0 -100
  366. teradataml/analytics/mle/json/sentimenttrainer_mle.json +0 -68
  367. teradataml/analytics/mle/json/seriessplitter_mle.json +0 -133
  368. teradataml/analytics/mle/json/sessionize_mle_mle.json +0 -62
  369. teradataml/analytics/mle/json/simplemovavg_mle.json +0 -48
  370. teradataml/analytics/mle/json/stringsimilarity_mle.json +0 -50
  371. teradataml/analytics/mle/json/stringsimilarity_mle_mle.json +0 -50
  372. teradataml/analytics/mle/json/svmdense_mle.json +0 -165
  373. teradataml/analytics/mle/json/svmdensepredict_mle.json +0 -95
  374. teradataml/analytics/mle/json/svmdensesummary_mle.json +0 -58
  375. teradataml/analytics/mle/json/svmsparse_mle.json +0 -148
  376. teradataml/analytics/mle/json/svmsparsepredict_mle_mle.json +0 -103
  377. teradataml/analytics/mle/json/svmsparsesummary_mle.json +0 -57
  378. teradataml/analytics/mle/json/textchunker_mle.json +0 -40
  379. teradataml/analytics/mle/json/textclassifier_mle.json +0 -51
  380. teradataml/analytics/mle/json/textclassifierevaluator_mle.json +0 -43
  381. teradataml/analytics/mle/json/textclassifiertrainer_mle.json +0 -103
  382. teradataml/analytics/mle/json/textmorph_mle.json +0 -63
  383. teradataml/analytics/mle/json/textparser_mle.json +0 -166
  384. teradataml/analytics/mle/json/texttagger_mle.json +0 -81
  385. teradataml/analytics/mle/json/texttokenizer_mle.json +0 -91
  386. teradataml/analytics/mle/json/tf_mle.json +0 -33
  387. teradataml/analytics/mle/json/tfidf_mle.json +0 -34
  388. teradataml/analytics/mle/json/univariatestatistics_mle.json +0 -81
  389. teradataml/analytics/mle/json/unpack_mle.json +0 -91
  390. teradataml/analytics/mle/json/unpack_mle_mle.json +0 -91
  391. teradataml/analytics/mle/json/unpivoting_mle.json +0 -63
  392. teradataml/analytics/mle/json/varmax_mle.json +0 -176
  393. teradataml/analytics/mle/json/vectordistance_mle.json +0 -179
  394. teradataml/analytics/mle/json/weightedmovavg_mle.json +0 -48
  395. teradataml/analytics/mle/json/xgboost_mle.json +0 -178
  396. teradataml/analytics/mle/json/xgboostpredict_mle.json +0 -104
  397. teradataml/analytics/sqle/Antiselect.py +0 -321
  398. teradataml/analytics/sqle/Attribution.py +0 -603
  399. teradataml/analytics/sqle/DecisionForestPredict.py +0 -408
  400. teradataml/analytics/sqle/GLMPredict.py +0 -430
  401. teradataml/analytics/sqle/MovingAverage.py +0 -543
  402. teradataml/analytics/sqle/NGramSplitter.py +0 -548
  403. teradataml/analytics/sqle/NPath.py +0 -632
  404. teradataml/analytics/sqle/NaiveBayesTextClassifierPredict.py +0 -515
  405. teradataml/analytics/sqle/Pack.py +0 -388
  406. teradataml/analytics/sqle/SVMSparsePredict.py +0 -464
  407. teradataml/analytics/sqle/Sessionize.py +0 -390
  408. teradataml/analytics/sqle/StringSimilarity.py +0 -400
  409. teradataml/analytics/sqle/Unpack.py +0 -503
  410. teradataml/analytics/sqle/json/antiselect_sqle.json +0 -21
  411. teradataml/analytics/sqle/json/attribution_sqle.json +0 -92
  412. teradataml/analytics/sqle/json/decisionforestpredict_sqle.json +0 -48
  413. teradataml/analytics/sqle/json/glmpredict_sqle.json +0 -48
  414. teradataml/analytics/sqle/json/h2opredict_sqle.json +0 -63
  415. teradataml/analytics/sqle/json/movingaverage_sqle.json +0 -58
  416. teradataml/analytics/sqle/json/naivebayestextclassifierpredict_sqle.json +0 -76
  417. teradataml/analytics/sqle/json/ngramsplitter_sqle.json +0 -126
  418. teradataml/analytics/sqle/json/npath_sqle.json +0 -67
  419. teradataml/analytics/sqle/json/pack_sqle.json +0 -47
  420. teradataml/analytics/sqle/json/pmmlpredict_sqle.json +0 -55
  421. teradataml/analytics/sqle/json/sessionize_sqle.json +0 -43
  422. teradataml/analytics/sqle/json/stringsimilarity_sqle.json +0 -39
  423. teradataml/analytics/sqle/json/svmsparsepredict_sqle.json +0 -74
  424. teradataml/analytics/sqle/json/unpack_sqle.json +0 -80
  425. teradataml/catalog/model_cataloging.py +0 -980
  426. teradataml/config/mlengine_alias_definitions_v1.0 +0 -118
  427. teradataml/config/mlengine_alias_definitions_v1.1 +0 -127
  428. teradataml/config/mlengine_alias_definitions_v1.3 +0 -129
  429. teradataml/table_operators/sandbox_container_util.py +0 -643
  430. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/WHEEL +0 -0
  431. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/top_level.txt +0 -0
  432. {teradataml-17.20.0.6.dist-info → teradataml-20.0.0.0.dist-info}/zip-safe +0 -0
@@ -1,830 +0,0 @@
1
- #!/usr/bin/python
2
- # ##################################################################
3
- #
4
- # Copyright 2018 Teradata. All rights reserved.
5
- # TERADATA CONFIDENTIAL AND TRADE SECRET
6
- #
7
- # Primary Owner: Pankaj Purandare (pankajvinod.purandare@teradata.com)
8
- # Secondary Owner: Mounika Kotha (mounika.kotha@teradata.com)
9
- #
10
- # Version: 1.2
11
- # Function Version: 1.31
12
- #
13
- # ##################################################################
14
-
15
- import inspect
16
- import time
17
- from teradataml.common.wrapper_utils import AnalyticsWrapperUtils
18
- from teradataml.common.utils import UtilFuncs
19
- from teradataml.context.context import *
20
- from teradataml.dataframe.dataframe import DataFrame
21
- from teradataml.common.aed_utils import AedUtils
22
- from teradataml.analytics.analytic_query_generator import AnalyticQueryGenerator
23
- from teradataml.common.exceptions import TeradataMlException
24
- from teradataml.common.messages import Messages
25
- from teradataml.common.messagecodes import MessageCodes
26
- from teradataml.common.constants import TeradataConstants
27
- from teradataml.dataframe.dataframe_utils import DataFrameUtils as df_utils
28
- from teradataml.options.display import display
29
-
30
- class DecisionTree:
31
-
32
- def __init__(self,
33
- data = None,
34
- attribute_name_columns = None,
35
- attribute_value_column = None,
36
- id_columns = None,
37
- attribute_table = None,
38
- response_table = None,
39
- response_column = None,
40
- categorical_attribute_table = None,
41
- splits_table = None,
42
- split_value = None,
43
- num_splits = 10,
44
- approx_splits = True,
45
- nodesize = 1,
46
- max_depth = 30,
47
- weighted = False,
48
- weight_column = None,
49
- split_measure = "gini",
50
- output_response_probdist = False,
51
- response_probdist_type = "Laplace",
52
- categorical_encoding = "graycode",
53
- attribute_table_sequence_column = None,
54
- data_sequence_column = None,
55
- categorical_attribute_table_sequence_column = None,
56
- response_table_sequence_column = None,
57
- splits_table_sequence_column = None):
58
- """
59
- DESCRIPTION:
60
- The Decision Tree function creates a single decision tree in a
61
- distributed fashion, either weighted or unweighted. The model teradataml
62
- DataFrame that this function outputs can be input to the function
63
- DecisionTreePredict.
64
-
65
-
66
- PARAMETERS:
67
- data:
68
- Optional Argument.
69
- Specifies the name of the teradataml DataFrame that contains the
70
- input data set.
71
- Note: This argument is required if you omit attribute_table
72
- and response_table.
73
-
74
- attribute_name_columns:
75
- Required Argument.
76
- Specifies the names of the attribute teradataml DataFrame columns
77
- that define the attribute.
78
- Types: str OR list of Strings (str)
79
-
80
- attribute_value_column:
81
- Required Argument.
82
- Specifies the names of the attribute teradataml DataFrame columns
83
- that define the value.
84
- Types: str
85
-
86
- id_columns:
87
- Required Argument.
88
- Specifies the names of the columns in the response and attribute
89
- tables that specify the ID of the instance.
90
- Types: str OR list of Strings (str)
91
-
92
- attribute_table:
93
- Optional Argument.
94
- Specifies the name of the teradataml DataFrame that contains the
95
- attribute names and the values.
96
- Note : This argument is required if you omit data.
97
-
98
- response_table:
99
- Optional Argument.
100
- Specifies the name of the teradataml DataFrame that contains the
101
- response values.
102
- Note : This argument is required if you omit data.
103
-
104
- response_column:
105
- Required Argument.
106
- Specifies the name of the response teradataml DataFrame column that
107
- contains the response variable.
108
- Types: str
109
-
110
- categorical_attribute_table:
111
- Optional Argument.
112
- The name of the input teradataml DataFrame containing the categorical
113
- attributes.
114
-
115
- splits_table:
116
- Optional Argument.
117
- Specifies the name of the input teradataml DataFrame that contains
118
- the user-specified splits. By default, the function creates new
119
- splits.
120
-
121
- split_value:
122
- Optional Argument.
123
- If you specify splits_table, this argument specifies the name of the
124
- column that contains the split value. If approx_splits is "true",
125
- then the default value is splits_valcol; if not, then the default
126
- value is the attribute_value_column argument, node_column.
127
- Types: str
128
-
129
- num_splits:
130
- Optional Argument.
131
- Specifies the number of splits to consider for each variable. The
132
- function does not consider all possible splits for all attributes.
133
- Default Value: 10
134
- Types: int
135
-
136
- approx_splits:
137
- Optional Argument.
138
- Specifies whether to use approximate percentiles (true) or exact
139
- percentiles (false). Internally, the function uses percentile values
140
- as split values.
141
- Default Value: True
142
- Types: bool
143
-
144
- nodesize:
145
- Optional Argument.
146
- Specifies the decision tree stopping criteria and the minimum size
147
- of any particular node within each decision tree.
148
- Default Value: 1
149
- Types: int
150
-
151
- max_depth:
152
- Optional Argument.
153
- Specifies a decision tree stopping criteria. If the tree reaches a
154
- depth past this value, the algorithm stops looking for splits.
155
- Decision trees can grow up to (2(max_depth+1) - 1) nodes. This
156
- stopping criteria has the greatest effect on function performance.
157
- The maximum value is 60.
158
- Default Value: 30
159
- Types: int
160
-
161
- weighted:
162
- Optional Argument.
163
- Specifies whether to build a weighted decision tree. If you specify
164
- "true", then you must also specify the weight_column argument.
165
- Default Value: False
166
- Types: bool
167
-
168
- weight_column:
169
- Optional Argument.
170
- Specifies the name of the response teradataml DataFrame column that
171
- contains the weights of the attribute values.
172
- Types: str
173
-
174
- split_measure:
175
- Optional Argument.
176
- Specifies the impurity measurement to use while constructing the
177
- decision tree.
178
- Default Value: "gini"
179
- Permitted Values: GINI, ENTROPY, CHISQUARE
180
- Types: str
181
-
182
- output_response_probdist:
183
- Optional Argument.
184
- Specifies switch to enable or disable output of probability
185
- distribution for output labels.
186
- Note: 'output_response_probdist' argument can accept input value True
187
- only when teradataml is connected to Vantage 1.0 Maintenance
188
- Update 2 version or later.
189
- Default Value: False
190
- Types: bool
191
-
192
- response_probdist_type:
193
- Optional Argument.
194
- Specifies the type of algorithm to use to generate output probability
195
- distribution for output labels. Uses one of Laplace, Frequency or
196
- RawCounts to generate Probability Estimation Trees (PET) based
197
- distributions.
198
- Note: This argument can only be used when output_response_probdist is
199
- set to True.
200
- Default Value: "Laplace"
201
- Permitted Values: Laplace, Frequency, RawCount
202
- Types: str
203
-
204
- categorical_encoding:
205
- Optional Argument.
206
- Specifies which encoding method is used for categorical variables.
207
- Note: categorical_encoding argument support is only available
208
- when teradataml is connected to Vantage 1.1 or later.
209
- Default Value: "graycode"
210
- Permitted Values: graycode, hashing
211
- Types: str
212
-
213
- attribute_table_sequence_column:
214
- Optional Argument.
215
- Specifies the list of column(s) that uniquely identifies each row of
216
- the input argument "attribute_table". The argument is used to ensure
217
- deterministic results for functions which produce results that vary
218
- from run to run.
219
- Types: str OR list of Strings (str)
220
-
221
- data_sequence_column:
222
- Optional Argument.
223
- Specifies the list of column(s) that uniquely identifies each row of
224
- the input argument "data". The argument is used to ensure
225
- deterministic results for functions which produce results that vary
226
- from run to run.
227
- Types: str OR list of Strings (str)
228
-
229
- categorical_attribute_table_sequence_column:
230
- Optional Argument.
231
- Specifies the list of column(s) that uniquely identifies each row of
232
- the input argument "categorical_attribute_table". The argument is
233
- used to ensure deterministic results for functions which produce
234
- results that vary from run to run.
235
- Types: str OR list of Strings (str)
236
-
237
- response_table_sequence_column:
238
- Optional Argument.
239
- Specifies the list of column(s) that uniquely identifies each row of
240
- the input argument "response_table". The argument is used to ensure
241
- deterministic results for functions which produce results that vary
242
- from run to run.
243
- Types: str OR list of Strings (str)
244
-
245
- splits_table_sequence_column:
246
- Optional Argument.
247
- Specifies the list of column(s) that uniquely identifies each row of
248
- the input argument "splits_table". The argument is used to ensure
249
- deterministic results for functions which produce results that vary
250
- from run to run.
251
- Types: str OR list of Strings (str)
252
-
253
- RETURNS:
254
- Instance of DecisionTree.
255
- Output teradataml DataFrames can be accessed using attribute
256
- references, such as DecisionTreeObj.<attribute_name>.
257
- Output teradataml DataFrame attribute names are:
258
- 1. model_table
259
- 2. intermediate_splits_table
260
- 3. final_response_tableto
261
- 4. output
262
-
263
- Note: When argument splits_table is used, output teradataml DataFrame,
264
- intermediate_splits_table, is not created. If tried to access this
265
- attribute an AttributeError will be raised.
266
-
267
-
268
- RAISES:
269
- TeradataMlException
270
-
271
-
272
- EXAMPLES:
273
- # Load the data to run the example.
274
- load_example_data("DecisionTree", ["iris_attribute_train", "iris_response_train", "iris_altinput"])
275
-
276
- # Create teradataml DataFrame
277
- iris_attribute_train = DataFrame.from_table("iris_attribute_train")
278
- iris_altinput = DataFrame.from_table("iris_altinput")
279
- iris_response_train = DataFrame.from_table("iris_response_train")
280
-
281
- # Example 1 -
282
- sdt_out1 = DecisionTree(attribute_name_columns = 'attribute',
283
- attribute_value_column = 'attrvalue',
284
- id_columns = 'pid',
285
- attribute_table = iris_attribute_train,
286
- response_table = iris_response_train,
287
- response_column = 'response',
288
- approx_splits = True,
289
- nodesize = 100,
290
- max_depth = 5,
291
- weighted = False,
292
- split_measure = "gini",
293
- output_response_probdist = False)
294
-
295
- # Print the result DataFrame
296
- print(sdt_out1.model_table)
297
- print(sdt_out1.intermediate_splits_table)
298
- print(sdt_out1.final_response_tableto)
299
- print(sdt_out1.output)
300
-
301
-
302
- # Example 2 -
303
- sdt_out2 = DecisionTree(data = iris_altinput,
304
- attribute_name_columns = 'attribute',
305
- attribute_value_column = 'attrvalue',
306
- id_columns = 'pid',
307
- response_column = 'response',
308
- num_splits = 10,
309
- nodesize = 100,
310
- max_depth = 5,
311
- weighted = False,
312
- split_measure = "gini",
313
- output_response_probdist = False,
314
- response_probdist_type = "Laplace")
315
-
316
- # Print the result DataFrame
317
- print(sdt_out2.model_table)
318
- print(sdt_out2.intermediate_splits_table)
319
- print(sdt_out2.final_response_tableto)
320
- print(sdt_out2.output)
321
-
322
- """
323
-
324
- # Start the timer to get the build time
325
- _start_time = time.time()
326
-
327
- self.data = data
328
- self.attribute_name_columns = attribute_name_columns
329
- self.attribute_value_column = attribute_value_column
330
- self.id_columns = id_columns
331
- self.attribute_table = attribute_table
332
- self.response_table = response_table
333
- self.response_column = response_column
334
- self.categorical_attribute_table = categorical_attribute_table
335
- self.splits_table = splits_table
336
- self.split_value = split_value
337
- self.num_splits = num_splits
338
- self.approx_splits = approx_splits
339
- self.nodesize = nodesize
340
- self.max_depth = max_depth
341
- self.weighted = weighted
342
- self.weight_column = weight_column
343
- self.split_measure = split_measure
344
- self.output_response_probdist = output_response_probdist
345
- self.response_probdist_type = response_probdist_type
346
- self.categorical_encoding = categorical_encoding
347
- self.attribute_table_sequence_column = attribute_table_sequence_column
348
- self.data_sequence_column = data_sequence_column
349
- self.categorical_attribute_table_sequence_column = categorical_attribute_table_sequence_column
350
- self.response_table_sequence_column = response_table_sequence_column
351
- self.splits_table_sequence_column = splits_table_sequence_column
352
-
353
- # Create TeradataPyWrapperUtils instance which contains validation functions.
354
- self.__awu = AnalyticsWrapperUtils()
355
- self.__aed_utils = AedUtils()
356
-
357
- # Create argument information matrix to do parameter checking
358
- self.__arg_info_matrix = []
359
- self.__arg_info_matrix.append(["data", self.data, True, (DataFrame)])
360
- self.__arg_info_matrix.append(["attribute_name_columns", self.attribute_name_columns, False, (str,list)])
361
- self.__arg_info_matrix.append(["attribute_value_column", self.attribute_value_column, False, (str)])
362
- self.__arg_info_matrix.append(["id_columns", self.id_columns, False, (str,list)])
363
- self.__arg_info_matrix.append(["attribute_table", self.attribute_table, True, (DataFrame)])
364
- self.__arg_info_matrix.append(["response_table", self.response_table, True, (DataFrame)])
365
- self.__arg_info_matrix.append(["response_column", self.response_column, False, (str)])
366
- self.__arg_info_matrix.append(["categorical_attribute_table", self.categorical_attribute_table, True, (DataFrame)])
367
- self.__arg_info_matrix.append(["splits_table", self.splits_table, True, (DataFrame)])
368
- self.__arg_info_matrix.append(["split_value", self.split_value, True, (str)])
369
- self.__arg_info_matrix.append(["num_splits", self.num_splits, True, (int)])
370
- self.__arg_info_matrix.append(["approx_splits", self.approx_splits, True, (bool)])
371
- self.__arg_info_matrix.append(["nodesize", self.nodesize, True, (int)])
372
- self.__arg_info_matrix.append(["max_depth", self.max_depth, True, (int)])
373
- self.__arg_info_matrix.append(["weighted", self.weighted, True, (bool)])
374
- self.__arg_info_matrix.append(["weight_column", self.weight_column, True, (str)])
375
- self.__arg_info_matrix.append(["split_measure", self.split_measure, True, (str)])
376
- self.__arg_info_matrix.append(["output_response_probdist", self.output_response_probdist, True, (bool)])
377
- self.__arg_info_matrix.append(["response_probdist_type", self.response_probdist_type, True, (str)])
378
- self.__arg_info_matrix.append(["categorical_encoding", self.categorical_encoding, True, (str)])
379
- self.__arg_info_matrix.append(["attribute_table_sequence_column", self.attribute_table_sequence_column, True, (str,list)])
380
- self.__arg_info_matrix.append(["data_sequence_column", self.data_sequence_column, True, (str,list)])
381
- self.__arg_info_matrix.append(["categorical_attribute_table_sequence_column", self.categorical_attribute_table_sequence_column, True, (str,list)])
382
- self.__arg_info_matrix.append(["response_table_sequence_column", self.response_table_sequence_column, True, (str,list)])
383
- self.__arg_info_matrix.append(["splits_table_sequence_column", self.splits_table_sequence_column, True, (str,list)])
384
-
385
- if inspect.stack()[1][3] != '_from_model_catalog':
386
- # Perform the function validations
387
- self.__validate()
388
- # Generate the ML query
389
- self.__form_tdml_query()
390
- # Execute ML query
391
- self.__execute()
392
- # Get the prediction type
393
- self._prediction_type = self.__awu._get_function_prediction_type(self)
394
-
395
- # End the timer to get the build time
396
- _end_time = time.time()
397
-
398
- # Calculate the build time
399
- self._build_time = (int)(_end_time - _start_time)
400
-
401
- def __validate(self):
402
- """
403
- Function to validate sqlmr function arguments, which verifies missing
404
- arguments, input argument and table types. Also processes the
405
- argument values.
406
- """
407
-
408
- # Make sure that a non-NULL value has been supplied for all mandatory arguments
409
- self.__awu._validate_missing_required_arguments(self.__arg_info_matrix)
410
-
411
- # Make sure that a non-NULL value has been supplied correct type of argument
412
- self.__awu._validate_argument_types(self.__arg_info_matrix)
413
-
414
- # Check to make sure input table types are strings or data frame objects or of valid type.
415
- self.__awu._validate_input_table_datatype(self.attribute_table, "attribute_table", None)
416
- self.__awu._validate_input_table_datatype(self.data, "data", None)
417
- self.__awu._validate_input_table_datatype(self.categorical_attribute_table, "categorical_attribute_table", None)
418
- self.__awu._validate_input_table_datatype(self.response_table, "response_table", None)
419
- self.__awu._validate_input_table_datatype(self.splits_table, "splits_table", None)
420
-
421
- # Make sure either of the input tables are provided
422
- if ((self.data is None and (self.attribute_table is None or self.response_table is None)) or
423
- (self.data is not None and (self.attribute_table is not None or self.response_table is not None))):
424
- raise TeradataMlException(Messages.get_message(MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT, "data",
425
- "attribute_table and response_table"),
426
- MessageCodes.EITHER_THIS_OR_THAT_ARGUMENT)
427
-
428
- # Check for permitted values
429
- split_measure_permitted_values = ["GINI", "ENTROPY", "CHISQUARE"]
430
- self.__awu._validate_permitted_values(self.split_measure, split_measure_permitted_values, "split_measure")
431
-
432
- response_probdist_type_permitted_values = ["LAPLACE", "FREQUENCY", "RAWCOUNT"]
433
- self.__awu._validate_permitted_values(self.response_probdist_type, response_probdist_type_permitted_values, "response_probdist_type")
434
-
435
- categorical_encoding_permitted_values = ["GRAYCODE", "HASHING"]
436
- self.__awu._validate_permitted_values(self.categorical_encoding, categorical_encoding_permitted_values, "categorical_encoding")
437
-
438
- # Check whether the input columns passed to the argument are not empty.
439
- # Also check whether the input columns passed to the argument valid or not.
440
- if self.data is not None:
441
- input_data = self.data
442
- input_data_arg_name = "data"
443
- else:
444
- input_data = self.attribute_table
445
- input_data_arg_name = "attribute_table"
446
-
447
- self.__awu._validate_input_columns_not_empty(self.attribute_name_columns, "attribute_name_columns")
448
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_name_columns, "attribute_name_columns", input_data, input_data_arg_name, False)
449
-
450
- self.__awu._validate_input_columns_not_empty(self.id_columns, "id_columns")
451
- self.__awu._validate_dataframe_has_argument_columns(self.id_columns, "id_columns", input_data, input_data_arg_name, False)
452
-
453
- self.__awu._validate_input_columns_not_empty(self.attribute_value_column, "attribute_value_column")
454
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_value_column, "attribute_value_column", input_data, input_data_arg_name, False)
455
-
456
- if self.data is None:
457
- input_data = self.response_table
458
- input_data_arg_name = "response_table"
459
-
460
- self.__awu._validate_input_columns_not_empty(self.response_column, "response_column")
461
- self.__awu._validate_dataframe_has_argument_columns(self.response_column, "response_column", input_data, input_data_arg_name, False)
462
-
463
- self.__awu._validate_input_columns_not_empty(self.split_value, "split_value")
464
- self.__awu._validate_dataframe_has_argument_columns(self.split_value, "split_value", self.splits_table, "splits_table", False)
465
-
466
- self.__awu._validate_input_columns_not_empty(self.weight_column, "weight_column")
467
- self.__awu._validate_dataframe_has_argument_columns(self.weight_column, "weight_column", input_data, input_data_arg_name, False)
468
-
469
- self.__awu._validate_input_columns_not_empty(self.attribute_table_sequence_column, "attribute_table_sequence_column")
470
- self.__awu._validate_dataframe_has_argument_columns(self.attribute_table_sequence_column, "attribute_table_sequence_column", self.attribute_table, "attribute_table", False)
471
-
472
- self.__awu._validate_input_columns_not_empty(self.data_sequence_column, "data_sequence_column")
473
- self.__awu._validate_dataframe_has_argument_columns(self.data_sequence_column, "data_sequence_column", self.data, "data", False)
474
-
475
- self.__awu._validate_input_columns_not_empty(self.categorical_attribute_table_sequence_column, "categorical_attribute_table_sequence_column")
476
- self.__awu._validate_dataframe_has_argument_columns(self.categorical_attribute_table_sequence_column, "categorical_attribute_table_sequence_column", self.categorical_attribute_table, "categorical_attribute_table", False)
477
-
478
- self.__awu._validate_input_columns_not_empty(self.response_table_sequence_column, "response_table_sequence_column")
479
- self.__awu._validate_dataframe_has_argument_columns(self.response_table_sequence_column, "response_table_sequence_column", self.response_table, "response_table", False)
480
-
481
- self.__awu._validate_input_columns_not_empty(self.splits_table_sequence_column, "splits_table_sequence_column")
482
- self.__awu._validate_dataframe_has_argument_columns(self.splits_table_sequence_column, "splits_table_sequence_column", self.splits_table, "splits_table", False)
483
-
484
-
485
- def __form_tdml_query(self):
486
- """
487
- Function to generate the analytical function queries. The function defines
488
- variables and list of arguments required to form the query.
489
- """
490
- # Generate temp table names for output table parameters if any.
491
- self.__model_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree0", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
492
- self.__intermediate_splits_table_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree1", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
493
- self.__final_response_tableto_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_decisiontree2", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
494
-
495
- # Output table arguments list
496
- if (self.splits_table is None):
497
- self.__func_output_args_sql_names = ["OutputTable", "IntermediateSplitsTable", "SaveFinalResponseTableTo"]
498
- self.__func_output_args = [self.__model_table_temp_tablename, self.__intermediate_splits_table_temp_tablename, self.__final_response_tableto_temp_tablename]
499
- else:
500
- self.__func_output_args_sql_names = ["OutputTable", "SaveFinalResponseTableTo"]
501
- self.__func_output_args = [self.__model_table_temp_tablename, self.__final_response_tableto_temp_tablename]
502
-
503
- # Model Cataloging related attributes.
504
- self._sql_specific_attributes = {}
505
- self._sql_formula_attribute_mapper = {}
506
- self._target_column = None
507
- self._algorithm_name = None
508
-
509
- # Generate lists for rest of the function arguments
510
- self.__func_other_arg_sql_names = []
511
- self.__func_other_args = []
512
- self.__func_other_arg_json_datatypes = []
513
-
514
- self.__func_other_arg_sql_names.append("AttributeNameColumns")
515
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_name_columns, "\""), "'"))
516
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
517
-
518
- self.__func_other_arg_sql_names.append("IdColumns")
519
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.id_columns, "\""), "'"))
520
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
521
-
522
- self.__func_other_arg_sql_names.append("AttributeValueColumn")
523
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.attribute_value_column, "\""), "'"))
524
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
525
-
526
- self.__func_other_arg_sql_names.append("ResponseColumn")
527
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.response_column, "\""), "'"))
528
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
529
-
530
- if self.split_value is not None:
531
- self.__func_other_arg_sql_names.append("SplitsValueColumn")
532
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.split_value, "\""), "'"))
533
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
534
-
535
- if self.weight_column is not None:
536
- self.__func_other_arg_sql_names.append("WeightColumn")
537
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(UtilFuncs._teradata_quote_arg(self.weight_column, "\""), "'"))
538
- self.__func_other_arg_json_datatypes.append("COLUMN_NAMES")
539
-
540
- if self.num_splits is not None and self.num_splits != 10:
541
- self.__func_other_arg_sql_names.append("NumSplits")
542
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.num_splits, "'"))
543
- self.__func_other_arg_json_datatypes.append("INTEGER")
544
-
545
- if self.approx_splits is not None and self.approx_splits != True:
546
- self.__func_other_arg_sql_names.append("ApproxSplits")
547
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.approx_splits, "'"))
548
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
549
-
550
- if self.nodesize is not None:
551
- self.__func_other_arg_sql_names.append("MinNodeSize")
552
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.nodesize, "'"))
553
- self.__func_other_arg_json_datatypes.append("INTEGER")
554
-
555
- if self.max_depth is not None:
556
- self.__func_other_arg_sql_names.append("MaxDepth")
557
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.max_depth, "'"))
558
- self.__func_other_arg_json_datatypes.append("INTEGER")
559
-
560
- if self.split_measure is not None and self.split_measure != "gini":
561
- self.__func_other_arg_sql_names.append("SplitMeasure")
562
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.split_measure, "'"))
563
- self.__func_other_arg_json_datatypes.append("STRING")
564
-
565
- if self.weighted is not None and self.weighted != False:
566
- self.__func_other_arg_sql_names.append("Weighted")
567
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.weighted, "'"))
568
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
569
-
570
- if self.output_response_probdist is not None and self.output_response_probdist != False:
571
- self.__func_other_arg_sql_names.append("OutputResponseProbDist")
572
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.output_response_probdist, "'"))
573
- self.__func_other_arg_json_datatypes.append("BOOLEAN")
574
-
575
- if self.response_probdist_type is not None and self.response_probdist_type != "Laplace":
576
- self.__func_other_arg_sql_names.append("ResponseProbDistType")
577
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.response_probdist_type, "'"))
578
- self.__func_other_arg_json_datatypes.append("STRING")
579
-
580
- if self.categorical_encoding is not None and self.categorical_encoding != "graycode":
581
- self.__func_other_arg_sql_names.append("CategoricalEncoding")
582
- self.__func_other_args.append(UtilFuncs._teradata_collapse_arglist(self.categorical_encoding, "'"))
583
- self.__func_other_arg_json_datatypes.append("STRING")
584
-
585
- # Generate lists for rest of the function arguments
586
- sequence_input_by_list = []
587
- if self.attribute_table_sequence_column is not None:
588
- sequence_input_by_list.append("AttributeTableName:" + UtilFuncs._teradata_collapse_arglist(self.attribute_table_sequence_column, ""))
589
-
590
- if self.data_sequence_column is not None:
591
- sequence_input_by_list.append("InputTable:" + UtilFuncs._teradata_collapse_arglist(self.data_sequence_column, ""))
592
-
593
- if self.categorical_attribute_table_sequence_column is not None:
594
- sequence_input_by_list.append("CategoricalAttributeTableName:" + UtilFuncs._teradata_collapse_arglist(self.categorical_attribute_table_sequence_column, ""))
595
-
596
- if self.response_table_sequence_column is not None:
597
- sequence_input_by_list.append("ResponseTableName:" + UtilFuncs._teradata_collapse_arglist(self.response_table_sequence_column, ""))
598
-
599
- if self.splits_table_sequence_column is not None:
600
- sequence_input_by_list.append("SplitsTable:" + UtilFuncs._teradata_collapse_arglist(self.splits_table_sequence_column, ""))
601
-
602
- if len(sequence_input_by_list) > 0:
603
- self.__func_other_arg_sql_names.append("SequenceInputBy")
604
- sequence_input_by_arg_value = UtilFuncs._teradata_collapse_arglist(sequence_input_by_list, "'")
605
- self.__func_other_args.append(sequence_input_by_arg_value)
606
- self.__func_other_arg_json_datatypes.append("STRING")
607
- self._sql_specific_attributes["SequenceInputBy"] = sequence_input_by_arg_value
608
-
609
-
610
- # Declare empty lists to hold input table information.
611
- self.__func_input_arg_sql_names = []
612
- self.__func_input_table_view_query = []
613
- self.__func_input_dataframe_type = []
614
- self.__func_input_distribution = []
615
- self.__func_input_partition_by_cols = []
616
- self.__func_input_order_by_cols = []
617
-
618
- # Process attribute_table
619
- if self.attribute_table is not None:
620
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.attribute_table, False)
621
- self.__func_input_distribution.append("NONE")
622
- self.__func_input_arg_sql_names.append("AttributeTableName")
623
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
624
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
625
- self.__func_input_partition_by_cols.append("NA_character_")
626
- self.__func_input_order_by_cols.append("NA_character_")
627
-
628
- # Process data
629
- if self.data is not None:
630
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.data, False)
631
- self.__func_input_distribution.append("NONE")
632
- self.__func_input_arg_sql_names.append("InputTable")
633
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
634
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
635
- self.__func_input_partition_by_cols.append("NA_character_")
636
- self.__func_input_order_by_cols.append("NA_character_")
637
-
638
- # Process categorical_attribute_table
639
- if self.categorical_attribute_table is not None:
640
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.categorical_attribute_table, False)
641
- self.__func_input_distribution.append("NONE")
642
- self.__func_input_arg_sql_names.append("CategoricalAttributeTableName")
643
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
644
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
645
- self.__func_input_partition_by_cols.append("NA_character_")
646
- self.__func_input_order_by_cols.append("NA_character_")
647
-
648
- # Process response_table
649
- if self.response_table is not None:
650
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.response_table, False)
651
- self.__func_input_distribution.append("NONE")
652
- self.__func_input_arg_sql_names.append("ResponseTableName")
653
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
654
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
655
- self.__func_input_partition_by_cols.append("NA_character_")
656
- self.__func_input_order_by_cols.append("NA_character_")
657
-
658
- # Process splits_table
659
- if self.splits_table is not None:
660
- self.__table_ref = self.__awu._teradata_on_clause_from_dataframe(self.splits_table, False)
661
- self.__func_input_distribution.append("NONE")
662
- self.__func_input_arg_sql_names.append("SplitsTable")
663
- self.__func_input_table_view_query.append(self.__table_ref["ref"])
664
- self.__func_input_dataframe_type.append(self.__table_ref["ref_type"])
665
- self.__func_input_partition_by_cols.append("NA_character_")
666
- self.__func_input_order_by_cols.append("NA_character_")
667
-
668
- function_name = "DecisionTree"
669
- # Create instance to generate SQLMR.
670
- self.__aqg_obj = AnalyticQueryGenerator(function_name,
671
- self.__func_input_arg_sql_names,
672
- self.__func_input_table_view_query,
673
- self.__func_input_dataframe_type,
674
- self.__func_input_distribution,
675
- self.__func_input_partition_by_cols,
676
- self.__func_input_order_by_cols,
677
- self.__func_other_arg_sql_names,
678
- self.__func_other_args,
679
- self.__func_other_arg_json_datatypes,
680
- self.__func_output_args_sql_names,
681
- self.__func_output_args,
682
- engine="ENGINE_ML")
683
- # Invoke call to SQL-MR generation.
684
- self.sqlmr_query = self.__aqg_obj._gen_sqlmr_select_stmt_sql()
685
-
686
- # Print SQL-MR query if requested to do so.
687
- if display.print_sqlmr_query:
688
- print(self.sqlmr_query)
689
-
690
- # Set the algorithm name for Model Cataloging.
691
- self._algorithm_name = self.__aqg_obj._get_alias_name_for_function(function_name)
692
-
693
- def __execute(self):
694
- """
695
- Function to execute SQL-MR queries.
696
- Create DataFrames for the required SQL-MR outputs.
697
- """
698
- # Generate STDOUT table name and add it to the output table list.
699
- sqlmr_stdout_temp_tablename = UtilFuncs._generate_temp_table_name(prefix="td_sqlmr_out_", use_default_database=True, gc_on_quit=True, quote=False, table_type=TeradataConstants.TERADATA_TABLE)
700
- try:
701
- # Generate the output.
702
- UtilFuncs._create_table(sqlmr_stdout_temp_tablename, self.sqlmr_query)
703
- except Exception as emsg:
704
- raise TeradataMlException(Messages.get_message(MessageCodes.TDMLDF_EXEC_SQL_FAILED, str(emsg)), MessageCodes.TDMLDF_EXEC_SQL_FAILED)
705
-
706
- # Update output table data frames.
707
- self._mlresults = []
708
- self.model_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__model_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__model_table_temp_tablename))
709
- if self.splits_table is None:
710
- self.intermediate_splits_table = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__intermediate_splits_table_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__intermediate_splits_table_temp_tablename))
711
- self.final_response_tableto = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(self.__final_response_tableto_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(self.__final_response_tableto_temp_tablename))
712
- self.output = self.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(sqlmr_stdout_temp_tablename), source_type="table", database_name=UtilFuncs._extract_db_name(sqlmr_stdout_temp_tablename))
713
- self._mlresults.append(self.model_table)
714
- if self.splits_table is None:
715
- self._mlresults.append(self.intermediate_splits_table)
716
- self._mlresults.append(self.final_response_tableto)
717
- self._mlresults.append(self.output)
718
-
719
- def show_query(self):
720
- """
721
- Function to return the underlying SQL query.
722
- When model object is created using retrieve_model(), then None is returned.
723
- """
724
- return self.sqlmr_query
725
-
726
- def get_prediction_type(self):
727
- """
728
- Function to return the Prediction type of the algorithm.
729
- When model object is created using retrieve_model(), then the value returned is
730
- as saved in the Model Catalog.
731
- """
732
- return self._prediction_type
733
-
734
- def get_target_column(self):
735
- """
736
- Function to return the Target Column of the algorithm.
737
- When model object is created using retrieve_model(), then the value returned is
738
- as saved in the Model Catalog.
739
- """
740
- return self._target_column
741
-
742
- def get_build_time(self):
743
- """
744
- Function to return the build time of the algorithm in seconds.
745
- When model object is created using retrieve_model(), then the value returned is
746
- as saved in the Model Catalog.
747
- """
748
- return self._build_time
749
-
750
- def _get_algorithm_name(self):
751
- """
752
- Function to return the name of the algorithm.
753
- """
754
- return self._algorithm_name
755
-
756
- def _get_sql_specific_attributes(self):
757
- """
758
- Function to return the dictionary containing the SQL specific attributes of the algorithm.
759
- """
760
- return self._sql_specific_attributes
761
-
762
- @classmethod
763
- def _from_model_catalog(cls,
764
- model_table = None,
765
- final_response_tableto = None,
766
- output = None,
767
- **kwargs):
768
- """
769
- Classmethod is used by Model Cataloging, to instantiate this wrapper class.
770
- """
771
- kwargs.pop("model_table", None)
772
- intermediate_splits_table = None
773
- if "intermediate_splits_table" in kwargs.keys():
774
- intermediate_splits_table = kwargs["intermediate_splits_table"]
775
- kwargs.pop("intermediate_splits_table", None)
776
- kwargs.pop("final_response_tableto", None)
777
- kwargs.pop("output", None)
778
-
779
- # Model Cataloging related attributes.
780
- target_column = kwargs.pop("__target_column", None)
781
- prediction_type = kwargs.pop("__prediction_type", None)
782
- algorithm_name = kwargs.pop("__algorithm_name", None)
783
- build_time = kwargs.pop("__build_time", None)
784
-
785
- # Let's create an object of this class.
786
- obj = cls(**kwargs)
787
- obj.model_table = model_table
788
- obj.intermediate_splits_table = intermediate_splits_table
789
- obj.final_response_tableto = final_response_tableto
790
- obj.output = output
791
-
792
- # Initialize the sqlmr_query class attribute.
793
- obj.sqlmr_query = None
794
-
795
- # Initialize the SQL specific Model Cataloging attributes.
796
- obj._sql_specific_attributes = None
797
- obj._target_column = target_column
798
- obj._prediction_type = prediction_type
799
- obj._algorithm_name = algorithm_name
800
- obj._build_time = build_time
801
-
802
- # Update output table data frames.
803
- obj._mlresults = []
804
- obj.model_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.model_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.model_table))
805
- if intermediate_splits_table is not None:
806
- obj.intermediate_splits_table = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.intermediate_splits_table), source_type="table", database_name=UtilFuncs._extract_db_name(obj.intermediate_splits_table))
807
- obj.final_response_tableto = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.final_response_tableto), source_type="table", database_name=UtilFuncs._extract_db_name(obj.final_response_tableto))
808
- obj.output = obj.__awu._create_data_set_object(df_input=UtilFuncs._extract_table_name(obj.output), source_type="table", database_name=UtilFuncs._extract_db_name(obj.output))
809
- obj._mlresults.append(obj.model_table)
810
- if intermediate_splits_table is not None:
811
- obj._mlresults.append(obj.intermediate_splits_table)
812
- obj._mlresults.append(obj.final_response_tableto)
813
- obj._mlresults.append(obj.output)
814
- return obj
815
-
816
- def __repr__(self):
817
- """
818
- Returns the string representation for a DecisionTree class instance.
819
- """
820
- repr_string="############ STDOUT Output ############"
821
- repr_string = "{}\n\n{}".format(repr_string,self.output)
822
- repr_string="{}\n\n\n############ model_table Output ############".format(repr_string)
823
- repr_string = "{}\n\n{}".format(repr_string,self.model_table)
824
- if self.splits_table is None:
825
- repr_string="{}\n\n\n############ intermediate_splits_table Output ############".format(repr_string)
826
- repr_string = "{}\n\n{}".format(repr_string,self.intermediate_splits_table)
827
- repr_string="{}\n\n\n############ final_response_tableto Output ############".format(repr_string)
828
- repr_string = "{}\n\n{}".format(repr_string,self.final_response_tableto)
829
- return repr_string
830
-